This application claims priority to British Application No. 0326175.7 filed Nov. 10, 2003, which is herein incorporated by reference in its entirety.
1. Field of the Invention
The invention relates to a lifting framework for an industrial truck. The lifting framework has a guide mast and at least one extendible mast. The extendible mast is guided on the guide mast by means of rollers such that it can be moved in the vertical direction between a bottom end position and a top end position.
2. Technical Considerations
Lifting frameworks of the type mentioned above are used in industrial trucks, for example, counterbalance fork trucks or fork-lift reach trucks. A load-bearing means is guided on the lifting framework such that it can be moved in the vertical direction for bearing and raising loads. In most types of industrial trucks, the load-bearing means is located at the front with respect to the main direction of travel. The lateral direction of the lifting framework thus corresponds, by definition, to the lateral direction of the industrial truck. The lifting framework is usually extended telescopically, with at least one extendible mast being guided in a vertically movable manner on a non-raisable vertical mast. The extendible mast is guided on the vertical mast by means of rollers, in each case one pair of coaxial rollers usually being arranged at the top end of the vertical mast and at the bottom end of the extendible mast. The rollers here have a horizontal axis of rotation which is oriented in the lateral direction of the lifting framework and thus of the industrial truck.
The extendible mast is guided laterally on the vertical mast by the lateral surfaces of the above-mentioned rollers. Moments which act on the extendible mast about a longitudinal axis of the industrial truck, and would cause the extendible mast to tilt laterally, are thus supported by the lateral surfaces of the vertically spaced-apart rollers on the mast profiles. It is nevertheless possible, during operation of the industrial truck, for example in the case of asymmetric load action, for the lateral play of the rollers in the mast profiles to give rise to the extendible mast inclining laterally to a slight extent relative to the vertical mast. The greatest amount of inclination on the part of the extendible mast is possible when the extendible mast is located in the region of its top end position, since the vertical spacing between the pair of rollers fastened on the vertical mast and the pair of rollers fastened on the extendible mast is then minimal. The lateral inclination of the extendible mast relative to the vertical mast, this inclination being possible on account of the lateral play of the rollers, is further increased in the case of wide lifting frameworks in which the columns are spaced far apart in the transverse direction of the industrial truck.
An object of the present invention is thus to provide a lifting framework in which the capacity of the extendible mast to incline laterally relative to the vertical mast is at least partially reduced.
The invention provides means for bracing the extendible mast with the guide mast. This bracing means taking effect, at least when the extendible mast is located in the top end position, so as to prevent or reduce the extendible mast from inclining in the lateral direction of the lifting framework relative to the guide mast. The means for bracing the extendible mast with the guide mast prevents, in particular, lateral inclination of the extendible mast. The moments which act on the extendible mast about a longitudinal direction of the industrial truck are supported here by the means for bracing the extendible mast with the guide mast rather than by the rollers. The play and the elasticity of the rollers in this state then do not have any effect on the lateral stability of the extendible mast. The extendible mast is preferably braced in a position in which it is coaxial with the guide mast. This automatically corrects any lateral inclination of the extendible mast which may be present before the means for bracing the extendible mast with the guide mast takes effect.
In a first embodiment, the guide mast is formed by a vertical mast and a first extendible mast is guided on the vertical mast. A means is provided for bracing the first extendible mast with the vertical mast. The first extendible mast may thus be braced with the vertical mast.
In a development of the arrangement according to the invention, the guide mast is formed by a first extendible mast and a second extendible mast is guided on the first extendible mast. A means is provided for bracing the second extendible mast with the first extendible mast. The second extendible mast may thus be braced with the first extendible mast. It is additionally possible, as has been described above, for the first extendible mast to be braced with the vertical mast. Lateral inclination of all the extendible masts relative to the vertical mast can thus be reliably prevented.
The guide mast and the at least one extendible mast generally have two columns which are spaced apart in the lateral direction of the lifting framework. Each of the columns has a specifically shaped steel profile configured for absorbing the moments and forces which occur and, at the same time, have guide tracks for the above-described rollers.
According to a first possible configuration, the means for bracing the extendible mast with the guide mast is configured such that, when the extendible mast is located in the top end position, a vertical movement of the extendible mast relative to the guide mast is prevented in the region of each of the two columns. The extendible mast is thus braced with the guide mast by a force which acts in the vertical direction. In the region of each column, that is to say at two locations which are spaced apart from one another in the lateral direction of the lifting framework, the extendible mast is pressed against a stop on the guide mast. This prevents an inclining movement of the extendible mast in the lateral direction since, for this purpose, the extendible mast would have to lift off from the stop at least one location, but the bracing precludes this possibility.
A hydraulic lifting cylinder and a stop for the top end position of the extendible mast can be expediently arranged in the region of each column. The hydraulic lifting cylinders can be connected, on the piston side, to the extendible mast and, on the cylinder-tube side, to the guide mast, or vice versa. The lifting cylinders, which produce the force for raising the extendible mast, also apply the force for bracing the extendible mast with the guide mast. For this purpose, one lifting cylinder can be arranged in the region of each column of the lifting framework, the cylinder forcing the extendible mast against the respective stop.
