Embodiments relate to a light apparatus that includes a light assembly having a control module to control an operating mode of light sources in a light array, including control of a sequence of light and an intensity of light emitted from each light source in the array. A housing assembly for the light assembly includes an inner housing having a first material layer defining a first faceted member to receive the light assembly and permit emission of light from the light sources therethrough, and an outer housing having at least one second material layer defining at least one second faceted member to receive the inner housing to refract and project the light emitted through the inner housing in a predetermined or random direction and a predetermined or random pattern. The predetermined or random pattern includes a patterned shadow formed from an internal refraction of light in different directions as light passes through the second material layer, thereby creating a visual appearance of dynamic movement of the predetermined or random pattern relative to a surface and/or an area in three-dimensional space.
Lighting devices such as, for example, lanterns, may be used to illuminate and decorate homes and yards.
The summary of embodiments, as well as the detailed description is better understood when read in conjunction with the accompanying drawings that illustrate one or more possible embodiments of embodiments, in which:
As illustrated in
As illustrated in
As illustrated in
In accordance with embodiments, the control module 26, 126 comprises a processor and a computer readable storage medium to store a set of instructions which, if executed by the control module, cause the control module 26, 126 to control an operating mode of the light sources 23-25, 123-125. For example, the control module 26, 126 may be programmable to control a sequence of light and an intensity of light emitted from each light source 23-25, 123-125 in the array.
Additionally or alternatively, the control module 26, 126 may be programmable to wirelessly control the light assembly 20, 120. Such wireless control may include, for example, infrared, radio frequency (RF), WiFi, Bluetooth™ and any combination thereof.
Additionally or alternatively, the control module 26, 126 may be programmable to variably control a transition time between a sequencing of light and an intensity of light emitted from light sources 23-25, 123-125 in the light array 20, 120.
Such control may be done either manually and/or automatically via an actuator controlled by a control unit, and/or remotely by a handheld and portable controller. Embodiments, however, are not limited thereto and may encompass other control methods of control which fall within the spirit and scope of the principles of this disclosure.
Additionally or alternatively, the control module 26, 126 may be programmable to control a sequence of light and an intensity of light emitted from each light source 23-25, 123-125 in order to create a visual effect that the emitted light is dynamically moving (e.g., “motion effect illumination,” “dynamic illumination,” “animated illumination,” “transitional illumination”) relative to a surface and/or an area in three-dimensional space (e.g., the environment). In accordance with embodiments, the control module 26, 126 may be programmable to: (i) control the operating mode of an individual light source 23-25, 123-125 independent of the others, and/or control the operating mode of a predetermined or random number of light source 23-25, 123-125 simultaneously. The operating mode may include, but is not limited to, the active state (i.e., “ON” designation in which a power source is activated), and an inactive state (e.g., “OFF” designation in which a power source is deactivated) of the light sources 23-25, 123-125. In accordance with embodiments, the active state may include a dimming state whereby partial (i.e., not full) power is used for the light sources 23-25, 123-125.
In accordance with embodiments, the light sources 23-25, 123-125 may comprise light emitting diodes (LED) mounted (e.g., as “Surface Mounted Diodes” (SMD)) in a predetermined or random physical pattern or arrangement on the base 21, 121 or the surface of the PCB 22, 122. Embodiments, however, are not limited thereto, and may encompass other light sources that fall within the spirit and scope of the principles of this disclosure. The PCB 22, 122 may be arranged for electrical communication a power source such as, for example, at least one of a solar power source, a battery power source, an electrical power source, or an AC adapter to regulate the voltage passing to and from the power source and the light sources 23-25, 123-125. The battery source may comprise a rechargeable battery to be charged and discharged by the PCB 22, 122.
