Provided is a secure system to facilitate the lifting and hanging of objects for storage. More particularly, the present invention provides a versatile method of lifting, suspending, and storing objects from ceilings, joists, studs, or other overhead structures that is simple to install and operate. This device may be used for storing a wide range gear of all sizes and shapes ranging from, but not limited to, canoes, kayaks, bicycles, and ladders. The present invention may be used in most locations where equipment is typically secured during storage including, basements, garages, closets, trucks, boats, RVs, and airplanes.
Commonly found lifting devices (which includes hoists and Block and Tackles) typically require the use of a combination of pulleys, cables, hooks, and cleats and are often difficult to install. Such devices often require precisely positioned installations that are cumbersome and prone to cause interference with otherwise usable workspace near walls and ceilings. The release or lowering mechanism of such hoists is often positioned at or near the top of the device in close proximity to the ceiling from which they are installed thereby putting them out of normal reach of most people without the use of ladders or stools.
To control the lowering of secured objects, variations of such lifting devices use jam cleats or similar mechanisms that are operated by changing the angle of the lifting cable as it exits the pulley arrangement, thereby engaging or disengaging the cable. This method requires the operation of such devices to be from a single location which is generally on one side of the mechanism to provide the necessary clearance for the cable(s) as they pass into the pulley arrangement. Other variations employ the use of a clutch arrangement or ratcheting mechanism to achieve the same purpose. The simplest variations use wall-mounted cleats to secure ends of the load-bearing cables without any self-locking means to prevent accidental release of the cables.
Because of the typical top-mounted positioning of the lowering mechanisms or wall-mounted locations of cleats, lacking in such devices is the ability to guide or walk a secured object slowly down to the floor while maintaining control of the speed at which it is lowered. This inability to control the rate of descent increases the risk of injuries and/or damage caused to secured objects and nearby people and gear. It also makes the vertical alignment, or stacking of multiple objects difficult to achieve by a single operator because a single operator can not operate the lifting mechanism while also handling the object that is being lifted or lowered. The ability to stack multiple objects vertically can be further prevented by an extensive cabling and pulley framework that is often required by the installation of such devices and/or by a requirement that such devices be controlled from a fixed position away from the secured object.
Traditional lifting devices with mechanical advantage require the use of multiple pulleys, bushings, and housings which together provide a path for the lifting/load cable in such a manner as to provide the lifting advantage. Pulleys are used to minimize the friction on the load cable and minimize the adverse affects that friction has on the mechanical advantage. However, with multiple pulley arrangements the amount of friction in the pulley shafts can nonetheless become a significant obstacle to convenient use. To reduce this inherent pulley friction and maximize the mechanical advantage of such devices, the use of costly pulleys with ball bearings or greased bushings is often appropriate for such devices. Pulleys may also include guide rails for keeping the cables on the channeled surface of the pulleys for the purpose of preventing load cable derailment and device failure during operation. The load cable found in such devices is most often rope or wire cable. To minimize the friction in such devices, load cables constructed of rope, wire cable, and chain all require the use of pulleys to minimize friction. Such construction is costly and requires periodic maintenance for safe operation.
A versatile storage system that provides a simple, secure, low-cost, low maintenance and space-efficient alternative is provided by the present invention. Especially when constructed of woven webbing material (strap), self-locking cam buckles, rectangular D-Rings, and snap hooks, the system of the present invention is easily adaptable to efficiently achieve the above objectives while being simple to install and operate.
Provided is a system for facilitating the lifting and storage of canoes, kayaks, bicycles, and other objects, comprising: hooks for securing each end of the lifting assembly; a load cable and a pulley arrangement that provides a path of mechanical advantage; and a release mechanism that is positioned between the first and last lifting sections of the load cable and provides a secure release mechanism for the lowering of secured objects. The term “cable” is used in the description as a more intuitive alternative to “flexible serpentine article,” but here carries the more general meaning of the latter term, which general meaning is reflected in the text below.
A typical pulley system with a mechanical advantage (e.g., lifting hoist or Block and Tackle device) operates by suspending a load by two or more lifting sections of a load cable using a pulley arrangement where each of the lifting sections supports its equal share of the load, thereby reducing the force exerted on it. Through the use of multiple pulleys that are properly positioned, the weight of the load can be distributed among multiple lifting sections, each realizing a fractionally reduced load. As the load cable exits the pulley system after passing beyond the final lifting section of the load cable, the force required from the operator to lift the secured object is equal to the fractionally reduced weight that is exerted on each of the lifting sections in the device. In a theoretical arrangement without any friction caused by the pulley shafts or other forces, the mechanical lifting advantage of such devices can be defined as the total weight of the load divided by the number of lifting sections suspending it. For example, a 100 lb load suspended by four lifting sections in a pulley arrangement would require only require 25 pounds of force to lift. In this example, to provide ten feet of lifting travel, a minimum of 40 feet of cable would be required.
