This application claims the benefit of pending German Application No. 10 2018 105 573.0 (“Hebebühne für Kraftfahrzeuge”; filed Mar. 12, 2018, at the German Patent Office), which is hereby incorporated by reference in its entirety.
The present invention relates to a lifting platform for motor vehicles.
Column lifting platforms having supporting arms are known in various embodiments. On the free ends of the supporting arms there are usually supporting plates that must be positioned under the manufacturer's designated support points on the underside of the motor vehicle. Because the vehicle dimensions and therefore the position of the support points on different vehicles differ considerably, the supporting arms can be adjusted in length telescopically.
Furthermore, column lifting platforms are also known in which the four supporting arms are in the form of double-jointed arms so, in addition to normal passenger vehicles, it is also possible to accommodate larger vehicles, such as transporters and vans, for which the adjustment range of straight telescopic supporting arms is insufficient.
Moreover, also known are column lifting platforms having straight supporting arms, the front supporting arms of which are considerably shorter than the rear supporting arms. In relation to a raised vehicle, the lifting columns are therefore not located in the center of the vehicle in the longitudinal direction of the vehicle but rather in the front third of the vehicle, so that the vehicle doors can be fully opened without obstruction.
Finally, German Patent No. DE 18 16 919, U.S. Pat. No. 4,212,449, and German Patent No. DE 23 52 159 disclose column lifting platforms having two rigid supporting arms and two supporting arms in the form of double-jointed arms. The double-jointed arms are in each case shorter than the rigid supporting arms. These patent publications, as well as commonly assigned German Patent Publication No. 199 59 835, are hereby incorporated by reference in their entirety.
In conventional lifting platforms having supporting arms, a frequent problem is that, in the event of repair work to the underbody, the supporting arms are in the way or render such work more difficult. This especially applies to motor vehicles having an electric drive, the batteries of which are increasingly being installed in the bottom of the vehicle. The maintenance and replacement of such batteries are achieved via maintenance flaps, which are usually located on the underbody of the motor vehicles. It has now been found that with some vehicles having an electric drive, the supporting arms of conventional lifting platforms obstruct opening these maintenance flaps on the vehicle underbody, rendering maintenance and replacement of the batteries more difficult.
The problem addressed by the present invention is therefore to define a lifting platform for motor vehicles that can be used more flexibly, is space-saving, and, above all, is also suitable for the repair and maintenance of modern motor vehicles having an electric drive.
An exemplary lifting platform has four supporting arms that are pivotally mounted on a lifting device (e.g., especially on two lateral lifting columns), the free ends of which are movable under support points of a motor vehicle being raised. The supporting arms form a first pair and a second pair of supporting arms. At least the supporting arms of the first pair of supporting arms are adjustable in length and are implemented in the form of rigid supporting arms, which are pivotable solely about their articulation points on the lifting device. Meanwhile, the supporting arms of the second pair of supporting arms are in the form of double-jointed arms having an additional articulated joint.
In one aspect, the lifting platform according to the present invention provides that the supporting arms of the second pair of supporting arms are at least twice as long as the supporting arms of the first pair of supporting arms in the retracted state (e.g., the retracted state both of the rigid supporting arms and of the double-jointed arms, insofar as the latter are also telescopically extendable) and the articulated joints are constructed in such a way that, for positioning under the support points of a motor vehicle being raised, the supporting arms of the second pair of supporting arms, starting from a maximally extended position of the relevant supporting arm, can be bent horizontally in both directions.
In this way, motor vehicles can be held in such a way that the supporting arms are not in the way during repair work. This is achieved especially by the articulated joints of the supporting arms of the second pair of supporting arms being able to be bent in both directions. In particular, it can be provided that, for positioning the rear supporting arms under the vehicle being raised, the articulated joints thereof can be bent inwards toward the respective opposite lifting column. The rear supporting joints can accordingly be bent, as desired, in such a way that their articulated joint faces outwards in a direction away from the vehicle as well as inwards under the vehicle. Bending the articulated joint outwards provides maximum freedom under the vehicle for work on the bottom of the vehicle, whereas, when the articulated joints are bent inwards, maximum working space remains free in the region of the vehicle sills (e.g., for welding work on the sills or for work on lines laid along the sill).
The ability to bend the double-jointed supporting arms in both directions as desired in order to accommodate a vehicle is made possible by the lengths of the supporting arms of the two pairs of supporting arms being asymmetric, so that the double-jointed arms of the second pair of supporting arms are considerably longer than the rigid supporting arms of the first pair of supporting arms. Only in that way does the required space under the vehicle become free when the double-jointed arms are bent and the supporting arms of the two pairs of supporting arms are not in each other's way. Furthermore, a vehicle can be held in such a way that, in the raised state, the center point of the vehicle and, above all, the vehicle doors are located in front of the lifting device, especially in front of the lateral lifting columns. Accordingly, the doors of the raised vehicle can be fully opened without obstruction.
