1. Field of the Invention
The invention relates to railroads generally, and more particularly to signal compliance train control methods and systems.
2. Discussion of the Background
Many methods for controlling trains are known. Such methods include the Automated Block Signaling (ABS) and Centralized Train Control (CTC) methods. In such methods, train tracks are divided into sections, referred to in the art as blocks, and an operator is relied upon to move a train in compliance with wayside signals that are positioned some distance before a block boundary. In traditional ABS and CTC systems and the like, the wayside signals comprise colored lights that are visually observed by the operator. In more modern variants of these systems, sometimes generically referred to as communication-based train control (CBTC) systems, the signal information is transmitted into the cab of a locomotive. Examples of such systems include cab signaling systems and the TRAIN SENTINEL™ system available from the assignee of the present application, Quantum Engineering, Inc. Some of these systems, including the TRAIN SENTINEL™ system, ensure operator compliance with signal information transmitted into the cab.
Such block-oriented systems vary in their implementation. However, one aspect shared by several of these systems is that a restrictive signal in one block may be caused by conditions in the next block. A problem shared by such known systems is that there is no provision for lifting the restrictive signal in a block if conditions in the next block causing the restrictive signal “clear up.” Causing a train to operate under a restrictive signal unnecessarily makes operation of the train less efficient, which increases costs.
What is needed is a method and apparatus that allows the lifting of a restrictive signal after a block has been entered when such restrictive signal is no longer necessary, and that allows a less restrictive signal to be recognized even after a train has passed the aforementioned wayside signal device.
The present invention meets the aforementioned need to a great extent by providing a computerized train control system that uses signal information from a next block to change a restrictive signal in a block currently occupied by the train to a less restrictive signal if it can be ascertained that the condition causing the more restrictive signal has changed. This may be accomplished by receiving signal information from the next block while still in the current block and, if the signal information from the next block is no more restrictive than the signal information in the current block and if the signal for the current block is of a type that can safely be modified, allowing the train to operate as if the signal information for the current block were less restrictive than the actual, previously received signal information for the current block. In preferred embodiments of the invention, wayside signal devices transmit messages including signal information and identification information in order to allow the system to unambiguously determine that the signal information in the message corresponds to the next wayside signal device.
A more complete appreciation of the invention and many of the attendant features and advantages thereof will be readily obtained as the same become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The present invention will be discussed with reference to preferred embodiments of train control systems. Specific details, such as types of signaling systems, are set forth in order to provide a thorough understanding of the present invention. The preferred embodiments discussed herein should not be understood to limit the invention. Furthermore, for ease of understanding, certain method steps are delineated as separate steps; however, these steps should not be construed as necessarily distinct nor order dependent in their performance.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views,
When the signal 52 in block C 50 is red, the signal 42 in block B 40 is yellow, which signifies that speed should be reduced in preparation for stopping prior to entering the next block C 50. The signal 32 in block A 30 will be green, which signifies no restriction is in place for that block and a train may proceed through the block at maximum authorized speed. The blocks are traditionally sized such that a train may be brought to a stop within one block under worst case conditions (e.g., maximum speed, maximum train weight, etc.), thereby ensuring that a train that had been proceeding at full speed upon entering a yellow block can be brought to a stop before entering a next block if the next block is red.
It will be recognized by those of skill in the art that other, more complex signaling systems are known. For example, in the aforementioned CTC system, there are several intermediate signals (signals other than red or stop on the one hand and green or proceed without restriction on the other hand) rather than just the single yellow intermediate signal. Also, while some systems use fixed blocks (e.g., blocks whose boundaries are predetermined and static and are usually associated with landmarks such as specific mileposts are junctions points), dynamic block systems are also known and within the scope of the invention. Because of its simplicity, the ABS system discussed above will be used to illustrate the invention; however, it should be recognized that the invention is not so limited and can be used with a wide variety of signaling systems and techniques including but not limited to those discussed above.