In one embodiment, the cable and pulley arrangement is constructed of woven strap material (the cable) and wire-formed rectangular rings (the pulleys). While rope or cable fails to do so, strap material, including that of thin construction, has a tendency to pass relatively easily around smooth metal round surfaces such as those provided by the post sections of wire-formed rectangular rings without creating a significant source of friction. Therefore the use of strap material in such devices allows for the use of wire-formed rings instead of pulley mechanisms. Such construction not only provides for lower maintenance operation, but also can be produced at a significantly lower cost than that required for the production of cable lifting arrangements with typical pulleys that generally require permanent installation in frames for ideal positioning within the lifting device.
In this embodiment, three wire-formed rectangular rings are fixedly positioned via stitching, bar-tacking, or other suitable methods in a strap arrangement that also includes a fixedly attached self-locking, cam-type buckle for engaging the strap and providing a means for the controlled raising and lowering of a secured object. Further, at each end of the lifting device is a spring-biased snap hook that provides the means for securing a first end of the lifting device strap assembly to an eye bolt, ring, post, or other suitable mounting location, and at the other end, to a kayak, canoe, bicycle, or other object to be secured. Through the use of four lifting sections in each strap assembly and depending upon the amount of friction inherent to both the cam and the wire-formed rectangular rings, such an embodiment would provide a mechanical advantage that approaches 4:1. To secure longer objects including, but not limited to, canoes, kayaks, bicycles, or ladders the use of two strap arrangements would be employed to secure the object at both ends, further distributing the load.
In a variation of the embodiment described above, the use of two wire-formed rectangular rings and a cam release mechanism on each strap arrangement can be used to provide three lifting sections that would provide a mechanical advantage that would approach 3:1. Such a construction would be well suited for lifting lighter loads or to reduce the amount of strap required in a lifting mechanism.
Thus, in one embodiment, provided is a lifting device comprising: a hook or clip; secured to the hook or clip, one or more first pulleys; a second hook or clip; secured to the second hook or clip, (i) a release mechanism comprising a second pulley and a releasable lock for an engaged flexible serpentine article (defined below) and, optionally, (ii) one or more third pulleys, the second and third pulleys collectively the beta pulleys; and the flexible serpentine article engaged, at a first end, to one or the other hook or clip, and serially engaged through the first pulleys and beta pulleys, to provide a nominal two-fold or greater mechanical advantage, wherein the other end of the serpentine article is last engaged, among above recited elements, by one of the first pulleys.
FIGS. 1 shows a perspective view of a strap arrangement of the present invention in an embodiment that features four lifting sections.
The illustrations described below are with respect to devices that use a strap, but other cables can be used.
The present invention provides a method for the simple, secure, reliable, and cost effective lifting and storage of canoes, kayaks, bicycles, and a wide range of other objects that are typically hung during storage. While a single strap assembly can be used to secure shorter or smaller objects, an embodiment consists of two separate strap arrangements (or strap assemblies) that are used to independently lift each end of a secured object.
Strap 110 passes downwards from post 120a of hook 120 to loop through ring 142, then upwards to loop through ring 141, then downwards to loop around post 130b of release mechanism 130, then upwards to loop through ring 140, then downwards. As illustrated, the respective lifting sections between posts or rings are labeled 110a, 110b, 110c, and 110d, and the last free section is labeled 110e. The length of these sections changes during use in the manner is apparent. (“Upwards” and “downwards” relate to the orientation in the drawings, though in some uses other orientations may be appropriate.)
Positioning of the release mechanism 130 in the lifting strap arrangement 100 between the first load lifting section 110a and the last load lifting section 110d allows the release mechanism 130 to be positioned in close proximity to the secured object, thereby allowing it to elevate and descend with the secured object, keeping both within reach of the operator during normal operation. This positioning allows for a more controlled lifting and lowering of secured objects. During normal use, pulling the free end of strap section 110e downward/away from ring 140 causes the load lifting sections 110a, 110b, 110c, 110d to decrease in length while providing shared load support of an object attached to hook 121 when the strap assembly 100 is attached to fixed object (such as a ceiling structure) at hook 120. The total length reductions in load lifting sections 110a, 110b, 110c, 110d is approximately equal to an increase in the length of the free end of strap 110e. This shortening of load lifting sections 110a, 110b, 110c, 110d defines the lifting direction of the strap assembly 100 as the hooks 120, 121 are drawn closer together.