In addition to a two-column lifting platform, other lifting platforms having supporting arms, such as a ram-lifting platform or a two-ram lifting platform, are also possible and included within the scope of the present invention.
In an exemplary embodiment, the supporting arms of the rear pair of supporting arms are longer than the supporting arms of the front pair of supporting arms by at least an amount such that, for raising a motor vehicle, the supporting arms can be positioned so that the lifting columns of the lifting platform are at the level of, or even in front of, the A-column (e.g., A-pillar) of the vehicle. This ensures the vehicle doors of a vehicle parked in the lift position can be opened. The lifting columns of the lifting platform can therefore be arranged closer together, so that the lifting platform can be of narrower construction. This enables more lifting platforms and associated assembly bays to be accommodated on the same surface area of a workshop.
Typically, the supporting arms of the front pair of supporting arms are implemented as three-part, telescopic supporting arms. This allows a wide range of adjustment.
For safety reasons, the articulated joints of the double-jointed arms can also be provided with a supporting-arm detent device, which is activatable or is activated to lock the articulated joint before the motor vehicle is raised and which is released for adjusting the position of the supporting arm.
The rear supporting arms can likewise be implemented to be adjustable in length similarly to the front supporting arms, although this is not required. The positioning of the free ends of the supporting arms can also be achieved by simply altering the bending angle and pivoting angle of the rear supporting arms.
In an exemplary embodiment, however, the rear supporting arms, which are implemented as double-jointed arms, are also adjustable in length and have for that purpose a rear-supporting-arm part and a front-supporting-arm part connected thereto via the articulated joint, the front-supporting-arm part being configured to be telescopically adjustable in length. The ability to adjust the length of the double-jointed arm can thus be realized in a technically simple way and the rear supporting arms thereby allow more flexible positioning on the model-dependent support points of different vehicles and, in addition, require less space. In particular, it can be provided that each front-supporting-arm part, at its free end, carries a receiving plate with which the motor vehicle is raised at its support points.
While the supporting arms of the front pair of supporting arms are typically in the form of three-part telescopic arms, it is sufficient that, as with an exemplary length adjustment of the rear supporting arms, the front-supporting-arm part thereof is in the form of a two-part telescopic arm.
In a lifting platform having two lifting columns, a further advantage is obtained by mounting the articulation points of the short, rigid supporting arms of the first pair of supporting arms on the inner side of the lifting columns facing towards the opposite lifting column, while the articulation points of the double-jointed supporting arms are located on a front or rear side of the lifting columns, seen in the drive-in direction. This provides the rigid supporting arms of the first pair of supporting arms with maximum freedom of movement and the double-jointed arms of the second pair of supporting arms with the greatest possible reach or adjustment range below a vehicle being raised.
The foregoing illustrative summary, as well as other exemplary objectives, properties, and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The drawings are provided as examples, may be schematic, and may not be drawn to scale. The present inventive aspects may be embodied in many different forms and should not be construed as limited to the examples depicted in the drawings.
In this detailed description, various aspects and features are herein described with reference to the accompanying figures. These aspects and features generally pertain to exemplary lifting platforms for motor vehicles.
Specific details are set forth to provide a thorough understanding of the present disclosure. It will be apparent, however, to those having ordinary skill in the art that the disclosed lifting platforms may be practiced without some or all of these specific details. As another example, features disclosed as part of one embodiment can be used in the context of another embodiment to yield a further embodiment. In some instances, well-known aspects have not been described in detail to avoid unnecessarily obscuring the present disclosure. This detailed description is therefore not to be taken in a limiting sense, and it is intended that other embodiments are within the spirit and scope of the present disclosure.
As noted, the present invention relates to a lifting platform for motor vehicles. An exemplary lifting platform has four supporting arms that are pivotally mounted on a lifting device, especially on two lateral lifting columns, and the free ends of which are movable under support points of a motor vehicle being raised. The supporting arms form a first pair and a second pair of supporting arms. At least the supporting arms of the first pair of supporting arms are adjustable in length and are implemented in the form of rigid supporting arms, which are pivotable solely about their articulation points on the lifting device. The supporting arms of the second pair of supporting arms are in the form of double-jointed arms having an additional articulated joint.
The lifting platform shown in
The supporting arms 3, 4 form a front pair of supporting arms (e.g., they raise the front half of the vehicle), and the supporting arms 5, 6 form a pair of supporting arms for the rear half of the vehicle. The supporting arms 3, 5 for the left-hand side of the vehicle are arranged mirror-symmetrically with respect to the supporting arms 4, 6 for the right-hand side of the vehicle. The supporting arms are each pivotally mounted on their associated lifting column 1, 2 via a pivot bearing 3a, 4a, 5a, 6a, so they can be pivoted under a vehicle positioned between the lifting columns 1, 2 and moved to the support points on the bottom of the vehicle.
