This application claims priority from the Chinese patent application 202211251288.0 filed Oct. 13, 2022, the content of which is incorporated herein in the entirety by reference.
The present disclosure relates to the technical field of twisting and weaving equipment in factories, in particular to a lifting system for inner yarn rails.
Existing twisting and weaving factories make donning mainly in manual way, but due to long donning time, low efficiency and big labor intensity arising from their expansion in scale, this way has become an urgent problem for various enterprises. There is a technical solution on robotic donning with AGV (Automated Guided Vehicle) in the prior art, such as a China patent CN111996627A named an automatic donning for twisting machine, but the donning efficiency provided in this solution is still low; moreover, its control is difficult, and the robot has the weak ability to dodge operators, thus often cause many disruptions to the operator's work. There is also a technical solution on automatic donning and doffing, but this solution still needs to make manual donning after doffing, such as a China patent CN112011863A named an automatic doffing system for twisting production. Each yarn winding package used for industry weighs more than 10 kilograms, and each operator needs to perform donning several hundreds times every day, how to improve the automation level of donning and reduce the labor intensity of operators becomes a technical problem.
The technical problem to be solved by the present disclosure consists in the reduction in the labor intensity of donning and the improvement of donning efficiency, therefor we provide a lifting system for inner yarn rails.
In order to solve the above technical problem, the technical scheme adopted in the present disclosure is as follows:
A lifting system for inner yarn rails, comprising an in-air conveying rail, the in-air conveying rail being configured to convey a carrier assembly, and the carrier assembly being configured to carry a winding package;
an inner yarn-rail-lifting section is arranged on the in-air conveying rail, the inner yarn-rail-lifting section is positioned on both sides of a twisting machine; when the inner yarn-rail-lifting section ascends, it communicates with the in-air conveying rail; when the inner yarn-rail-lifting section descends, it approaches the position of a spindle bucket of the twisting machine.
In a preferred embodiment, the carrier assembly is composed of a plurality of conveying units articulated with each other, and each conveying unit in the carrier assembly corresponds to a spindle position of the twisting machine.
In a preferred embodiment, the carrier assembly is structured in the relation that an articulating connection rod has a suspending wheel set suspending within in the in-air conveying rail, the articulating connection rod is configured to articulate and connect a plurality of the conveying units with each other, the bottom of the articulating connection rod is connected with a first carrier-connecting rod, the first carrier-connecting rod is connected with a four bar linkage, a draw spring is arranged between two connecting rods approached the four bar linkage at the bottom, the two connecting rods approached by the four bar linkage at the bottom are connected with a first suspending rod and a second suspending rod, respectively, and barbs are arranged on the bottoms of the first suspending rod and the second suspending rod;
the draw spring is configured to direct the first suspending rod and the second suspending rod to part from each other.
In a preferred embodiment, the carrier assembly is structured in the relation that an articulating connection rod has a suspending wheel set suspending within in the in-air conveying rail, the articulating connection rod is configured to articulate and connect a plurality of the conveying units with each other, the bottom of the articulating connection rod is connected with a second carrier-connecting rod, the bottom of the second carrier-connecting rod is connected with a hugging arm, a space for loading an inner yarn winding package is arranged in the middle of the hugging arm, and an opening is arranged at the bottom of the hugging arm.
In a preferred embodiment, a supporting frame is arranged on the both sides of the twisting machine, the inner yarn-rail-lifting section is slidingly connected with the supporting frame, a lifting device for inner yarn rails is arranged on the supporting frame, the lifting device for inner yarn rails is connected with the inner yarn-rail-lifting section, and configured to drive the inner yarn-rail-lifting section to ascend and descend;
the lifting device for inner yarn rails is an air cylinder, a hydraulic cylinder or a gear rack drive mechanism.
In a preferred embodiment, a supporting frame is arranged on the both sides of the twisting machine, a lifting rail is vertically arranged on a stick of the supporting frame, a lifting pulley assembly is arranged inside the lifting rail, and the lifting pulley assembly is connected with the inner yarn-rail-lifting section by means of a connecting rod;
the supporting frame is provided with a plurality of rotary rotation shafts, which are arranged in the direction of the inner yarn-rail-lifting section, and the rotation shafts are connected to a driving device to drive the rotation shaft to rotate, a plurality of winding disks are arranged on the rotation shaft, each winding disk is wound with a suspending belt, the lower end of the suspending belt is connected to the inner yarn-rail-lifting section, and the rotation shaft rotates to drive the inner yarn-rail-lifting section to ascend and descend.
In a preferred embodiment, the driving device is a lifter driving motor, the lifter driving motor is connected to the rotation shaft by means of a transmission mechanism, and drives the rotation shaft to rotate;
the lifter driving motor, the transmission mechanism or the rotation shaft is provided with a diversion angle sensor.