In the present invention, the wayside signals 32, 42, 52 have the ability to transmit messages including the signal information and, preferably, an identification number to the train in addition to or in place of the colored lights discussed above. Preferably these signals 32, 42, 52 transmit such messages in response to interrogation signals, but the invention is not so limited. In other embodiments of the invention, the signals are equipped to detect the presence of a train an transmit a signal message automatically. In other embodiments, a message is broadcast repeatedly regardless of whether a train is present. In yet other embodiments, a central authority monitors the locations of trains in the system and instructs the switches 32, 42, 52 to transmit a message as the train approaches.
The system 100 preferably includes a positioning system 120 connected to the control module 110. The positioning system supplies the position (and, in some cases, the speed) of the train to the control module 110. The positioning system 120 can be of any type, including a global positioning system (GPS), a differential GPS, an inertial navigation system (INS), or a Loran system. Such positioning systems are well known in the art and will not be discussed in further detail herein. (As used herein, the term “positioning system” refers to the portion of a positioning system that is commonly located on a mobile vehicle, which may or may not comprise the entire system. Thus, for example, in connection with a global positioning system, the term “positioning system” as used herein refers to a GPS receiver and does not include the satellites that transmit information to the GPS receiver.)
A database 130 is also connected to the control module 110. The database 130 preferably comprises a non-volatile memory such as a hard disk, flash memory, CD-ROM or other storage device, on which data is stored. Other types of memory, including volatile memory, may also be used. The data stored in the database preferably includes boundaries of all blocks in the system and identification numbers for all associated signal devices. The data preferably also includes map data including information concerning the direction and grade of the track in the railway. By using train position information obtained from the positioning system 120 and the map database 130, the control module 110 can determine its position relative to blocks in the system as well as the identification numbers of signal devices associated with those blocks.
The control module 110 communicates with a signal devices such as device 32 associated with block A 30 (not shown in
Also connected to the control module 110 is a brake interface 160. The brake interface 160 monitors the train brakes and allows the control module 110 to activate and control the brakes to stop or slow the train when necessary.
An operator pendant 170 is also connected to the control module 110. The pendant 170 may take the form of the operator display illustrated in co-pending U.S. application Ser. No. 10/186,426, entitled “Train Control System and Method of Controlling a Train or Trains” filed Jul. 2, 2002, the contents of which are hereby incorporated by reference herein. The pendant 170 may be used to display signals from the signal devices 32, 42, 52 to the operator and to provide other messages to the operator and receive certain inputs from the operator as will be discussed in further detail below.
If a valid response is received at step 315, the response is stored in a temporary database at step 319 and is compared to a previously stored signal for the current block (that is, the signal before the train entered the block) at step 320. If the next signal is more restrictive at step 321, then steps 310 et seq. are repeated. If the signal for the next block is not more restrictive than the current signal at step 321, and the signal for the current block is modifiable at step 322, then the signal for the current block is changed to a less restrictive signal at step 324 and the operator is notified of the change at step 326.
It is important to note that not all signals are modifiable; that is, not all signals can be modified safely. For example, in some systems, a “red” or “stop” signal in a block before the train enters the block might be caused by another train in the block or might be caused by a broken rail in the block. In a system in which the signal device 32, 42, 52 does not provide information as to the reason for such a red signal, the red signal cannot be safely modified, or lifted, regardless of the signal in the next block. On the other hand, a yellow signal in a block is only caused by a red signal in a next block. Thus, if a train is in a block for which the signal was yellow before the train entered (of course, the signal in the block will change to red once the train enters the block) and the signal for the next block changes from red to either yellow or green (which signifies that either a train has left the next block or the broken rail or other problem has been corrected), the signal for the current block can be changed to a less restrictive signal. In more complex signaling systems, determining whether a signal is modifiable may be more complex.
In the example above, the yellow intermediate signal is changed to green, which is the least restrictive signal. In more complex systems with multiple intermediate signals, the signal may be changed to a less restrictive signal rather than to the least restrictive signal. As with the determination as to whether a signal is modifiable, the determination as to how to modify the signal may vary depending upon the exact nature and complexity of the signal system.
It should be noted that changing or modifying the signal, as discussed above with respect to step 324, means allowing the train to proceed as if the signal transmitted by the wayside signal device had been changed. This may be accomplished, for example, by modifying the value of the signal as reflected in the temporary database in the system 100. Causing a change in the signal actually being transmitted by the wayside signal device is not required for this step.
