The invention relates to a lifting device for lifting and lowering vehicles, loads or similar, in particular a two-column lifting platform having pivotable support arms.
A two-column lifting platform is known from DE 691 07 560 T2 which consists of two lifting columns and supports which are able to move up and down on the lifting columns. Two jointed arms are provided on each support as pivotable support arms which are pivotable and able to be positioned with the load receiving element thereof underneath a vehicle to be lifted with respect to the load receiving points located there. To secure the adjusted position of the support arms with respect to the support, a locking device is provided which is unlocked in the case of a lowered support, such that the support arms are freely pivotable. Directly after the beginning of a lifting movement of the support, the adjusted positions of the support arms with respect to the support are fixed by the locking device, such that the adjusted support arm position with regard to the vehicle is maintained. This locking device comprises a truncated cone-shaped gearwheel on which a truncated cone-shaped sprocket, formed in a complementary manner, is able to be set. A vertical traversing movement between the truncated cone-shaped gearwheel and the sprocket is therefore required for the decoupling and subsequent locking. Furthermore, the respective support arm can only be arranged at predetermined intervals with regard to its pivot position due to the toothing. In the case of long support arms, the intervals cause the load receiving elements to lie far from each other at locked pivot points, such that an exact positioning of the load receiving elements of the support arms at the receiving points of the respective vehicle is difficult. The same is known from FR 75 06246 A1.
A two-column lifting platform is known from U.S. Pat. No. 4,679,660, which consists of two lifting columns, on each of which a support is able to move up and down. Each support receives two pivotable support arms. These support arms are controllable with regard to the angular position thereof with respect to one another by means of lifting cylinders. Furthermore, in the lowered state of the support, an automatic retraction of the support arms with regard to the extended length is controllable.
A locking device for a pivot arm of a lifting platform emerges from DE 27 42 518 A1, which directly strikes a piston rod of a piston which is fastened between the support and the pivot arm. This locking device is exclusively able to be operated manually.
Furthermore, a two-column lifting device is known from U.S. Pat. No. 4,715,477, which comprises two pivot arms on a support. A locking device is provided on the support which is released in the lowered state of the support in order to trigger a pivot movement of the pivot arm. During lifting of the support, a locking of the locking device then occurs if the pivot arm is positioned in a predetermined position with regard to a locking rod of the locking device, so that a latch element arranged on a hollow cylinder of the locking device engages with a latch mechanism on a cylinder rod which is guided in the hollow cylinder.
The object of the invention is to create a lifting device for lifting and lowering vehicles, loads or similar which enables a simple and quick releasing and locking of the locking position of the support arms with respect to the support in any pivot position within the pivot region of the support arm.
This object is solved according to the invention by a lifting device in which the locking device comprises at least one positioning device which acts to position a support arm with respect to the support in a pivot position and is autonomously transferable into a locking position, and fixes the adjusted pivot position of the support. This locking device has the advantage that a direct adjustment of the pivot angle of the support arm with respect to the support is enabled. In particular, such a positioning device can fix an adjusted pivot position of the support arm, which is preferably infinitely adjustable, within the pivot region of the support arm.
A preferred embodiment of the invention provides that the positioning device is formed as a hydraulic, pneumatic, electric or electromagnetically driven positioning device or as a linear drive. Using such positioning devices, the pivot movements of the support arms relative to the support can be actively initiated, controlled and preferably held fixedly in an end position. Additionally, this advantageous embodiment of the locking device has the advantage that the pivot arm is able to be locked without clearance with regard to the support.
An alternative embodiment of the invention provides that the positioning device is formed as a manually operable positioning device and in particular comprises a hydraulic or pneumatic cylinder. This arrangement enables a pivot position of the support arm with respect to the support to be adjustable without supply of external energy and only by manual operation, and the hydraulic or pneumatic cylinder to be able to be held fixedly in this end position.
A preferred embodiment of the locking device provides that the positioning device is controllable with a switching valve or switching contact. The positioning device can therefore be transferred in a simple manner from an unlocked or released position into a locked or secured position. For example, to lock the locking position or secure the pivot position of the support arm, the adjusted position of the support arm with respect to the support can only be secured by a blocking of the switching valve.
A preferred embodiment of the lifting device provides that the positioning device is formed as a hydraulic or pneumatic cylinder which is formed as a double-acting cylinder having equal-sized piston surfaces in the chambers of the positioning device, which are connected to an overflow pipe. An immediate locking of the pivot position of the piston rod of the hydraulic cylinder therefore occurs directly after a traversing movement during the closing of the two piston chambers or of the overflow pipe, whereby the position of the support arm is also fixed, which is struck by a piston rod of the hydraulic cylinder. Furthermore, no additional storage is required for a fluid in the hydraulic cylinder. Additionally, such a lock has the advantage that this is wear-free over the service life of the lifting device.