In a preferred embodiment, a position sensor is arranged at the position where the in-air conveying rail is connected with the inner yarn-rail-lifting section, or at the position where the supporting frame is slidingly connected with the inner yarn-rail-lifting section, so as to detect whether the inner yarn-rail-lifting section is aligned with the in-air conveying rail.
In a preferred embodiment, at the position where the in-air conveying rail is connected with the inner yarn-rail-lifting section, the in-air conveying rail has an upper baffle arranged on the top of its end head, and side baffles arranged on its both sides, the upper baffle and the side baffle are out from the end head of the in-air conveying rail, and the inside of the bottom of the side baffle is provided with a bevel, which is fairly thin in the thickness near its bottom, and fairly thick in the thickness near its top.
In a preferred embodiment, a travel driving unit is arranged on the in-air conveying rail to drive the carrier assembly to travel;
the in-air conveying rail is provided with a carrier assembly sensor, which is configured to detect the position of the carrier assembly and the sort of the winding packages carried on the carrier assembly;
a diverging-and-merging switch is arranged on the in-air conveying rail, so as to switch different rails;
a sliding frame is arranged at the bottoms of the both sides of the twisting machine, and the spindle bucket is arranged on the sliding frame, which is used to slide the spindle bucket out from the twisting machine for donning.
In the lifting system for inner yarn rails according to the present disclosure, the carrier assembly is used to deliver the winding packages along the in-air conveying rails, and the winding packages delivered each time by one carrier assembly can correspond to each spindle position of the twisting machine, dramatically improving the delivery efficiency of the winding packages. Moreover, the structure of the inner yarn-rail-lifting section enables the winding packages to approach the spindle buckets, thereby dramatically reducing the labor intensity of operators. In a preferred solution, the bottom of the twisting machine is provided with a sliding frame, which is slid along with the spindle buckets to the outside of the twisting machine, so that the descended winding packages can fall directly into the spindle buckets, and further reduce the labor intensity of operators.
We shall further describe the present disclosure in combination with the drawings and examples as follows.
Wherein: twisting machine 1, spindle position 101, lifting device for inner yarn rails 2, supporting frame 201, rotation shafts 202, winding disks 203, lifter driving motor 204, transmission mechanism 205, suspending belt 206, fixed base 207, connecting rod 208, upper baffle 209, side baffles 210, lifting rail 211, lifting pulley assembly 212, position sensor 213, stick 214, driving device 215, diversion angle sensor 216, bevel 217, in-air conveying rail 3, inner yarn-rail-lifting section 31, spindle bucket 4, carrier assembly 5, first carrier-connecting rod 51, four bar linkage 52, draw spring 53, first suspending rod 54, second suspending rod 55, suspending wheel set 56, articulating connection rod 57, hugging arm 58, second carrier-connecting rod 59, first connecting rod 501, second connecting rod 502, opening 503, diverging-and-merging switch 6, ascending trolley 7, carrier assembly sensor 8, travel driving unit 9, winding package 10, sliding frame 11.
As shown in
The in-air conveying rail 3 is provided with the inner yarn-rail-lifting sections 31, which are positioned on both sides of the twisting machine 1; when the inner yarn-rail-lifting sections 31 rise, they communicate with the in-air conveying rail 3; when the inner yarn-rail-lifting sections 31 descend, they approach the position of the spindle buckets 4 of the twisting machine 1. This structure enables the carrier assemblies 5 loaded with the winding packages 10 to descend to the position close to the spindle buckets 4, even the winding packages 10 to directly enter the spindle buckets 4 as shown in
As a preferred solution shown in
As a preferred solution shown in
This structure enables the first suspending rod 54 and the second suspending rod 55 to extend into the bobbin of the winding package 10, so as to hook the bobbin and fix the winding package 10, and the four bar linkage 52 to be pinched at arrival of the carrier assembly 5 above the spindle bucket 4, so as to detach the first suspending rod 54 and the second suspending rod 55 from the bobbin of the winding package 10, then drop the winding package 10 into the inside of the spindle bucket 4.
As a preferred solution shown in
As a preferred solution shown in
the lifting device for inner yarn rails 2 is an air cylinder, a hydraulic cylinder or a gear rack drive mechanism.
As a preferred solution shown in
the supporting frame 201 is provided with a plurality of rotary rotation shafts 202, which are arranged in the direction of the inner yarn-rail-lifting section 31, and the rotation shafts 202 are connected to a driving device 215 to drive the rotation shaft 202 to rotate, a plurality of winding disks 203 are arranged on the rotation shaft 202, each winding disk 203 is wound with a suspending belt 206, the lower end of the suspending belt 206 is connected to the inner yarn-rail-lifting section 31, and the rotation shaft 202 rotates to drive the inner yarn-rail-lifting section 31 to ascend and descend.