Supporting plates 3b, 4b, 5b, 6b having rubber pads are arranged at the free ends of the supporting arms 3, 4, 5, 6 in the usual way, the supporting plates coming into contact with the vehicle when the supporting arms are raised. The supporting plates 3b, 4b, 5b, 6b can also be adjusted in height to a certain extent relative to the associated supporting arms 3, 4, 5, 6 by means of a thread.
The supporting arms 3, 4 of the front pair of supporting arms are implemented in the form of conventional rigid supporting arms (e.g., they are pivotable solely about their respective articulation points 3a, 4a on the columns 1, 2). Furthermore, the front supporting arms 3, 4 can be adjusted in length telescopically. In an exemplary embodiment, the adjustment range of the front supporting arms 3, 4 is between 570 millimeters in the fully retracted state and 1160 millimeters in the fully extended state. To achieve such a wide adjustment range, the front supporting arms 3, 4 are constructed in the form of three-part telescopes (e.g., having three rectangular profiles pushed one inside the other telescopically). End stops in the interior of the telescope profiles prevent the supporting arms 3, 4 from being extendable farther than is permissible.
Unlike the front supporting arms 3, 4, the supporting arms 5, 6 of the rear pair of supporting arms are in the form of double-jointed arms. They are provided with an additional articulated joint 51, 61 so that the corresponding supporting arm 5, 6 can be bent in its pivot plane, which is defined by the pivot joint 5a, 6a.
The left-hand double-jointed arm 5 is shown on an enlarged scale in
It will be understood that exemplary lifting platforms according to the present invention are not limited to two-part telescopic extension of the rear supporting arms 5, 6. Rather, if advantageous, the rear supporting arms 5, 6 may be provided with three-part telescopic extension.
The articulated joint 51 of the double-jointed arm 5 is provided with a supporting-arm detent device, which locks the articulated joint 51 when a motor vehicle is being raised. For adjustment of the supporting arm, the supporting-arm detent device can be unlocked by means of an operating lever 55. The supporting-arm detent device is here formed by a toothed disc having circumferential toothing, which is arranged in the interior of the articulated joint 51, and by a locking member operable by means of the unlocking lever 55. This locking member engages between the teeth of the toothed disc and blocks a rotary movement or, in the raised state, allows such movement.
The pivot joints 3a, 4a, 5a, 6a with which the supporting arms 3, 4, 5, 6 are articulated on the lifting columns 1, 2 are also lockable in a similar way. For example, for that purpose, the disc 56 arranged on the pivot bearing 5a in
By way of example,
Because of the asymmetric lengths of the supporting arms (e.g., relatively short front supporting arms 3, 4 and relatively long, bendable rear supporting arms 5, 6), it is possible for a vehicle positioned between the lifting columns 1, 2 to be raised in such a way that the center of the vehicle and, above all, the vehicle doors are located in front of the lifting columns 1, 2 in the drive-in direction. When a vehicle is in the raised position, the lifting columns 1, 2 are typically located at approximately the level of, or even in front of, the A-column (A-pillar) of the vehicle, so the vehicle doors can be opened without the lifting columns 1, 2 being in the way. In this way, the lifting platform can be of narrow construction with the lifting columns 1, 2 arranged close to one another. In an exemplary embodiment, the width of the lifting platform is only about 3 meters.
In the second exemplary embodiment of a two-column lifting platform shown in
In the sectional views shown in
The foregoing detailed description and accompanying figures set forth typical embodiments of lifting platforms for motor vehicles. The present disclosure is not limited to such exemplary embodiments. It will be apparent that numerous other lifting-platform embodiments may be provided in accordance with the present disclosure. The present disclosure may utilize any variety of aspects, features, or steps, or combinations thereof. The figures may be schematic representations that are not necessarily drawn to scale.
It is within the scope of this disclosure for one or more of the terms “substantially,” “about,” “approximately,” and/or the like, to qualify each adjective and adverbs of the foregoing disclosure, to provide a broad disclosure. As an example, it is believed those of ordinary skill in the art will readily understand that, in different implementations of the features of this disclosure, reasonably different engineering tolerances, precision, and/or accuracy may be applicable and suitable for obtaining the desired result. Accordingly, it is believed those of ordinary skill will readily understand usage herein of the terms such as “substantially,” “about,” “approximately,” and the like.
The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
While various aspects, features, and embodiments have been disclosed herein, other aspects, features, and embodiments will be apparent to those having ordinary skill in the art. The various disclosed aspects, features, and embodiments are for purposes of illustration and are not intended to be limiting. It is intended that the scope of the present invention includes at least the following claims and their equivalents:
Number | Date | Country | Kind |
---|---|---|---|
10 2018 105 573.0 | Mar 2018 | DE | national |