One advantageous embodiment of the invention provides that the overflow line connecting the piston chambers is controllable by the switching valve. Therefore a simple construction can be provided which also comprises a small design.
The switching valve is advantageously formed at least as a two-path valve which blocks or releases at least the overflow line. Consequently, each uniquely assumed position can be secured by a switching of the switching valve.
A preferred embodiment of the lifting device provides that the piston rod of the positioning device strikes the support arm at a distance from the pivot axis of the support arm with respect to the support. Favourable lever ratios can thereby be created in order to receive the required torque which can act on a maximum support arm length.
The locking device is preferably provided to be pivotable on the support, wherein a housing of the positioning device is arranged to be pivotable on a bearing surface of the support. The pivot axis of the housing which is received to be pivotable is thus aligned in parallel to the rotational axis of the support arm. A compensation movement of the positioning device therefore occurs at a distance from the rotational axis of the support arm due to the strike point of the piston rod.
The housing of the positioning device preferably has a bearing journal for the formation of the bearing surface, said bearing journal being mounted rotatably in a bore of a bearing plate of the bearing surface. This represents a constructively simple arrangement and receiving of the positioning device on the support.
Preferably, furthermore, the switching valve can be integrated in the bearing surface. Here, an operating device or longitudinal axis of the switching valve is preferably arranged concentrically to the pivot axis of the bearing journal.
The pivot movement of the support arm can be manually controllable. In a manual embodiment, the user will push the support arm into the desired pivot position with his hand or with his foot. Alternatively, the positioning device can be controlled with a hydraulic pump or an electric drive. In this instance, both a separate drive unit and the drive device of the lifting device can be used, which can be provided for lifting and lowering the support.
Furthermore, the switching valve is preferably mechanically switchable using a push button element. Therefore, a simple mechanical release can be created, with which the locking device is automatically unlocked in a lowered position of the support and an automatic locking of the locking device occurs directly after the lifting, or better after a minimum lifting of the support from the lowered position. Alternatively, a switching valve or switching contact can be electrically controllable. Advantageously, a wireless control of the switching valve or switching contact is thereby controllable, for example by means of remote control.
The lifting device has an at least partially closed housing section having a housing base, preferably on the support, in which housing base the locking device is provided, wherein this housing base has a perforation in which the push button element of the switching valve or switching contact is arranged. A protected arrangement of the locking device can therefore be provided, wherein nevertheless an automatic release during lifting of the support to the locking positioning is enabled during lowering of the support and a blocking is enabled.
For secure operation of the push button element, the lower side of a housing base is preferably provided with a protective cover allocated to the perforation which covers the perforation and is formed as a bending tab. A protected arrangement of the push button element and of the associated switching valve or switching contact can thereby be enabled.
Preferably, the push button element opposite the outer side of the housing base protrudes downwards in a locking position of the locking device, and the protective cover, which is preferably formed as a bending tab, is lifted relative to the outer side of the housing base at least in the periphery of a switching path of the switching valve. It is thereby visible from the outside that the locking device is in a locking position. Additionally, a simple operation of the push button element can thereby be enabled as, during lowering of the support, the protective cover abuts on the base or a foot plate of the lifting column and operates the push button element, wherein the push button element itself is protected by the protective cover and remains protected. This arrangement also manually enables an operation of the locking device by the pressing of the protective cover on the outer side or lower side of the housing base in the lifted state of the support, wherein this automatically returns again to its locking position for release.
Alternatively, for example, a wire rope hoist, a wire rope or similar can strike the push button element or the protective cover, said wire rope hoist having an operating grip, an operating strap or an operating element on the opposite end such that this, for example, is manually controllable at a distance from this. For example, an end can be provided adjacent to the control panel, adjacent to an on and off switch operating element of the control of the lifting device or on the outer side of the housing.
A further preferred embodiment provides that two pivotable support arms are arranged on the support, the rotational axis of which are each provided adjacent to the lifting axis of the support. An arrangement can thereby be created, wherein, in particular in the case of a symmetrical arrangement, the rotational axes of the support arms are spaced apart at the same distance to the vertical axis of the lifting column.
