Precast wall panels can provide on-site construction of buildings with improved efficiency, such as lower labor costs and faster construction cycles. Precast wall panels using lightweight concrete materials can result in substantial savings in construction costs, as compared to traditional brick walls and conventional concrete block work. In addition, a smaller number of workers can be used with less or even no skilled workers.
The precast wall panel can be used to form room-high partition wall panels having no-load bearing. The precast wall panels can be room-high, e.g., 2-3 m long, and about 0.6 m wide. The precast wall panels can have completely flat surface, thus no surface conditioning, e.g., surface plastering, is needed. The precast wall panels can have cavities, offering ducts for electrical wires and water pipes.
However, even with cavities and light weight technology, the precast wall panels can be heavy, e.g., having an area density of about 140 kg/m2 for a typical 0.1 m thickness wall panel. A precast wall panel can be too heavy for one person to handle, and lifting a precast wall panel with two persons can require tremendous effort.
Thus there is a need for a lifting cart for handling the precast wall panels to assist in the building construction, e.g., in the installation of wall partitions.
In some embodiments, the present invention discloses a lifting cart for assist in building construction processes using precast wall panels. The lifting cart can include a panel handling mechanism coupled to a movable vehicle. The panel handling mechanism can include a clamping mechanism for clamping on the panel, a rotational mechanism for rotating the panel in a first direction perpendicular to a plane of the panel, and a linear mechanism for moving the panel in a second direction parallel to a plane of the panel.
In some embodiments, the present invention discloses a lifting cart for assist in building construction processes using precast wall panels. The lifting cart can include a panel handling mechanism coupled to a movable vehicle. The movable vehicle can include a first set of wheels configured to move in a first straight direction, a second set of wheels configured to move in a second straight direction, wherein the second straight direction is perpendicular to the first straight direction, and an activation mechanism to switch moving the vehicle between using the first set of wheels and using the second set of wheels.
In some embodiments, the present invention discloses a lifting cart for assist in building construction processes using precast wall panels. The lifting cart can include a body, a plate handling assembly coupled to the body, a first set of wheels and a second set of wheels configured to move in perpendicular directions, and an activation mechanism configured to switch between the perpendicular directions.
In some embodiments, the present invention discloses a lifting cart for assist in building construction processes using precast wall panels. The lifting cart can handle the precast wall panels, for example, from a wall panel package delivered to the construction site to the final location of the wall panels between beams of the building frame. Thus the lifting cart can be configured to handle the heavy lifting and moving of the wall panels, leaving the construction workers with the light duty jobs of securing the wall panels to the building frame, and of finalizing the building interior and exterior.
Wall panel construction can be prepared, for example, by installing edge stops for the wall panels to rest on. The edge stops 140 can include small bars, temporarily secured to the frame of the building. The edge stop bars can delimiter the plane of the wall panels, e.g., the wall panels can be pushed against the edge stop bars to form a wall. For example, a wall panel can be positioned touching a top edge stop bar and a bottom edge stop bar, before being secured in place. Afterward, the edge stop bars can be removed.
A side-by-side stack 115 of precast wall panels 110 can be delivered to the construction site, for example, by a truck for long distances and by a fork lift for short distances. The dimension of the wall panels can include a length that is comparable with the height of the rooms, e.g., the distance from the foundation to the ceiling beams for the first floor, or the distance from the floor beams to the ceiling beams for subsequent floors. Typically, the length of the wall panels can be between 2 and 3 m, but can be up to 20 m, e.g., less than 20 m, less than 15 m, less than 10 m, or less than 5 m, depending on the building design. The width of the wall panels can be designed for ease of manufacturing or transportation, such as 0.6 m, 0.8 m, 1 m, or 1.2 m. The thickness of the wall panels can be 0.05 m, 0.1 m, 0.15 m, or 0.2 m. For example, the wall panels can be less than 50 mm, less than 40 mm, less than 30 mm, less than 20 mm, or less than 10 mm as compared to the room height, for ease of assembling. The wall panel height can be between 50 mm and 10 mm less than the room height.