The stop is particularly advantageously part of the hydraulic lifting cylinder. The maximum extendible length of each lifting cylinder is defined by a stop which is integrated in the lifting cylinder. The stop may be formed by a part of the cylinder tube with which the piston comes into contact at the end of the extending movement.
A second possible configuration provides that the means for bracing the extendible mast with the guide mast is configured such that, when the extendible mast is located at least more or less in the top end position, the vertical movements of the two columns of the extendible mast are coupled to one another. This ensures that the columns of the extendible mast are moved synchronously, as a result of which lateral inclination of the extendible mast is reliably prevented.
This is made possible in that, when the extendible mast is located at or near the top end position, the two columns of the extendible mast are coupled to one another by means of a scissor mechanism. The scissor mechanism can have two scissor levers connected by a central joint. The connecting lines between the bottom end points of the scissor levers and the connecting lines between the top end points of the scissor levers can be always parallel. The bottom end points of the scissor levers can be guided in a rail fastened on the guide mast, while the top end points of the scissor levers can be guided in a rail fastened on the extendible mast. The scissor mechanism ensures that the two rails are always parallel to one another and that inclination of the extendible mast relative to the guide mast is thus ruled out.
According to an advantageous development of the invention, the lifting framework has a vertical mast, a first extendible mast guided on the vertical mast, a second extendible mast guided on the first extendible mast, and a lifting-drive device configured such that, in the first instance, the first extendible mast, together with the second extendible mast, is raised relative to the vertical mast and, thereafter, the second extendible mast is raised relative to the first extendible mast. In contrast to the conventional arrangement from the known art, in this case when the lifting framework is extended telescopically, in the first instance the first extendible mast, together with the second extendible mast, is raised along the vertical mast. When the first extendible mast has reached its stop on the vertical mast, the lifting movement of the second extendible mast relative to the first extendible mast begins.
Lateral inclination of the extendible masts can be largely completely avoided if a means is provided for bracing the first extendible mast with the vertical mast and a means is provided for bracing the second extendible mast with the first extendible mast. When the first extendible mast has reached its top end position, it is braced with the vertical mast. During the subsequent extension of the second extendible mast, the vertical orientation of the first extendible mast is thus ensured. When, finally, the second extendible mast has reached its end position, it is braced with the first extendible mast and is thus likewise secured against lateral inclination.
In a more straightforward but likewise expedient configuration, just a means for bracing the first extendible mast with the vertical mast can be provided. It proves to be sufficient in practice to brace the first extendible mast with the vertical mast. This arrangement can be used to ensure that the lower of the two extendible masts, when the lifting framework has been extended, is located vertically and is secured against lateral inclination. This also reduces to an acceptable extent, when the second extendible mast has been fully extended, the maximum lateral offset of the top lifting-framework end.
A particularly straightforward arrangement is achieved if the lifting-drive device has at least one hydraulic telescopic cylinder. A first piston of the telescopic cylinder can be provided for raising the first extendible mast relative to the vertical mast and a second piston of the telescopic cylinder can be provided for raising the second extendible mast relative to the first extendible mast. In the case of this arrangement, the amount of space required by the lifting-drive device is minimized. The above-described order in which the extendible masts extend automatically results from the different effective surface areas of the coaxially arranged pistons of the telescopic cylinder.
The invention is particularly advantageous if the extendible mast is guided on the non-extendible mast by means of rollers, the rollers being arranged such that in the top end position of the extendible mast the ratio of the horizontal spacing between the left and right rollers to the vertical spacing between the top and bottom rollers is greater than two. Relatively wide lifting frameworks have a greater tendency to lateral inclination than narrow lifting frameworks. The means according to the invention for bracing the extendible mast with the guide mast can compensate for this disadvantage of wide-lifting frameworks.
Further advantages and details of the invention will be explained more specifically with reference to the exemplary embodiments illustrated in the schematic figures, in which:
The order in which the extendible masts are extended can be as illustrated in
In that position of the lifting cylinder shown in
In
As an alternative to the stops 17 which are integrated in the lifting cylinders 15, it is also possible for stops which define the maximum extendible height H of the first extendible mast 11 to be provided on the outside of the lifting framework. In the case of this solution, in each case, one stop for the extendible mast 11 has to be provided in the region of each of the columns 18, 19 on the vertical mast 10. The bracing of the extendible mast 11 on the stops of the vertical mast 10 then takes place by means of the hydraulic pressure in the lifting cylinder 15, this pressure significantly increasing at the end of the extending movement of the first extendible mast 11, before the extending movement of the second extendible mast 12 (see
An alternative solution for bracing an extendible mast 21 with a vertical mast 20 is illustrated in
Functioning is as follows: when the extendible mast 21, starting from the position illustrated in
It will be readily appreciated by those skilled in the art that modifications may be made to the invention without departing from the concepts disclosed in the foregoing description. Accordingly, the particular embodiments described in detail herein are illustrative only and are not limiting to the scope of the invention, which is to be given the full breadth of the appended claims and any and all equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
0326175.7 | Nov 2003 | GB | national |