The present invention relates in general to reed affixing devices for wind instruments, and, more particularly, to a reed affixing device for a wind instrument, which is intended to secure a reed to a mouthpiece of a wind instrument, such as a saxophone or a clarinet.
Generally, a reed is coupled to a mouthpiece of a wind instrument, such as a saxophone or a clarinet, to produce the sound of the instrument via vibrations. There are various kinds of reeds classified according to the thickness or material used. Further, reeds are capable of making various tones. Thus, different kinds of reeds are used according to the style of music, for example, classical music, jazz or pop.
A ligature is used to secure a reed to a mouthpiece. However, conventional ligatures used to secure a reed to a mouthpiece have a fixed size and are thus suitable only for a specifically sized mouthpiece. Thus, a need still exists for a ligature that is capable of effectively securing a reed to mouthpieces of various sizes and which allows for effective vibrations.
In accordance with a preferred embodiment, the present invention provides a ligature for a wind instrument that includes a cord harness, an adjuster, and a cord. The cord harness includes a plurality of apertures extending transverse to a longitudinal axis of the cord harness. The adjuster connects to and extends transverse to the longitudinal axis of the cord harness. The cord passes through the plurality of apertures in a spiral manner and engages a distal end of the adjuster.
In accordance with another aspect of the preferred embodiment, the present invention provides a wind instrument mouthpiece assembly that includes a mouthpiece, a reed, and a ligature. The ligature secures the reed to the mouthpiece. The ligature includes a cord harness, an adjuster, and a cord. The cord harness includes a plurality of apertures extending transverse to a longitudinal axis of the mouthpiece. The adjuster engages with the cord harness and extends transverse to the longitudinal axis of the mouthpiece. The cord is wound about the mouthpiece, passes through the plurality of apertures, and engages the adjuster.
In accordance with yet another aspect of the preferred embodiment, the present invention provides an adjuster for a ligature of a wind instrument that includes an elongated body and a cord guard. The elongated body includes a front end having a curved surface and a rear end opposite the front end. The cord guard includes a distal end and a posterior end opposite the distal end. The posterior end includes a recess and the front end of the elongated body is engaged with the recess of the cord guard.
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
In the drawings:
Reference will now be made in detail to the preferred embodiments of the invention illustrated in the accompanying drawings. Wherever possible, the same or like reference numbers will be used throughout the drawings to refer to the same or like features. It should be noted that the drawings are in simplified form and are not drawn to precise scale. In reference to the disclosure herein, for purposes of convenience and clarity only, directional terms such as top, bottom, above, below and diagonal, are used with respect to the accompanying drawings. The term “proximal” shall mean towards the center of an object. The term “distal” shall mean away from the center of an object. Such directional terms used in conjunction with the following description of the drawings should not be construed to limit the scope of the invention in any manner not explicitly set forth.
Certain terminology is used in the following description for convenience only and is not limiting. The words “right,” “left,” “lower” and “upper” designate directions in the drawings to which reference is made. The words “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the identified element and designated parts thereof. Additionally, the term “a,” as used in the specification, means “at least one.” The terminology includes the words noted above, derivatives thereof and words of similar import.
In accordance with a preferred embodiment, the present invention provides a ligature 10 for a wind instrument, as configured and shown in
The cord harness 12 is configured as best shown in
Each of the plurality of apertures is sized sufficiently to accommodate the passage of cords of various thicknesses. Thus, the present embodiment advantageously allows a user to utilize cords of various thicknesses (
About a mid-portion of the cord harness is a receiving member 22 for operatively engaging the adjuster 14, as further described below. The receiving member 22 is preferably configured as a through hole 24 having inner or female threads 26 for threadedly engaging corresponding threads on the adjuster 14. A longitudinal axis of the through hole 24 substantially aligns with the facing direction of the apertures 20 or in a direction transverse to a longitudinal axis of the elongated body 18.
Preferably, the cord harness 12 is configured with three apertures on either side of the receiving member 22.
The cord harness 12 further includes a fastener 28 about its posterior end and a fastener 30 about its anterior end. Each fastener 28, 30 is configured to engage the cord 16 so as to secure the cord to the cord harness. Preferably, each of the fasteners 28, 30 are configured as setscrews for fastening the cord to the cord harness.
