Claims
- 1. In a method to modulate exogenous gene expression comprising contacting an ecdysone receptor complex comprising:
a) a DNA binding domain; b) a ligand binding domain; c) a transactivation domain; and d) a ligand; with a DNA construct comprising: a) the exogenous gene; and b) a response element; wherein: a) the exogenous gene is under the control of the response element; and b) binding of the DNA binding domain to the response element in the presence of the ligand results in activation or suppression of the gene; the improvement comprising: selecting the ligand from a compound of the formula: 4wherein: E is a (C4-C6)alkyl containing a tertiary carbon or a cyano(C3-C5)alkyl containing a tertiary carbon; R1 is H, Me, Et, i-Pr, F, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, OH, OMe, OEt, cyclopropyl, CF2CF3, CH═CHCN, allyl, azido, SCN, or SCHF2, R2 is H, Me, Et, n-Pr, i-Pr, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, Ac, F, Cl, OH, OMe, OEt, O-n-Pr, OAc, NMe2, NEt2, SMe, SEt, SOCF3, OCF2CF2H, COEt, cyclopropyl, CF2CF3, CH═CHCN, allyl, azido, OCF3, OCHF2, O-i-Pr, SCN, SCHF2, SOMe, NH—CN, or joined with R3 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy, a dihydrofuryl ring with the oxygen adjacent to a phenyl carbon, or a dihydropyryl ring with the oxygen adjacent to a phenyl carbon; R3 is H, Et, or joined with R2 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy, a dihydrofuryl ring with the oxygen adjacent to a phenyl carbon, or a dihydropyryl ring with the oxygen adjacent to a phenyl carbon; R4, R5, and R6 are independently H, Me, Et, F, Cl, Br, formyl, CF1, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, OMe, OEt, SMe, or SEt; provided that: a) when R1 is Me and R2 is OMe; then R3 is H; and the combination R4, R5, and R6 is 3,5-di-Me, 3,5-di-OMe-4-Me, 3,5-di-Cl, or 3,5-di-F; b) when R1 is Me and R2 is OEt; then R3 is H and the combination R4, R5, and R6 is 3,5-di-Me, 3,5-di-OMe-4-Me, 3,5-di-Cl, 3,5-di-F, 2,4- or 2,5-di-F, 2,4- or 2,5-di-Cl; c) when R1 is Et and R2 is OMe or OEt; then R3 is H and the combination R4, R5, and R6 is:
i) 3,5-di-OMe-4-Me, 3,5-di-Cl, 3,5-di-F, 2,4- or 2,5-di-F, 2,4- or 2,5-di-Cl, 3-OMe, 2-Cl-5-Me, 2-Br-5-Me, 2-Cl, 2-Br, or 3-Me; or ii) R6 is H, R1 is Me, and R5 is Et, F, Cl, Br, formyl, CH3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, OMe, OEt, SMe, or SEt; d) when R2 is i-Pr; then R2 is OMe, or OEt; R3 is H; and the combination R4, R5, and R6 is 3,5-di-Me; e) when R3 is Et; then R2 is H, R1 is F or Cl, and the combination R4, R5, and R6 is 3,5-di-Me; f) when R2 and R3, together with the phenyl carbons to which they are attached, form an ethylenedioxy ring; then R1 is Me or Et and the combination R4, R5, and R6 is 3,5-di-Me; g) when R2 and R3, together with the phenyl carbons to which they are attached, form a dihydrofuryl or dihydropyryl ring; then R1 is Et and the combination R4, R5, and R6 is 3,5-di-Me; h) when R1 is formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, OH, cyclopropyl, CF2CF3, CH═CHCN, allyl, azido, SCN, or SCHF2; then R2 is OMe or OEt, R3 is H, and the combination R4, R5, and R6 is 3,5-di-Me; and i) when R2 is Me, Et, n-Pr, i-Pr, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, Ac, F, Cl, OH, O-n-Pr, OAc, NMe2, NEt2, SMe, SEt, SOCF3, OCF2CF2H, COEt, cyclopropyl, CF2CF3, CH═CHCN, allyl, azido, OCF3, OCHF2, O-i-Pr, SCN, SCHF2, SOMe, or NH—CN; then R1 is Et, R3 is H, and the combination R4, R5, and R6 is 3,5-di-Me.