The wall panels can include tongue 113 and groove 112 for mating together. The wall panels can include channels, such as interior channels 111 running along the length of the wall panels. The channels can run along the length of the wall panels, e.g., the longest side of the wall panels, such as along the vertical direction from the ceiling to the floor when installed. The channels can run along the width of the wall panels, e.g., the shorter side of the wall panels, such as along the horizontal direction parallel to building floor when installed.
The wall panels can be precast to sizes, e.g., the molds of the wall panels are designed according to building sizes, or the building is designed based on the available sizes of the wall panels. Alternatively, the wall panels can be precast from a cement mixture that can allow shaping, such as sawing, so that the wall panels can be cut to size.
The wall panels can be mounted against the edge stop bars on the building frame. The wall panels can have tongue and groove edges for coupling together. Side-by-side wall panels can be glued together, for example, using appropriate gluing agent 151. The gluing thickness can be less than 2 mm, such as between 1 mm and 2 mm. For example, a side edge of a wall panel, e.g., a surface of a length and a thickness, can be coated with the gluing agent. A new panel can be brought to the glued panel, with a side edge facing the glued side edge. The new panel can be pressed against the glued panel, until the glue is set, to secure the two panels together.
The new panel can be secured in place at the top and bottom sides to the building frame by using wooden wedges. Afterward, the gaps 150 between the top sides of the wall panels and the ceiling of the building can be covered by an insulation material, such as polyurethane foam. Alternatively, a gluing agent can be used to secure the top sides of the wall panels to the ceiling. After applying the gluing agent, the wall panels can be pushed against the ceiling to squeeze out excess gluing agent. The gluing thickness can be less than 2 mm. The gaps 152 between the bottom sides of the wall panels and the floor of the building can be covered by a cement mixture. The wooden wedges then can be removed.
The precast wall panels can have a cement material, e.g., forming concrete wall panels. Thus the wall panels may not be subjected to any heavy load, e.g., which can be highly suitable for forming partitions between frame of a building. During storage or transport, the wall panels also are arranged with minimum loads on the wall panels. Thus the wall panels can be placed side-by-side, e.g., the wall panels are not stacked on top of each other, but instead placed in a side-by-side configuration. There can be no external load on the wall panels in this storage configuration. Alternatively, another side-by-side stack of wall panels can be placed on top of the side-by-side stack, e.g., each wall panel can be under the weight of another wall panel. The wall panels can be placed with the length, e.g., the longer side, touching the ground, for example, for stability.
In some embodiments, the wall panels can have reinforced steel embedded within the cement material, for example, to increase the strength of the wall panels. The steel reinforced wall panels can be subjected to heavy loads. The wall panels can be precast with channels, such as interior channels or exterior channels.
The wall panels can be manually installed, e.g., using construction workers. Due to the heavy weight of the wall panels, at least two workers are needed to handle the wall panels. In addition, it can be a strenuous work for aligning the wall panels, e.g., for moving the wall panels next to each other to form a complete wall.
In some embodiments, the present invention discloses a lifting cart for handling the wall panels. The lifting cart can be operated by one worker, and can move the wall panels from the package configuration to the installed positions, including the large movements and the fine alignment of the wall panels.
The lifting cart can be used for picking up a wall panel 110, for example, from the side-by-side stack 115 of the wall panels. The lifting cart can lift up the wall panel, and rotate the wall panel to the installed position, such as rotating an angle about 90 degrees if the wall panel is stacked on its length, and to be installed on its width. The lifting cart then moves the wall panel to the proper position, e.g., next to a beam of the frame or next to another wall panel. The lifting can place the wall panel with the shorter side, e.g., the width, facing the ground. The frame beam, the already-installed wall panel, or the newly installed wall panel can be coated with a layer of adhesive, e.g., gluing agent, to bonding the wall panel with the frame beam or with the already-installed all panel. The alignment of the new wall panel can be performed by the lifting cart, e.g., the lifting cart can move the wall panel at large distance for transferring the wall panel as well as small distance for alignment the wall panel.