Release mechanism 130 allows strap 110 to slip in the load lifting direction. In the opposite direction, release mechanism 130 requires manual operation for release of loads in the load lowering direction, which is defined by the increasing in lengths of load lifting sections 110a, 110b, 110c,110d and decreasing of free end of strap 110e as hooks 120, 121 are brought further apart from each other. Such manual operation can be done, for example, by engaging lever 130d in direction Z, to rotate cam 130c in the releasing direction.
Strap lifting arrangement 100 can alternatively be indirectly connected to a supported canoe or kayak via the eyes, rings, or loops of straps or pads that can be passed around the hull of a kayak or canoe (for example) thereby forming a cradle to distribute the load more evenly and prevent hull deformation that may occur during extended storage periods. Such hull cradle arrangements serve to provide useful methods for the storage of plastic or wooden canoes and kayaks, which are especially vulnerable to hull deformation when supported exclusively from grab handles, lanyards, or rings on or near their ends. In one embodiment, the hull cradle arrangement includes an additional, adjustable section of strap that provides a means for joining adjacent hull cradle straps, thereby maintaining a maximum distance between the hull cradle straps. So holding the cradle straps helps to prevent them from slipping off the ends of the canoe or kayak during storage while also allowing for the rotation of secured kayaks or canoes in the cradle. Further, the rotation of kayaks or canoes in the cradle arrangement provides a useful means for cradled storage of kayak hulls, which is favorably sideways, and also allows for the upside-down storage of canoes.
The release mechanism, such as release mechanism 130, can be usefully sized and shaped so that it can be grasped with one hand, and lever 130d operated with, for example, the thumb of that hand. It has been found that with 3-fold or 4-fold mechanical advantage, a 80 lb. kayak can lowered just by operating the release mechanism with one hand.
The pulleys used with this device can conveniently be rings adapted for use with straps, such as rings shaped to orient the straps and provide posts with smooth surfaces on which the straps may slide. However, some embodiments use any pulley device.
When rings, such as the rectangular rings illustrated in the drawings, used with straps, the folding and stitching used to secure non-pulley end of the ring can provide bulk that maintains separation between the pulleys, limiting a possible extra source of friction from sections of strap rubbing as they pass through adjacent pulleys. Extra folds and stitching in the securing strap can be used to enhance such separation if desired.
The pulleys at one end of the device (e.g., the first pulleys) and/or the pulleys at the other end of the device (e.g., the beta pulleys), can be secured in a housing. For the end of the device with the release mechanism, generally the release mechanism will be in the housing with its associated pulley. Such a housing can take many forms, as will be apparent to those of ordinary skill in the art. For example, it can take the form of two pieces (for example, arrayed in parallel) of relatively rigid material, such as metal or high impact plastic. Mechanical linkages, which can include the structure of the pulleys, can maintain separation of the sheets. If, for example, the pulleys comprise posts adapted to facilitate straps sliding across them, then the housing can frame just the posts, without the ring structure illustrated. Optionally, with such posts, the linkage with the housing may also allow rotation, providing another reduction in friction.
Release mechanisms adaptable for use with the lifting device include, for example: (i) a spring-biased cam (e.g., metal, high impact plastic) such as often found in tie-down straps, (ii) a pendulum-activated, over center tripping device such as found in U.S. Pat. No. 6,295,700. Other mechanisms include, for example, a ratcheted pulley design. Such a ratcheted design allows the pulley to rotate in one direction without engaging the ratchet arm, but requires the depression of a lever to disengage the ratchet teeth in the other direction. Such ratcheted devices can use spring biased levers as the ratchet arm and they are widely used with rope pulley tie down products.
A “nominal” 2-fold or greater mechanical advantage refers to the theoretical advantage, discounting the effects of gravity or friction.
A “hook or clip” refers to innumerable known or similar devices that attach to an appropriate receptacle by threading, looping, clipping, or the like. Hooks or clips include, for example, loops of serpentine article.
A “flexible serpentine article” refers to innumerable known or similar articles that can be flexibly bent, can be drawn with a useful amount of force, and can be drawn through a pulley. Flexible serpentine articles include, for example, ropes, chains, cords, cables, straps, and the like.
While this invention has been described with an emphasis upon preferred embodiments, it will be obvious to those of ordinary skill in the art that variations in the preferred devices and methods may be used and that it is intended that the invention may be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications encompassed within the spirit and scope of the invention as defined by the claims that follow.
Number | Date | Country | |
---|---|---|---|
60754099 | Dec 2005 | US |