- 2. A method to modulate exogenous gene expression comprising contacting an ecdysone receptor complex comprising;
a) a DNA binding domain; b) a ligand binding domain; c) a transactivation domain; and d) a ligand of the formula: 5wherein: E is a (C1-C6)alkyl containing a tertiary carbon or a cyano(C3-C5)alkyl containing a tertiary carbon; R1 is H, Me, Et, i-Pr, F, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, OH, OMe, OEt, cyclopropyl, CF2CF3, CH═CHCN, allyl, azido, SCN or SCHF2; R2 is H, Me, Et, n-Pr, i-Pr, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, Ac, F, Cl, OH, OMe, OEt, O-n-Pr, OAc, NMe2, NEt2, SMe, SEt, SOCF3, OCF2CF2H, COEt, cyclopropyl, CF2CF3, CH═CHCN, allyl, azido, OCF3, OCHF2, O-i-Pr, SCN, SCHF2, SOMe, NH—CN, or joined with R3 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy, a dihydrofuryl ring with the oxygen adjacent to a phenyl carbon, or a dihydropyryl ring with the oxygen adjacent to a phenyl carbon; R3 is H, Et, or joined with R2 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy, a dihydrofuryl ring with the oxygen adjacent to a phenyl carbon, or a dihydropyryl ring with the oxygen adjacent to a phenyl carbon; R4, R5, and R6 are independently H, Me, Et, F, Cl, Br, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CN, C≡CN, 1-propynyl, 2-propynyl, vinyl, OMe, OEt, SMe, or SEt; provided that: a) when R1 is Me and R2 is OMe; then R3 is H; and the combination R4, R5, and R6 is 3,5-di-Me, 3,5-di-OMe-4-Me, 3,5-di-Cl, or 3,5-di-F; b) when R1 is Me an R2 is OEt; then R3 is H and the combination R4, R5, and R6 is 3,5-di-Me, 3,5-di-OMe-4-Me, 3,5-di-Cl, 3,5-di-F, 2,4- or 2,5-di-F, 2,4- or 2,5-di-Cl; c) when R1 is Et and R2 is OMe or OEt; then R3 is H and the combination R4, R5, and R6 is:
i) 3,5-di-OMe-4-Me, 3,5-di-Cl, 3,5-di-F, 2,4- or 2,5-di-F, 2,4- or 2,5-di-Cl, 3-OMe, 2-Cl-5-Me, 2-Br-5-Me, 2-Cl-2-Br, or 3-Me; or ii) R6 is H, R4 is Me, and R5 is Et, F, Cl, Br, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, OMe, OEt, SMe, or SEt; d) when R1 is i-Pr; then R2 is OMe, or OEt; R3 is H; and the combination R4, R5, and R6 is 3,5-di-Me; e) when R3 is Et; then R2 is H, R1 is F or Cl, and the combination R4, R5, and R6 is 3,5-di-Me; f) when R2 and R3, together with the phenyl carbons to which they are attached, form an ethylenedioxy ring; then R1 is Me or Et and the combination R4, R5, and R6 is 3,5-di-Me; g) when R2 and R3, together with the phenyl carbons to which they are attached, form a dihydrofuryl or dihydropyryl ring, then R1 is Et and the combination R4, R5, and R6 is 3,5-di-Me; h) when R1 is formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, OH, cyclopropyl, CF2CF3, CH═CHCN, allyl, azido, SCN, or SCHF2; then R2 is OMe or OEt, R3 is H, and the combination R4, R5, and R6 is 3,5-di-Me; and i) when R2 is Me, Et, n-Pr, i-Pr, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, Ac, F, Cl, OH, O-n-Pr, OAc, NMe2, NEt2, SMe, SEt, SOCF3, OCF2CF2H. COEt, cyclopropyl, CF2CF3, CH═CHCN, allyl, azido, OCF3, OCHF2, O-i-Pr, SCN, SCHF2, SOMe, or NH—CN; then R1 is Et, R3 is H, the combination R4, R5, and R6 is 3,5-di-Me; with a DNA construct comprising: a) the exogenous gene; and b) a response element; wherein: a) the exogenous gene is under the control of the response element; and b) binding of the DNA binding domain to the response element in the presence of the ligand results in activation or suppression of the gene.