A worker then can secure the wall panel into place, such as by coupling an attachment 153 to the top side of the wall panel and then screwing or nailing the attachment to the ceiling beam, and by putting wooden wedges at the bottom side of the wall panel. After one or multiple wall panels are placed, insulation foam can be applied to the top gaps, and cement mixture can be applied to the bottom gaps. After the wall is complete, surface conditioning can be applied to the wall, and interior works such as electrical wiring and water lines can be performed.
The lifting cart can continue moving and placing other wall panels into their proper positions. The use of the lifting cart can assist the workers in handling the heavy wall panels, leaving the workers with the light jobs of securing the wall panels to the building frame.
The lifting cart can move 261 the wall panel into the installed position, e.g., against edge stop bars 240 mounted on the frame. Glue, insulation foam, and cement coating can be used to seal any gaps between the wall panels and the frame.
In some embodiments, the lifting cart can assist in the handling of the wall panels, since the wall panels can be heavy. The lifting cart can also allow precision alignments of the wall panels, since the workers can adjust the positions of the wall panels without using any heavy work.
Operation 310 provides multiple wall panels, wherein the wall panels are preferably stacked side by side, with a longer side and a thickness facing the ground, e.g., the panels are not stacked on each other. The wall panels can be delivered by stacks, using a fork lift, or any movable vehicle with hoist capability. The stacks of wall panels can be placed near the walls needing the wall panels, e.g., the wall panel stacks can be distributed throughout the frame.
The frame can be prepared to accept the wall panels. For example, wooden beams can be coupled to the frame, and/or to the ceiling and floor to mark the positions at which the wall panels can be positioned. For example, the wooden beams can form a periphery of a plane so that the wall panels can be disposed at. A wall panel can be placed against a side of a wooden beam that is coupled to the frame, and against sides of wooden beams that are coupled to the ceiling and floor. A next wall panel can be placed adjacent to the first wall panel, against sides of wooden beams that are coupled to the ceiling and floor.
Operation 320 picks a wall panel, rotates the wall panel so that a shorter side facing the ground, and moves the wall panel to be installed next to a beam or to a previously installed wall panel, wherein the process is performed by a machine. The machine can be a lifting cart, e.g., a movable vehicle that can be operated manually by a worker, can be manually driven by a worker, or can be automatically driven, e.g., remotely operated, by a worker.
In some embodiments, after the wall panel is picked up, the wall panel can be tilted backward before rotating the wall panel. The tilting process can reduce the load on the picking equipment, since the rotation is performed at a tilting angle instead of in a vertical plane. The tilting process can further reduce the lifting height, since rotating at a tilting plane requires a lower lifting as compared to that at a vertical plane.
Operation 330 continues installing next wall panels. Operation 340 optionally installs installing a wall panel to a location between a wall panel and a beam of the frame by an operator. The last wall panel at a wall can be installed by an operator, since there may not be any room for the lifting cart to place the last wall panel into place.
In some embodiments, the present invention discloses a lifting cart and methods to use the lifting cart in assisting workers for installing precast wall panels. The lifting cart can include mechanisms for performing necessary movements, such as lifting, tilting, rotating, and moving the wall panels. The lifting cart can optionally include sensors for accurately accessing the situations for performing the movements. The lifting cart can include a controller programmed to automatically perform the operations, including using the sensors for automatically adjusting the movements so that the wall panels can be picked up and placed at proper locations. The lifting cart can be operated by a worker.
A handling mechanism 470 can be coupled to the vehicle 460 for handling the wall panel. The handling mechanism 470 can include a set of clamps 421, such as two clamps for clamping on a wall panel. The clamps 421 can have a clamping mechanism 420, which can move the jaws of the clamps away from each other or toward each other.
The clamp set 421 can be mounted on a linear movement mechanism, such as a linear guide, for moving 430 the clamp set along a linear direction. The linear movement mechanism can be mounted on a rotating mechanism 441, which can rotate the clamp set and the linear movement. Thus, the clamp set can move linearly in a direction determined by the rotation mechanism. For example, when the rotation mechanism is at rest, the clamp set can move up and down in a vertical direction. When the rotation mechanism rotates 90 degrees, the clamp set can move left and right in a horizontal direction.