Furthermore it is preferably provided that a positioning device which is controllable by a control of the lifting device comprises at least one control device which is preferably controllable wirelessly. Such an arrangement has the advantage that the operator can control one or more of such lifting devices by means of a control device preferably formed as a remote control. Alternatively or additionally, a positioning of the support arm with regard to the load receiving points on the vehicle can also occur via such a remote control. Furthermore, the support is preferably able to move up and down along a lifting column or on a lifting stamp of a stamp platform or a half- or double-scissor lifting platform. This arrangement is usable in a variety of ways and is adaptable to the respective design of the support.
Furthermore, the support arms of the load receiving element preferably have at least two support arm sections which are connected to each other to be pivotable and are positioned with respect to each other in the pivot position using at least one locking device. This embodiment of the support arm can be provided alternatively to a telescopic support arm. Here, a first support arm section which is arranged on the support, as well as at least one further support arm section, can each be adjustable in the pivot position thereof on the load receiving point on the vehicle or the load.
A further advantageous embodiment of the lifting device provides two or more lifting columns which are allocated to each other in pairs, for the formation of a two-column lifting platform or a multi-column lifting platform. These lifting platforms are advantageously each formed to be self-sufficient such that the control lines or static components connecting the lifting devices which stand opposite one another are dispensable.
The invention as well as further advantageous embodiments and developments of the same are described and explained in more detail below by means of the examples depicted in the drawings. The features to be gleaned from the description and the drawings can be applied individually or together in any combination according to the invention. Here are shown:
In
The support 17 furthermore receives a drive device 25. This can be formed electro-hydraulically, hydraulically or mechanically and has a hydraulic unit according to the depicted embodiment. This drive device 25 is monitored and controlled by a control 26. At least one accumulator 27, for example, can be provided for the energy supply. The control 26 advantageously works wirelessly. In particular, a remote control can be provided in order to control the lifting devices 12. In particular, the two lifting devices 12 which are allocated to each other and lie opposite each other communicate wirelessly with each other in order to ensure, for example, a simultaneous initiation of a lifting and lowering movement as well as to ensure a mutual monitoring of synchronisation or similar. Alternatively, supply lines and/or control lines can be provided between the two lifting devices 12 such that both control signals and a current supply are enabled, connected via cable.
The support 17 is formed to be sleeve- or cartridge-shaped and encloses the lifting column 14. In this arrangement it is therefore provided that the drive spindle or the hydraulic cylinder is arranged within the lifting column 14 for lifting and lowering the support 17. The hydraulic cylinder is supported on one side on a lower end of the lifting column 14 or the base plate 16 and strikes the upper, inner end section of the support 17. To guide the support 17 to the lifting column 14, guide elements 29 lying therebetween are provided which, for example, can be formed as rolling or sliding elements or as a combination thereof. Furthermore, a drop guard 32 is provided between the lifting column 14 and the support 17, using which a deactivation or a current disconnection of a holding magnet of the drop guard occurs and a locking element implements a securing of the adjusted lifting position.
An alternative embodiment of the lifting device 12 provides that the lifting columns have a U-shaped cross-section, within which the support is guided to be able to move up and down, wherein the at least partially closed housing section 19 is arranged analogously to the lifting device 12 according to
A further alternative embodiment of the lifting device 11 can be that, instead of the lifting column and the support which is able to move up and down, a lifting stamp of a stamp platform is provided, wherein the support is arranged at the upper end of the lifting stamp, at which the support arms 21 are provided.
Furthermore, a further alternative embodiment of the lifting device 11 can be provided in which the supports which are able to move up and down are moved up and down by means of a half-scissor or double-scissor mechanism which are in turn operated with a hydraulic cylinder, on which the support arms 21 can be arranged.
In
The locking device 37 comprises an operable positioning device 38 which is formed according to the exemplary embodiment as a hydraulic cylinder. This hydraulic cylinder 39 comprises a piston rod 41, the one outer end of which, removed from the pivot axis 22, strikes the support arm 21. The hydraulic cylinder 28 comprises a bearing journal 43 which engages with a bore 44 of a bearing plate 45, whereby a bearing surface 42 is provided for the pivotable mounting of the hydraulic cylinder 28. The hydraulic cylinder 28 is held secured with respect to the bearing surface 42 using a securing element 46. In the exemplary embodiment, this can, for example, be a socket pin, a screw or similar which fastens in an upper part of the housing section 19 and strikes a housing 40 of the hydraulic cylinder 39 and is fixed with respect to the bearing surface 42.
The positioning device 38 can comprise, alternatively to the hydraulic cylinder 39, a pneumatically driven or electrically or electromagnetically driven positioning device and/or a reciprocating piston. Alternatively, a linear drive can also be provided which in turn can be driven electrically, pneumatically or hydraulically. A positioning movement or a traversing movement of the positioning device 38 can be controlled by a switching valve 54 or a switching contact, the functionality of which is described further below. Alternatively, the positioning movement can also be drive only via a control device of the lifting device 12.