As illustrated in
As illustrated in
In accordance with embodiments, the first material layer 31 comprises a translucent material or a transparent material that permits emission of light from the light sources 23-25, 123-125 therethrough. The first material layer 31 may comprise a plurality of surface regions which are arranged on different planes and angles to refract and project light in different directions. As an example, the surface of the first material layer 31 may comprise a plurality of projections extending outwardly at various angles that permit refraction of light therefrom in the predetermined or random direction and/or the predetermined or random pattern. Embodiments, however, are not limited thereto and may encompass other patterns that fall within the spirit and scope of the principles of this disclosure.
As illustrated in
The second material layer 51 includes an opening 53 sized to receive and support the inner light assembly 20 and inner housing 30 via a carrier or bracket 40 that permits suspension of the inner housing 30 into the space. The carrier 40 may be sized to fit in the opening 53 of the outer housing 50, and includes rings that are to receive and support the inner housing 30 at the stepped portion 33, thereby enabling suspension of the inner housing 30. Alternatively, the inner housing 30 may be received directly by the outer housing 50 without need for a mechanical device such as a carrier 40. Moreover, while embodiments illustrate the inner housing 30 removably attached to the outer housing 50, embodiments are not limited thereto, and may encompass other attachments that fall within the spirit and scope of the principles of this disclosure. As an example, embodiments may include a permanent connection between the inner housing 30 and the outer housing 50.
In accordance with embodiments, the second material layer 51 comprises a translucent material or a transparent material that permits emission of light from the light sources 23-25, 123-125 that has passed through the first material layer 31. The second material layer 51 may comprise a plurality of surface regions which are arranged on different planes to refract and project or otherwise scatter light in different directions onto a surface or an area in three-dimensional space environment.
As illustrated in
Additional Notes and Examples:
Example One may include a light apparatus, comprising: a light assembly including: (i) an array of light sources to illuminate light; (ii) a control module having a processor and a computer readable storage medium to store a set of instructions which, if executed by the control module, cause the control module to control an operating mode of the light sources, including control a sequence of light and an intensity of light emitted from each light source in the array; and a housing assembly including: (i) an inner housing having a first material layer defining a first faceted member to receive the light assembly and permit emission of light from the light sources therethrough; and (ii) an outer housing having a second material layer defining a second faceted member to receive the inner housing to refract and project the light emitted through the inner housing in a predetermined or random direction and predetermined or random pattern.
Example Two may include the light apparatus of Example One, wherein: the first material layer comprises a translucent material or a transparent material; and the second material layer comprises a translucent material or a transparent material.
Example Three may include the light apparatus of Example One, further comprising a carrier received in the outer housing and configured to suspend the inner housing in the outer housing.
Example Four may include the light apparatus of Example One, wherein the light assembly comprises: a power source including a solar power source, or a battery power source; and a printed circuit board operatively connected to the light sources.
Example Five may include the light apparatus of Example One, wherein the set of instructions which, if executed by the control module, cause the control module to wirelessly control the light assembly.
Example Six may include the light apparatus of Example Five, wherein the wireless control comprises one of infrared, radio frequency, WiFi, Bluetooth and any combination thereof.
Example Seven may include the light apparatus of Example One, wherein the control unit comprises a processor configured to variably control a transition time between a sequencing of light and an intensity of light emitted from each light source in the array.
Example Eight may include the light apparatus of Example One, wherein the predetermined or random pattern comprises a patterned shadow formed from an internal refraction of light in different directions as the light passes through the second material layer, thereby creating a visual appearance of dynamic movement of the predetermined or random pattern relative to a surface or an area in three-dimensional space.
Example Nine may include a light apparatus, comprising: a light assembly including an array of light sources to illuminate light, and a control module to control the light assembly; and a housing assembly including an inner housing material layer defining a first faceted member, and an outer housing material layer arranged spaced from the inner housing material layer to refract and project the light emitted by the light sources in a predetermined or random direction and predetermined or random pattern.
Example Ten may include the light apparatus of Example Nine, wherein: the inner housing material layer comprises a translucent material or a transparent material; and the outer housing material layer comprises a translucent material or a transparent material.
Example Eleven may include the light apparatus of Example Nine, further comprising a carrier received by the housing assembly to suspend the inner housing material layer in the outer housing material layer.