In operation 481 (
Other mechanisms can be added, such as a titling mechanism and a vertical movement mechanism. The added vertical movement can allow moving the wall panel up and down, when the linear moving mechanism is rotated and thus cannot move the wall panel in the vertical direction.
The tilting mechanism can reduce stress on the clamp set, and can allow ease of movement of the wall panel. For example, after lifting the wall panel to clear the ground, the wall panel can be tilted, before rotating. The wall panel can stay in the tilted configuration during the movement to the installed location. The wall panel can be re-positioned as an upright wall panel when the wall panel has reached the destination.
In
In
The lifting cart can include a moving mechanism, such as wheels for manually operations, e.g., pushing for going forward, pulling for going backward, or rotating for turning, by a worker. The moving mechanism can include motorized wheels, such as an electric motor or an engine to operate the wheels. A worker then can drive the lifting cart, instead of manually operating the lifting cart by pushing, pulling or rotating the cart. The moving mechanism can be controlled by a controller, to allow a worker to remotely operate the lifting cart. For example, by standing next to the wall panel stack, the worker can control the lifting cart to approach the wall panel stack in appropriate directions and positions.
The lifting cart can move to face the wall panel, e.g., facing the large surface of the wall panel, such as perpendicular to the wall panel. The clamp can be position to be parallel with the wall panel, in order to clamp on the top edge of the wall panel.
In
In some embodiments, the lifting cart can include a hard stop, such as a ruler from the clamp. The lifting cart can move sideway after moving forward to face the wall panel. The sideway movement can allow the clamp to clamp on the proper location, e.g., at a distance 623 from the to-be-touching-the ground edge of the wall panel, e.g., the left edge if the clamp can rotate counter clockwise, and the right edge if the clamp can rotate clockwise. The lifting cart can include a sideway movement mechanism, in addition to a forward/backward movement mechanism.
In some embodiments, the lifting cart can include a sensor to determine an edge of the wall panel, so that the clamp can be the distance 623 from an edge of the wall panel. If the distance is not correct, the lifting cart can adjust its position, for example, by backtracking and then re-forwarding, or by a sideway movement.
In some embodiments, the lifting can include a parallel movement mechanism, e.g., to move the wall panel along the direction of the long side. Thus if the wall panel does not touch the ground after rotated, the parallel movement mechanism can be activated to position the wall panel on the ground.
In some embodiments, the parallel movement mechanism can be incorporated with another movement mechanism, such as the tilting mechanism. For example, the tilting mechanism can tilt the wall panel, e.g., turning the all panel from a position perpendicular to the ground to a position making an angle less than 90 degrees with the ground. The tilting mechanism can be limited at the perpendicular position, and any further movement of the tilting mechanism can lower the wall panel, For example, the tilting mechanism can include a four-bar linkage coupled to a tiltable plane. When the tiltable plane is perpendicular, the four bar linkage is activated, moving the wall panel downward while still maintaining the perpendicular direction.
In
In
In
In
In
Alternatively, the titling mechanism can include a four bar linkage, which can allow the wall panel to move parallelly forward and downward when the titling mechanism continues its tilting operation.
In
Alternatively, after the clamp is released, the lifting cart can move sideway to move the released clamp from the wall panel. The lifting cart can have the sideway movement mechanism to perform the sideway movement, as discussed above.
In some embodiments, the operations can occur sequentially, concurrent, or a combination of sequential and concurrent. For example, the wall panel can be lifted up. When the wall panel is lifted more than 50% of the total lifting distance, such as more than 60%, 70%, 80%, or 90%, the wall panel can be started tilting. When the wall panel is tilting, the wall panel can be rotated. Similar to the concurrent operations of lifting and tilting, the concurrent operations of tilting and rotating can occur completely concurrent, or can happen after the wall panel has been tilted a percent of the tilting operation.
In some embodiments, the operations can occur in different orders. For example, the wall panel can be moved sideway before rotating.