In
The bearing surfaces 42 to receive the hydraulic cylinders 39 are spaced wide apart from one another in such a way that the piston rods 41 of the hydraulic cylinders 39 do not mutually impede one another.
In
Alternatively, the switching valve 54 or the switching contact can also be controlled wirelessly in the case of an electrically controlled positioning device 38.
In the depiction according to
A perforation 58 is provided in a lower housing base 57 of the housing section 19 (
Therefore, during lowering of the support 17 having the load receiver 18, an automatic unlocking of the locking device 37 is enabled.
This automatic locking of the locking device 37 also occurs during a lifting movement of the carrier 17 with respect to the lifting column 14. After, for example, the support arms 21 are positioned with respect to the load receiving points of a vehicle or of a load and a lifting movement of the support 17 is controlled, a locking of the adjusted pivot position of the support arm(s) 21 occurs directly after the lifting of the support arm 21 from the lowered position. The lifting after which this locking occurs is adjustable, for example, via the length of the push button element 55 or the switching path of the switching valve 54.
The releasing and locking of the locking device 37 can alternatively also occur by a sensor or a proximity switch which is provided on the lifting device 12. In this instance, on the one hand, the ground base can be a reference point, on which the lifting device 12 is mounted. Alternatively, a reference point can also be provided within the lifting device 12, which means that, for example, a locking or an unlocking is controllable during a height measurement or measurement of the lifting movement.
Furthermore, alternatively, a pivot movement of the support arm 21 is controlled by a motor, by, for example, a retraction or extension movement to adjust the pivot position of the support arm 21 being controlled via a hydraulic pump of the drive device of the hydraulic cylinder 39.
In
In
In
This hand unlocking device 80 comprises an operating handle 81, which for example can be arranged on an upper side of the housing section 19. From this operating handle 18, a wire rope hoist 82 extends through a first bore 83 in the upper housing section and through a bore 83 in the housing base 57, such that the opposite end strikes the freely deflectable end of the protective cover 61, preferably releasably. Due to this arrangement, during lifting of the operating handle 81 relative to the housing section 19, the protective cover 61 is positioned to abut onto the lower side of the housing base 57, whereby the push button element 55 as a consequence transfers the switching valve 54 from a locking position into an unlocking position in order to subsequently pivot the support arm 21. During release of the operating handle 81, the protective cover 61 returns to the initial position depicted in
Alternatively, the wire rope hoist 82 can also directly strike the push button element 55.
The operating handle 81 can also be positioned at another point of the lifting device 12, such as for example in the region of the drive control 25 or of the housing of the drive control 35 as well as on the support 17.
Furthermore, the locking devices 37 of the left and right support arm 21 can be unlocked at the same time by means of an operating handle 81. For this purpose, for example within the support 17, a wire rope hoist guide can be provided by means of deflection rollers.
All aforementioned features are each significant to the invention in themselves and can be combined with one another in any combination.
Number | Date | Country | Kind |
---|---|---|---|
20 2013 102 803 U | Jun 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/060808 | 5/26/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/206668 | 12/31/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4212449 | Tsujimura | Jul 1980 | A |
4679660 | Suzuki | Jul 1987 | A |
4715477 | Suzuki | Dec 1987 | A |
4749169 | Pickles | Jun 1988 | A |
4825977 | Isogai | May 1989 | A |
4976336 | Curran | Dec 1990 | A |
6279685 | Kogan | Aug 2001 | B1 |
6634461 | Baker | Oct 2003 | B1 |
20100051884 | Matthews | Mar 2010 | A1 |
20120032126 | Finkbeiner | Feb 2012 | A1 |
20120048653 | Matthews | Mar 2012 | A1 |
20150298947 | Davis | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
102387980 | Mar 2012 | CN |
76 19 866 | Nov 1976 | DE |
27 42 518 | Mar 1979 | DE |
691 07 560 | Jun 1995 | DE |
0478035 | Apr 1992 | EP |
2 302 272 | Sep 1976 | FR |
2 356 343 | Jan 1978 | FR |
S62 211299 | Sep 1987 | JP |
S63 56190 | Apr 1988 | JP |
S63 56191 | Apr 1988 | JP |
2005 320173 | Nov 2005 | JP |
4358793 | Nov 2005 | JP |
Entry |
---|
International Search Report for corresponding patent application No. PCT/EP2014/060808 dated Jul. 7, 2014. |
Number | Date | Country | |
---|---|---|---|
20160137470 A1 | May 2016 | US |