Referring to
The adjuster 14 is configured as shown in
The cord guard 36 forms the distal end of the adjuster and attaches to a distal end or front end of the elongated body or threaded body. The cord guard includes a distal end and a posterior end or rear end. The posterior end opposite the distal end includes a recess 37 (
Referring to
Alternatively, as shown in cross-section in
The front end of the cord guard 36 includes a recessed path 44 for receiving and guiding the cord 16 therethrough. The recessed path 44 extends along a path from one lateral side, across a distal end of the cord guard, to an opposite lateral side.
The threaded engagement of the adjuster 14 with the receiving member 22 allows for a distance “L” (
About the distal end of the cord guard 36 is configured a through hole 46 for the passage of the cord 16 therethrough. The through hole 46 is formed by a portion of the recessed path 44 and a retaining member 48 spaced from the recessed path. The retaining member 48 facilitates maintaining the cord in position during assembly. In general, the cord guard 36 has an overall shape similar to that of a bullet-nose.
Referring back to
While the overall length of the cord effectively utilized to secure a reed to a mouthpiece can vary, once the fasteners 28, 30 are secured the total effective length of the cord is fixed. That is, the overall length of the cord from its attachment points at fasteners 28 and 30 utilized to secure a reed to a mouthpiece is fixed.
The cord 16 is a flexible elongated member. Preferably, the cord 16 is a string made from a textile or synthetic fiber, such as Kevlar® material manufactured by Du Pont of Wilmington, Del. The cord 16 can also be elastic or non-elastic.
The ligature 10 further includes a sound adjusting positioner 50, as best shown and configured in
The sound adjusting positioner 50 serves to adjust the length of the vibration absorbing region of the cord 16. That is, if the sound adjusting positioner 50 is moved closer towards a reed, it absorbs a small amount of vibrations from the reed. Meanwhile, if the sound adjusting positioner 50 is moved further away from the reed, it absorbs a relatively larger amount of vibrations from the reed.
In accordance with an aspect of the present embodiment, the present invention provides a wind instrument mouthpiece assembly 100, as configured and shown in
Referring to
A pair of sound adjusting positioners 50, 50′ are shown positioned about opposite lateral sides of the mouthpiece. Each sound adjusting positioner controls the position of the cord relative to the cord harness 12, mouthpiece 102, and reed 104. Owing to the configuration of the sound adjusting positioner, the sound adjusting positioner can be adjusted and positioned along the length of the cord so as to change or adjust the brightness of the sound generated by the mouthpiece assembly.
The foregoing ligature 10 advantageously provides for a reed affixing device for a mouthpiece of a wind instrument that can be adjusted in size to accommodate mouthpieces of various sizes and various instruments. Moreover, the ligature provides an adjuster to allow a user to variably adjust the tension of the ligature for effectively controlling and maximizing reed performance.
In accordance with another aspect of the present embodiment, the present invention provides a ligature kit that includes the ligature 10 and a plurality of chords 16′ (
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is to be understood, therefore, that the present invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
555561 | Cadwallader | Mar 1896 | A |
2483327 | Stalowski | Sep 1949 | A |
4056997 | Rovner | Nov 1977 | A |
4185535 | Lorenzini | Jan 1980 | A |
4258604 | Giokas | Mar 1981 | A |
4347776 | Grass | Sep 1982 | A |
4428271 | Winslow | Jan 1984 | A |
4796507 | Stibal | Jan 1989 | A |
5289752 | Barbaglia | Mar 1994 | A |
5398582 | Smith | Mar 1995 | A |
5648623 | Silverstein | Jul 1997 | A |
5728957 | Valtchev | Mar 1998 | A |
7169993 | Fliegel | Jan 2007 | B2 |
8217248 | Feliciano | Jul 2012 | B1 |
20150013522 | Morrison | Jan 2015 | A1 |
20150059552 | Son | Mar 2015 | A1 |
20170011721 | Jeong | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
6044190 | Jun 1999 | JP |
10-2013-0148381 | Apr 2014 | KR |
8500916 | Feb 1985 | WO |
Entry |
---|
KIPO, Notice of Patent Allowance dated Apr. 7, 2014 in Korean Patent Application No. 10-2013-0148381. |
Number | Date | Country | |
---|---|---|---|
20170011721 A1 | Jan 2017 | US |