In
Operation 730 couples the linear mechanism to a rotation mechanism. The rotation mechanism can be configured to rotate the linear mechanism (and the clamping mechanism and the wall panel, if the clamping mechanism clamps in a wall panel). Since the rotation mechanism is coupled to the linear mechanism, the clamping mechanism can move along a line having a movement direction determined by the rotation mechanism. For example, if the rotation mechanism is at a base position, the linear mechanism can move along a vertical direction. When the rotation mechanism rotates 90 degrees, the linear mechanism can move along a horizontal direction.
Operation 740 couples the rotation mechanism to a tilting mechanism. The tilting mechanism can be configured to tilt the rotation mechanism (and the linear mechanism, the clamping mechanism and the wall panel, if the clamping mechanism clamps in a wall panel).
Operation 750 couples the tilting mechanism to a surface moving vehicle.
In some embodiments, the lifting cart can be configured to move a vertical panel up and down, and letting the cart moves the panel sideways.
The handling mechanism can also tilt the wall panel backward, to reduce the load on the clamp. For example, after tilting, the wall panel can rest on a set of wheels, which can allow rotating the wall panel with minimum force on the clamp.
The lifting cart can move 961 the wall panel into the installed position, e.g., against edge stop bars 940 mounted on the frame. The handling mechanism can move the wall panel up or down, for example, to align the wall panel with the space for the wall panel to be installed to. Glue, insulation foam, and cement coating can be used to seal any gaps between the wall panels and the frame.
In some embodiments, the present invention discloses a lifting cart and methods to use the lifting cart in assisting workers for installing precast wall panels. The lifting cart can include mechanisms for performing necessary movements, such as lifting, tilting, rotating, and moving the wall panels. The lifting cart can optionally include sensors for accurately accessing the situations for performing the movements. The lifting cart can include a controller programmed to automatically perform the operations, including using the sensors for automatically adjusting the movements so that the wall panels can be picked up and placed at proper locations. The lifting cart can be operated by a worker.
A handling mechanism 1070 can be coupled to the vehicle 1060 for handling the wall panel. The handling mechanism 1070 can include a set of clamps 1021, such as two clamps for clamping on a wall panel. The clamps 1021 can have a clamping mechanism 1020, which can move the jaws of the clamps away from each other or toward each other.
The clamp set 1021 can be mounted on a rotating mechanism 1041, which can rotate the clamp set. The rotating mechanism and the clamp set can be mounted on a linear movement mechanism, such as a linear guide, for moving 1030 the clamp set along a linear direction. The linear movement mechanism can be mounted on a platform 1051 coupled to the vehicle 1060. Thus, the clamp set can move linearly in a vertical direction, regardless of the rotating mechanism.
The platform 1051 can be tilted 1050, e.g., having a hinge for rotating in a direction perpendicular to the rotation plane defined by the rotating mechanism 1040. An actuating element 1052, such as a hydraulic cylinder or an actuator, can be used to tilt the platform 1051.
In operation 1081, the plate handling mechanism is coupled to a movable vehicle. The movable vehicle can include a moving mechanism to move in planar directions.
In
In
In some embodiments, the lifting cart can include a hard stop, such as a ruler from the clamp. The lifting cart can move sideway after moving forward to face the wall panel. The sideway movement can allow the clamp to clamp on the proper location, e.g., at a distance 1123 from the to-be-touching-the ground edge of the wall panel, e.g., the left edge if the clamp can rotate counter clockwise, and the right edge if the clamp can rotate clockwise. The lifting cart can include a sideway movement mechanism, in addition to a forward/backward movement mechanism.
In some embodiments, the lifting cart can include a sensor to determine an edge of the wall panel, so that the clamp can be the distance 1123 from an edge of the wall panel. If the distance is not correct, the lifting cart can adjust its position, for example, by backtracking and then re-forwarding, or by a sideway movement.
In
In
In
In
In
In some embodiments, the operations can occur in different orders. For example, the wall panel can be moved sideway before rotating.