As a preferred solution shown in
The lifter driving motor 204, the transmission mechanism 205 or the rotation shaft 202 is provided with a diversion angle sensor. The diversion angle sensor is used to detect the diversion angle of the rotation shaft 202 and thus to calculate the ascending and descending distance of the inner yarn-rail-lifting section 31.
As a preferred solution shown in
As a preferred solution shown in
As a preferred solution shown in
The in-air conveying rail 3 is provided with the carrier assembly sensor 8, which is used to detect the position of the carrier assembly and the sort of the winding packages 10 carried on the carrier assemblies 5. The carrier assembly sensor 8 includes a limit switch and a data reader, and the limit switch includes a mechanical limit switch, a giant-magneto-resistance limit switch, a Hall switch, etc. The data reader includes a camera, or an electronic tag reader, the 2D code or electronic tag corresponding to which is arranged on the carrier assembly 5, so as to record the ID code of the current carrier assembly 5, that is, bind the ID code to the parameters of the winding packages 10 at loading the winding packages 10 on carrier assembly 5.
The diverging-and-merging switch 6 is arranged on the in-air conveying rail 3, so as to switch different rails; and the diverging-and-merging switch 6 delivers the carrier assembly 5 to different positions according to the information of the winding packages 10 obtained by the carrier assembly sensor 8.
The sliding frames 11 are arranged at the bottoms of the both sides of the twisting machine 1, and the spindle bucket 4 is installed on the sliding frame 11, which is used to slide the spindle bucket 4 out from the twisting machine 1 for donning.
In an example taken as an optimal solution for description, as shown in
Operators control the action of the lifter driving motor 204, which drives the rotation shaft 202 to rotate by means of the transmission mechanism 205. The transmission mechanism 205 in this example is a synchronous belt-driven mechanism, indeed as a reduction mechanism with reduction ratios of 1:3˜5, and the descending operation is preferably under the open loop control without high precise requirements. The suspending belt 206 on the winding disk 203 is loosened, enabling the inner yarn-rail-lifting section 31 to descend. When the winding package 10 has descended into the spindle bucket 4, the four bar linkage 52 is pinched, so that the first suspending rod 54 and the second suspending rod 55 retract to loosen the winding package 10, which then falls into the spindle bucket 4, thus operators connect yarn on the ascending trolley 7. The lifter driving motor 204 rotates in reverse again, thus the winding disk 203 winds the suspending belt 206 around itself, and the inner yarn-rail-lifting section 31 ascends, and it is precisely aligned with the in-air conveying rail 3 along the side baffle 210, until the position sensor 213 detects the inner yarn-rail lifting section 31, then the lifter driving motor 204 stops actuation. The travel driving unit 9 acts, so as to drive the carrier assembly 5 to leave the inner yarn-rail lifting section 31, moving along the in-air conveying rail 3 to the donning position, where donning is made again. For ease to observe
The above embodiments are only preferred technical solutions of the present disclosure, and should not be regarded as limiting the present disclosure. The embodiments in the present application and the features in the embodiments can be arbitrarily combined with each other without conflict. The scope of protection of the present disclosure shall be the technical solutions recorded in the claims, including the equivalent alternatives of the technical features in the technical solutions recorded in the claims. Equivalent substitutions and improvements in the scope are also included in the scope of protection of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202211251288.0 | Oct 2022 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3788054 | Haussmann | Jan 1974 | A |
3946547 | Salmoiraghi | Mar 1976 | A |
4023339 | Laderach | May 1977 | A |
4840124 | Tadashima | Jun 1989 | A |
4899530 | Morrison | Feb 1990 | A |
4979360 | Kallmann | Dec 1990 | A |
5136833 | Inger | Aug 1992 | A |
5239814 | Yamada | Aug 1993 | A |
5299415 | Wanger | Apr 1994 | A |
5359846 | Miyamoto | Nov 1994 | A |
5522210 | Mack | Jun 1996 | A |
5586428 | Asai | Dec 1996 | A |
5588602 | Uno | Dec 1996 | A |
5768876 | Messing | Jun 1998 | A |
5797255 | Saito | Aug 1998 | A |
5996327 | Mack | Dec 1999 | A |
Number | Date | Country |
---|---|---|
212270321 | Jan 2021 | CN |
217378135 | Sep 2022 | CN |
4312073 | Oct 1994 | DE |
19616108 | Oct 1997 | DE |
19917969 | Oct 2000 | DE |
63295729 | Dec 1988 | JP |
05287624 | Nov 1993 | JP |
H07846 | Jan 1995 | JP |
Entry |
---|
English translation of CN217378135U, obtained via espacenet.com (last accessed May 2, 2024). (Year: 2024). |
Number | Date | Country | |
---|---|---|---|
20240125011 A1 | Apr 2024 | US |