- 3. A method to modulate the expression of one or more exogenous genes in a subject, comprising administering to the subject an effective amount of a ligand of the formula:
- 4. A method for producing a polypeptide comprising the steps of:
a) selecting a cell which is substantially insensitive to exposure to a ligand of the formula: 7wherein: E is a (C4-C6)alkyl containing a tertiary carbon or a cyano(C3-C5)alkyl containing a tertiary carbon; R1 is H, Me, Et, i-Pr, F, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, OH, OMe, OEt, cyclopropyl, CF2CF3, CH═CHCN, allyl, azido, SCN, or SCHF2; R2 is H, Me, Et, n-Pr, i-Pr, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, Ac, F, Cl, OH, OMe, OEt, O-n-Pr, OAc, NMe2, NEt2, SMe, SEt, SOCF3, OCF2CF2H, COEt, cyclopropyl, CF2CF3, CH═CHCN, allyl, azido, OCF3, OCHF2, O-1-Pr, SCN, SCHF2, SOMe, NH—CN, or joined with R3 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy, a dihydrofuryl ring with the oxygen adjacent to a phenyl carbon, or a dihydropyryl ring with the oxygen adjacent to a phenyl carbon; R3 is H, Et, or joined with R2 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy, a dihydrofuryl ring with the oxygen adjacent to a phenyl carbon, or a dihydropyryl ring with the oxygen adjacent to a phenyl carbon; R4, R5, and R6 are independently H, Me, Et, F, Cl, Br, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, OMe, OEt, SMe, or SEt; provided that: a) when R1 is Me and R2 is OMe; R3 is H; and the combination R4, R5, and R6 is 3,5-di-Me, 3,5-di-OMe-4-Me, 3,5-di-Cl, or 3,5-di-F; b) when R1 is Me and R2 is OEt; then R3 is H and the combination R4, R5, and R6 is 3,5-di-Me, 3,5-di-OMe-4-Me, 3,5-di-Cl, 3,5-di-F, 2,4- or 2,5-di-F, 2,4- or 2,5-di-Cl; c) when R1 is Et and R2 is OMe or OEt; then R3 is H and the combination R4, R5, and R6 is:
i) 3,5-di-OMe-4-Me, 3,5-di-Cl, 3,5-di-F, 2,4- or 2,5-di-F, 2,4-or 2,5-di-Cl, 3-OMe, 2-Cl-5-Me, 2-Br-5-Me, 2-Cl, 2-Br, or 3-Me; or ii) R6 is H, R4 is Me, and R5 is Et, F, Cl, Br, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, OMe, OEt, SMe, or SEt; d) when R1 is i-Pr; then R2 is OMe, or OEt; R3 is H; and the combination R4, R5, and R6 is 3,5-di-Me; e) when R3 is Et; then R2 is H, R1 is F or Cl, and the combination R4, R5, and R6 is 3,5-di-Me; f) when R2 and R3, together with the phenyl carbons to which they are attached, form an ethylenedioxy ring; then R1 is Me or Et and the combination R4, R5, and R6 is 3,5-di-Me; g) when R2 and R3, together with the phenyl carbons to which they are attached, form a dihydrofuryl or dihydropyryl ring; then R1 is Et and the combination R4, R5, and R6 is 3,5-di-Me; h) when R1 is formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, OH, cyclopropyl, CF2CF3, CH═CHCN, allyl, azido, SCN, or SCHF2, then R2 is OMe or OEt, R3 is H, and the combination R4, R5, and R6 is 3,5-di-Me; and i) when R2 is Me, Et, n-Pr, i-Pr, formyl, CF3, CHF2, CHCl2, CH2F, CH2Cl, CH2OH, CH2OMe, CH2CN, C≡CH, 1-propynyl, 2-propynyl, vinyl, Ac, F, Cl, OH, O-n-Pr, OAc, NMe2, NEt2, SMe, SEt, SOCF3, OCF2CF2H, COEt, cyclopropyl, CF2CF3, CH═CHCN, allyl azido, OCF3, OCHF2, O-i-Pr, SCN, SCHF2, SOMe, or NH—CN; then R1 is Et, R3 is H, the combination R4, R5, and R6 is 3,5-di-Me; b) introducing into the cell:
1) a DNA construct comprising:
a) an exogenous gene encoding the polypeptide; and b) a response element; wherein the gene is under the control of the response element; and 2) an ecdysone receptor complex comprising:
a) a DNA binding domain; b) a binding domain for the ligand; and c) a transactivation domain; and c) exposing the cell to the lignad.