In
Operation 1230 couples the rotation mechanism to a linear mechanism. The linear mechanism can move the rotation mechanism and the clamping mechanism in a vertical direction. The rotation mechanism can be coupled to the linear mechanism in such a way so that the clamping mechanism moves in a vertical direction, regardless of the rotating angle of the rotation mechanism.
Operation 1240 couples the linear mechanism to a tilting mechanism. The tilting mechanism can be configured to tilt the linear mechanism (and the rotation mechanism, the clamping mechanism and the wall panel, if the clamping mechanism clamps in a wall panel).
Operation 1250 couples the tilting mechanism to a surface moving vehicle.
In some embodiments, the lifting cart can move in all directions. For example, the lifting cart can have steering wheels to allow the lifting cart to turn. Alternatively, the lifting cart can have two independently-rotating wheels, together with one or more dependent wheels. The two independently-rotating wheels, when rotating in a same direction, can allow the lifting cart to move forward or backward. The two independently-rotating wheels, when rotating in different directions, can allow the lifting cart to turn at a tighter radius, as compared to the steering wheels. Alternatively, the lifting cart can have omni-directional wheels or omni-capable wheels such as Liddiard wheels (US patents 2012/0181846 and 2016/0023511, hereby incorporated by reference in their entirety), which can allow the lifting cart to move in all directions, especially forward/backward and sideway. Alternatively, the lifting cart can have a forward/backward movement mechanism, together with a sideway movement mechanism.
In
In
In
The lifting cart can include other wheels. For example, the lifting cart can include a first set of wheels for moving in all planar directions, including a forward/backward direction. The lifting cart can move in all directions to move the wall panel from a stacked location to an installed location. The lifting cart can be maneuvered to approach the to-be-installed wall in a perpendicular direction, e.g., the forward/backward direction. Thus the wall panel can be placed at the proper location at the to-be-installed wall, e.g., parallel with the wall.
The lifting cart can include a second set of wheels for moving in a direction perpendicular to the forward/backward direction. After placing the wall panel at the to-be-installed wall location, the lifting cart can move parallel to the wall, e.g., in a direction perpendicular to the forward/backward direction to leave the wall panel in place without disturbing the wall panel.
The lifting cart can have two back wheels 1570, which can rotate 1571. With the four wheel combination, the cart can move in all planar directions.
In
In some embodiments, the present invention discloses a lifting cart which can be optimized based on a combination of handling mechanism and vehicle movements. The vehicle can be configured to allow moving the wall panels in a horizontal direction, e.g., in a direction parallel to the ground. For example, the vehicle can include 2 steering wheels and 2 following wheels. Other configurations can also be used, such as 2 parallel wheels and one rotatable wheel. The all-direction moving vehicle can move a wall panel from a storage location to an installed location.
The vehicle can be configured to allow aligning of the wall panel in two perpendicular horizontal directions, including a direction parallel to the wall and a direction perpendicular to the wall. For example, once the wall panel is position parallel to the wall, the wall panel can be moved perpendicular to the wall for contacting the edge stop bars, which determine the location of the wall panel in the direction perpendicular to the wall. The wall panel can also be moved in a direction parallel to the wall, for example, to be in contact with the beam or the previous wall panel.
The lifting cart can have a handling mechanism to handle the wall panel in directions excluding the horizontal directions, such as a vertical movement and a rotational movement in a direction parallel to the horizontal direction. The vertical movement can allow an alignment of the wall panel at the wall, e.g., moving the wall panel up or down to adjust the gaps with the ceiling or the floor. The rotational movement can allow the wall panel to be rotated, from a storage position (sideway position or length side facing the ground) to an installed position (upright position or width side facing the ground).
In some embodiments, the vertical movement can be incorporated into the rotational movement. For example, to rotate the wall panel, the wall panel will need to be lifted up to clear the ground before being able to be rotated. The lifting movement can be used as the vertical movement in aligning the wall panel. Thus the handling mechanism can include movements needed to rotate the wall panel, with the vertical alignment movements included in the rotational movements.