Once the signal for the current block has been modified at step 324, the operator is notified of the change at step 326. The notification is preferably accomplished using the operator pendant 170.
In some embodiments of the invention such as the embodiment discussed above, a wayside signal device is interrogated as the train approaches. However, the invention is not limited to such embodiments. In some other embodiments, wayside signal devices continuously or periodically transmit signal information regardless of whether a train is close enough to receive such information. In yet other embodiments, wayside signal devices detect when a train is approaching (using, e.g., track circuits or radar detectors) and transmit signal information at that time. In still other embodiments, a central authority tracks movement of trains and commands the wayside signal devices to transmit the signal information when a train is approaching. Other techniques for triggering the transmission of signal information from wayside signal devices are also possible and within the scope of the invention.
In the embodiments discussed above, the control module 110 is located on the train. It should also be noted that some or all of the functions performed by the control module 110 could be performed by a remotely located processing unit such as a processing unit located at a central dispatcher 190. In such embodiments, information from devices on the train (e.g., the brake interface 160) is communicated to the remotely located processing unit via the transceiver 150.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
Number | Name | Date | Kind |
---|---|---|---|
4181943 | Mercer, Sr. et al. | Jan 1980 | A |
4459668 | Inoue et al. | Jul 1984 | A |
4561057 | Haley, Jr. et al. | Dec 1985 | A |
4711418 | Aver et al. | Dec 1987 | A |
5072900 | Malon | Dec 1991 | A |
5129605 | Burns et al. | Jul 1992 | A |
5177685 | Davis et al. | Jan 1993 | A |
5332180 | Peterson et al. | Jul 1994 | A |
5340062 | Heggestad | Aug 1994 | A |
5364047 | Petit et al. | Nov 1994 | A |
5394333 | Kao | Feb 1995 | A |
5398894 | Pascoe | Mar 1995 | A |
5452870 | Heggestad | Sep 1995 | A |
5533695 | Heggestad et al. | Jul 1996 | A |
5620155 | Michalek | Apr 1997 | A |
5699986 | Welk | Dec 1997 | A |
5740547 | Kull et al. | Apr 1998 | A |
5751569 | Metel et al. | May 1998 | A |
5803411 | Ackerman et al. | Sep 1998 | A |
5828979 | Polivka et al. | Oct 1998 | A |
5867122 | Zahm et al. | Feb 1999 | A |
5944768 | Ito et al. | Aug 1999 | A |
5950966 | Hungate et al. | Sep 1999 | A |
5978718 | Kull | Nov 1999 | A |
5995881 | Kull | Nov 1999 | A |
6049745 | Douglas et al. | Apr 2000 | A |
6081769 | Curtis | Jun 2000 | A |
6102340 | Peek et al. | Aug 2000 | A |
6112142 | Shockley et al. | Aug 2000 | A |
6135396 | Whitfield et al. | Oct 2000 | A |
6179252 | Roop et al. | Jan 2001 | B1 |
6218961 | Gross et al. | Apr 2001 | B1 |
6311109 | Hawthorne et al. | Oct 2001 | B1 |
6322025 | Colbert et al. | Nov 2001 | B1 |
6345233 | Erick | Feb 2002 | B1 |
6371416 | Hawthorne | Apr 2002 | B1 |
6373403 | Korver et al. | Apr 2002 | B1 |
6374184 | Zahm et al. | Apr 2002 | B1 |
6377877 | Doner | Apr 2002 | B1 |
6397147 | Whitehead | May 2002 | B1 |
6421587 | Diana et al. | Jul 2002 | B2 |
6456937 | Doner et al. | Sep 2002 | B1 |
6459964 | Vu et al. | Oct 2002 | B1 |
6459965 | Polivka et al. | Oct 2002 | B1 |
6487478 | Azzaro et al. | Nov 2002 | B1 |
6609049 | Kane et al. | Aug 2003 | B1 |
20010056544 | Walker | Dec 2001 | A1 |
20020070879 | Gazit et al. | Jun 2002 | A1 |
20030225490 | Kane et al. | Dec 2003 | A1 |
20040006413 | Kane et al. | Jan 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040182969 A1 | Sep 2004 | US |