- 5. A method for regulating endogenous or heterologous gene expression in a transgenic organism comprising contacting a ligand of the formula:
- 6. The method of claim 2 wherein the ligand is of the specified formula and E is t-butyl; R1 is Me, Et, i-Pr, or F; R2 is OH, OMe, OEt, or joined with R3 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy or dihydrofuryl ring with the oxygen adjacent to a phenyl carbon; R3 is H, Et or joined with R2 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy or dihydrofuryl ring with the oxygen adjacent to a phenyl carbon; and R4, R5, and R6 are independently Me, F, Cl, CH2OH, or OMe.
- 7. The method of claim 3 wherein the ligand is of the specified formula and E is t-butyl; R1 is Me, Et, i-Pr, or F; R2 is OH, OMe, OEt, or joined with R3 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy or dihydrofuryl ring with the oxygen adjacent to a phenyl carbon; R3 is H, Et or joined with R2 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy or dihydrofuryl ring with the oxygen adjacent to a phenyl carbon; and R4, R5, and R6 are independently Me, F, Cl, CH2OH, or OMe.
- 8. The method of claim 4 wherein the ligand is of the specified formula and E is t-butyl; R1 is Me, Et, i-Pr, or F; R2 is OH, OMe, OEt, or joined with R3 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy or dihydrofuryl ring with the oxygen adjacent to a phenyl carbon; R3 is H, Et or joined with R2 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy or dihydrofuryl ring with the oxygen adjacent to a phenyl carbon; and R4, R5, and R6 are independently Me, F, Cl, CH2OH, or OMe.
- 9. The method of claim 5 wherein the ligand is of the specified formula and E is t-butyl; R1 is Me, Et, i-Pr, or F; R2 is OH, OMe, OEt, or joined with R3 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy or dihydrofuryl ring with the oxygen adjacent to a phenyl carbon; R4 is H, Et or joined with R2 and the phenyl carbons to which R2 and R3 are attached to form an ethylenedioxy or dihydrofuryl ring with the oxygen adjacent to a phenyl carbon; and R4, R5, and R6 are independently Me, F, Cl, CH2OH, or OMe.
- 10. The method of claim 2 wherein the ligand is of the specified formula and E is t-butyl, R1 is Et, R2 is OEt, R3 is H, and the combination R4, R5, and R6 is 3,5-di-Me.
- 11. The method of claim 3 wherein the ligand is of the specified formula and E is t-butyl, R1 is Et, R2 is OEt, R3 is H, and the combination R4, R5, and R6 is 3,5-di-Me.
- 12. The method of claim 4 wherein the ligand is of the specified formula and E is t-butyl, R1 is Et, R2 is OEt, R3 is H, and the combination R4, R5, and R6 is 3,5-di-Me.
- 13. The method of claim 5 wherein the ligand is of the specified formula and E is t-butyl, R1 is Et, R2 is OEt, R3 is H, and the combination R4, R5, and R6 is 3,5-di-Me.
- 14. The method of claim 2 wherein the ecdysone receptor complex is a chimeric ecdysone receptor complex and the DNA construct further comprises a promoter.
- 15. The method of claim 3 wherein the ecdysone receptor complex is a chimeric ecdysone receptor complex and the DNA construct further comprises a promoter.
- 16. The method of claim 4 wherein the ecdysone receptor complex is a chimeric ecdysone receptor complex and the DNA construct further comprises a promoter.
- 17. The method of claim 5 wherein the ecdysone receptor complex is a chimeric ecdysone receptor complex and the DNA construct further comprises a promoter.
- 18. The method of claim 3 wherein the subject is a plant
- 19. The method of claim 3 wherein the subject is a mammal.
Parent Case Info
[0001] This application is a continuation in part of U.S. Ser. No. 09/210,010, filed Dec. 11, 1998.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60089546 |
Jun 1998 |
US |
Divisions (1)
|
Number |
Date |
Country |
Parent |
09315451 |
May 1999 |
US |
Child |
09832500 |
Apr 2001 |
US |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09210010 |
Dec 1998 |
US |
Child |
09315451 |
May 1999 |
US |