A second set of wheels 1771 is disposed perpendicular to the first set, to allow the vehicle to move in a perpendicular to the forward/backward direction, e.g., to a direction parallel to the wall to align the wall panel with other wall panels. Similar to the first set of wheels, the wheels in the second set of wheels are not rotatable in directions different from the travel direction, e.g., the wheels are not swivel wheels, which allow the vehicle to move in a straight direction perpendicular to the forward/backward direction. The second set of wheels can include two wheels facing a same direction in a same plane, like two wheels of a bicycle. The second set of wheels can include two pairs of parallel wheels facing a same direction for added stability.
An activation mechanism 1780 can be included, to switch between the two sets of wheels. In some embodiments, only one set of wheels can be operated at any one time. For example, in one operating state, the second set of wheels can be off the ground while the first set of wheels contacts the ground. This configuration can allow the cart to move based on the first set of wheels. In another operating state, the first set of wheels can be off the ground while the second set of wheels contacts the ground. This configuration can allow the cart to move based on the second set of wheels.
The activation mechanism can include an element, such as an actuator, a hydraulic cylinder, or a motorized actuator, which can push on the second set of wheels to allow the second set of wheels to touch the ground, and also to lift the first set of wheels from the ground. The element can be retracted, to allow the second set of wheels to be off the ground, exposing the first set of wheels on the ground.
Other wheels can be included, such as swivel wheels 1765, to allow the vehicle to move in all horizontal directions.
A handling mechanism can be included to handle the wall panel. The handling mechanism can include a clamping mechanism 1721, a rotating mechanism 1741, a vertical linear movement mechanism 1731, and an optional tilting mechanism 1751.
In
In
The lifting cart can include a set of perpendicular wheels 2060. The perpendicular wheels can be configured to move the cart in a direction perpendicular to the direction offered by the front wheels 2050. The lifting cart can include an activation mechanism 2061, which can be used to activate or deactivate the perpendicular wheels. The activation mechanism can include a set of hydraulic cylinders, which, when activated, can push the perpendicular wheels 2050 to touch the ground and to lift the forward wheels 2050. The activation mechanism thus can allow the cart to move in the direction set by the perpendicular wheels.
The lifting cart can include two clamps 2020 for clamping on the wall panel. The clamps can be activated, e.g., clamping, or deactivated, e.g., de-clamping, through the hydraulic cylinder 2022.
The lifting cart can include a lifting mechanism 2021, which can lift or lower the clamps 2020. The lifting mechanism can be activated by a cylinder, configured in such as a way so that when the cylinder extends, the clamps are lifted, and when the cylinder retracts, the clamps are lowered. The lifting mechanism can be used to lift the wall panel off the ground, after the wall panel has been clamped by the clamps.
The lifting cart can include a rotating mechanism, which can be activated by cylinder 2040. The rotating mechanism can rotate the clamps, and in turn, rotating the wall panel clamped by the clamps. The rotating mechanism can provide a 90 degree rotation, which can rotate the wall panel from a position in which the longer side is facing the ground to a position in which the shorter side is facing the ground.
The lifting cart can include a tilting mechanism which can be activated by cylinder 2030 to tilt the combination of clamps 2020, lifting mechanism 2021, and rotating mechanism 2040. The tilting mechanism can effectively tilt the wall panel, which is clamped by the clamps, through an axis 2031 of tilting. The tilting mechanism can also be considered as a rotating mechanism, which can rotate the wall panel in a rotational axis perpendicular to the previously mentioned rotating mechanism 2040.
As shown, the lifting cart can be manually operated by a worker, e.g., the worker can move the cart by pushing, pulling, and turning. Further, the worker can activate the perpendicular wheels, and the can push or pull the cart in the direction set by the perpendicular wheels. Other configurations can be used, such as a motorized lifting cart, using an engine or a motor to drive the wheels. The lifting cart can also be controlled remotely, for example, through a handheld controller wire or wirelessly connected to the lifting cart.