Example Twelve may include the light apparatus of Example Nine, wherein the light assembly comprises: a power source including a solar power source, or a battery power source; and a printed circuit board operatively connected to the light sources.
Example Thirteen may include the light apparatus of Example Nine, wherein the control module comprises a processor and a computer readable storage medium to store a set of instructions which, if executed by the control module, cause the control module to wirelessly control the light assembly.
Example Fourteen may include the light apparatus of Example Nine, wherein the control module comprises a processor and a computer readable storage medium to store a set of instructions which, if executed by the control module, cause the control module to control a sequencing of light and an intensity of light emitted from each light source in the array.
Example Fifteen may include the light apparatus of Example Nine, wherein the predetermined or random pattern comprises a patterned shadow formed from an internal refraction of light in different directions as the light passes through the second material layer, thereby creating a visual appearance of dynamic movement of the predetermined or random pattern relative to a surface or an area in three-dimensional space.
Example Sixteen may include a light apparatus, comprising: a light assembly including an array of light sources to illuminate light, and a control module having a processor and a computer readable storage medium to store a set of instructions which, if executed by the control module, cause the control module to control a sequencing of light and an intensity of light emitted from each light source in the array; an inner housing including a first faceted member to support the light assembly and permit emission of light from the light sources therethrough; and an outer housing including a second faceted member arranged spaced from the first faceted member, and which is to receive the inner housing to refract and project the light emitted through the inner housing in a predetermined or random direction and predetermined or random pattern.
Example Seventeen may include the light apparatus of Example Sixteen, wherein: the inner housing is composed of a translucent material or a transparent material; and the outer housing is composed of a translucent material or a transparent material.
Example Eighteen may include the light apparatus of Example Sixteen, wherein the set of instructions which, if executed by the control module, cause the control module to wirelessly control the light assembly.
Example Nineteen may include the light apparatus of Example Sixteen, wherein the set of instructions which, if executed by the control module, cause the control module to variably control a transition time between a sequencing of light and an intensity of light emitted from each light source in the array.
Example Twenty may include the light apparatus of Example Sixteen, wherein the predetermined or random pattern comprises a patterned shadow formed from an internal refraction of light in different directions as the light passes through the second material layer, thereby creating a visual appearance of dynamic movement of the predetermined or random pattern relative to a surface or an area in three-dimensional space.
The terms “coupled,” “attached,” or “connected” may be used herein to refer to any type of relationship, direct or indirect, between the components in question, and may apply to electrical, mechanical, fluid, optical, electromagnetic, electromechanical or other connections. In addition, the terms “first,” “second,” etc. are used herein only to facilitate discussion, and carry no particular temporal or chronological significance unless otherwise indicated.
Those skilled in the art will appreciate from the foregoing description that the broad techniques of the embodiments can be implemented in a variety of forms. Therefore, while the embodiments have been described in connection with particular examples thereof, the true scope of the embodiments should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification, and following claims.
Number | Name | Date | Kind |
---|---|---|---|
3949350 | Smith | Apr 1976 | A |
7064498 | Dowling | Jun 2006 | B2 |
7788833 | Hauck et al. | Sep 2010 | B2 |
9686839 | Chern et al. | Jun 2017 | B1 |
9689544 | Green, Jr. et al. | Jun 2017 | B2 |
20050243560 | Chen | Nov 2005 | A1 |
20060007692 | Hsien | Jan 2006 | A1 |
20070230168 | Cutler-Bass | Oct 2007 | A1 |
20110116274 | Tsai | May 2011 | A1 |
20120224363 | Van De Ven | Sep 2012 | A1 |
20150163876 | Zhang | Jun 2015 | A1 |
20150184844 | Zhang | Jul 2015 | A1 |
20160327236 | Benitez | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
201861245 | Jun 2011 | CN |
203177044 | Sep 2013 | CN |
Number | Date | Country | |
---|---|---|---|
20190086055 A1 | Mar 2019 | US |