The lifting cart can include a power source 2080 for providing power to the mechanisms that control the lifting cart, such as a hydraulic motor to provide pressurized liquid to the cylinders that activate the clamps, the lifting mechanism, the rotating mechanism, the tilting mechanism, and the activation mechanism of the perpendicular wheels. The lifting cart can include a controller 2070, which can be used to control the mechanisms that control the lifting cart. The controller can include individual commands, such as the command to activate or deactivate the perpendicular wheels. The controller can include automatic modes, which can include a set of sequential or concurrent commands.
For example, in an automatic mode, the controller can open the clamps, lower the clamps to reach the wall panel, clamp on the wall panel, lift the wall panel, tilt the wall panel, rotate the wall panel, un-tilt the wall panel (e.g., returning the wall panel to the upright orientation), unclamp the wall panel, and activate the perpendicular wheels. A worker then can push the lifting cart away from the wall panel, releasing the wall panel to be standing at its position to form the wall section. The worker can pull on the lifting cart, and then guide the cart to collect another wall panel.
Alternatively, in another automatic mode, the controller can open the clamps, lower the clamps to reach the wall panel, clamp on the wall panel, lift the wall panel, tilt the wall panel, rotate the wall panel, un-lift the wall panel (e.g., lowering the lifting mechanism, and since the wall panel has been rotated, result in the wall panel moving to a side away from the clamps), un-tilt the wall panel (e.g., returning the wall panel to the upright orientation), unclamp the wall panel, and lift the clamps (e.g., raising the lifting mechanism, and since the wall panel has been rotated, result in the clamps retracted from the wall panel in a sideway motion). A worker then can pull the lifting cart away from the wall panel, releasing the wall panel to be standing at its position to form the wall section. The worker can guide the cart to collect another wall panel.
The lifting cart can include a set of perpendicular wheels, which are not shown in the side view.
The lifting cart can include two clamps 2020 for clamping on the wall panel. The clamps can be activated, e.g., clamping, or deactivated, e.g., de-clamping, through the hydraulic cylinder 2022. The lifting cart can include supports 2023, which can be in the form of swivel wheels, for supporting the wall panel that are clamped by the clamps.
The lifting cart can include a lifting mechanism, which is not shown in the side view.
The lifting cart can include a rotating mechanism, which can be activated by cylinder 2040. The rotating mechanism can rotate the clamps, and in turn, rotating the wall panel clamped by the clamps.
The lifting cart can include a tilting mechanism which can be activated by cylinder 2030 to tilt the combination of clamps 2020, lifting mechanism, and rotating mechanism 2040.
The lifting cart can include a power source 2080 for providing power to the mechanisms that control the lifting cart. The lifting cart can include a controller 2070, which can be used to control the mechanisms that control the lifting cart.
The lifting cart can include a lifting mechanism 2021, which can push or pull on the clamp bar to lift or lower the clamps 2020. The lifting cart can include a rotating mechanism, which can be activated by cylinder 2040. The linear motion of the cylinder 2040 can be translated into a rotating action of the clamp bar 2024, which can rotate the clamps 2020.
The lifting cart can include a set of perpendicular wheels 2060. The perpendicular wheels can be configured to move the cart in a direction perpendicular to the direction offered by the front wheels 2050. The lifting cart can include an activation mechanism 2061, which can be used to activate or deactivate the perpendicular wheels. The activation mechanism can include a set of hydraulic cylinders, which, when activated, can push the perpendicular wheels 2050 to touch the ground and to lift the forward wheels 2050. The activation mechanism thus can allow the cart to move in the direction set by the perpendicular wheels.
The lifting cart can include two clamps for clamping on the wall panel. The clamps can be activated, e.g., clamping, or deactivated, e.g., de-clamping, through the hydraulic cylinder. The lifting cart can include supports 2023, which can be in the form of swivel wheels, for supporting the wall panel that are clamped by the clamps.
The lifting cart can include a lifting mechanism 2021, which can lift or lower the clamps 2020. The lifting cart can include a tilting mechanism which can be activated by cylinder 2030.
The present application claims priority from U.S. Provisional Patent Application Ser. No. 62/584,923, filed on Nov. 13, 2017, which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62584923 | Nov 2017 | US |