Not applicable.
1. Field of the Invention
The invention relates generally to the field of instruments moved through wellbores drilled through subsurface rock formations, wherein such instruments measure one or more parameters related to the wellbore, the conveyance mechanism and/or the rock formations. More specifically, the invention relates to communication connectors associated with such instruments to enable communication of instrument operating status and/or data stored in the instrument and/or communication of control or operating instructions to such instruments when the instrument is at the Earth's surface.
2. Background Art
Many types of wellbore measurement instruments are known in the art. Such instruments generally include an elongated, pressure resistant housing configured to move through a wellbore drilled through subsurface rock formations. The housing generally includes one or more sensors that measure selected parameters in the wellbore. The parameters, without limitation, include those related to the physical properties of the wellbore itself (e.g., temperature, pressure, fluid content, wellbore geodetic trajectory); construction of the wellbore (e.g., torque and/or axial force applied to a drill bit) and the formations surrounding the wellbore (e.g., resistivity, acoustic velocity, neutron interactive properties, density, and pore fluid pressure and composition).
The housing may be configured to be moved through the wellbore using several different techniques known in the art, including, without limitation, within a drill string or other jointed pipe string, on coiled tubing, or on armored electrical cable or slickline.
Irrespective of the conveyance device used, and irrespective of the types of sensor(s) used in any particular wellbore measurement instrument, such instruments typically include some form of data storage device therein and/or a controller that may be reprogrammed so that measurement and/or data storage and communication functions of the instrument may be changed to suit a particular purpose. Access to the data storage and/or access to the instrument controller typically requires electrical connection to a suitable communications port in the instrument, particularly for those instruments designed to be conveyed other than on an armored electrical cable. Communication ports known in the art include electrical connectors that are designed specifically for the particular instrument. More specifically, the arrangement of electrical contacts in the particular connector is typically unique to the type of instrument. Such arrangement of electrical contacts also requires that an electrical cable used to connect the communication port to a surface device (such as a computer or other data processor) must also be specially made to engage the electrical contacts on the communication port connector. Such specialized communication port connectors and corresponding cables can be expensive to manufacture, and may create logistical difficulties in the event of cable failure, e.g., timely obtaining a replacement.
Additionally, the necessity of a cable reduces the ease and speed with which the communication can take place. Finally the communication is impossible without a PC or similar surface device, adding complexity and more cost to the process. A sonic device (buzzer) is another instrument known in the art used to relay information between the measuring instrument and the instrument's human operator. The method used with the buzzer is to communicate with the tool operator through a series of high volume “beeps” of selected timing and duration. This technique is limited due to the difficulty in hearing on an average rig floor which has a number of very high volume sound sources. Not only does external noise interfere, but sound penetration through the typical housing of downhole tools is limited. Lastly, the range of information that can be transferred is minimal when dealing with sound communication in an uncontrolled environment.
What is needed is a more reliable device for communicating certain instrument signals to the instrument operator and/or to a surface device.
A wellbore measurement instrument according to one aspect of the invention includes a housing configured to move along an interior of a wellbore. At least one sensor configured to measure a wellbore parameter is disposed in the housing. A controller is also disposed in the housing. The controller includes at least one of a data storage device and a device to control operation of the at least one sensor. A first optical communications port is disposed in a first aperture in the housing. The first optical communications port includes an electrically operated light source. The first aperture in the housing is sealingly closed by a port plug having an optically transparent window therein. The port plug is configured to resist entry of wellbore fluid into an interior of the housing.
A method for making an optical communication device for a wellbore measuring instrument according to another aspect of the invention includes molding an electrically powered light source into a first casing. The first casing is made from a moisture impermeable, electrically insulating material. Contacts on the light source are electrically connected to selected circuits in the instrument. The first casing is inserted into a first port in a wall of a housing of the instrument. The first port is then sealed with a plug having an optically transparent window therein. The window is configured to resist entry of wellbore fluid into an interior of the housing.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
Referring to
The example manner of instrument conveyance shown in
In the example of
Mounted within the drill string 12, preferably near the drill bit 15, is a bottom hole assembly, generally referred to by reference numeral 100, which includes capabilities for measuring, processing, and storing information, and communicating with a recording unit 45 at the earth's surface. As used herein, “near” the drill bit 15 generally means within several drill collar lengths from the drill bit. The bottom hole assembly 100 includes a measuring and local communications apparatus 200 which is described further below. The local communications apparatus may accept as input signals from one or more sensors 205, 207 which may measure any “wellbore parameter” as described above.
In the example of the illustrated bottom hole assembly 100, a drill collar 130 and a stabilizer collar 140 are shown successively above the local communications apparatus 200. The collar 130 may be, for example, a “pony” (shorter than the standard 30 foot length) collar or a collar housing for a measuring apparatus which performs measurement functions. The need for or desirability of a stabilizer collar such as 140 will depend on drilling parameters. Located above stabilizer collar 140 is a surface/local communications subassembly 150. The communications subassembly 150 in the present example may include a toroidal antenna 1250 used for local communication with the local communications apparatus 200, and a known type of acoustic communication system that communicates with a similar system at the earth's surface via signals carried in the drilling fluid or mud. The to-surface communication system in subassembly 150 includes an acoustic transmitter which generates an acoustic signal in the drilling fluid that is typically representative of one or more measured downhole parameters. One suitable type of acoustic transmitter employs a device known as a “mud siren” which includes a slotted stator and a slotted rotor that rotates and repeatedly interrupts the flow of drilling fluid to establish a desired acoustic wave signal in the drilling fluid. Electronics (not shown separately) in the communications subassembly 150 may include a suitable modulator, such as a phase shift keying (PSK) modulator, which conventionally produces driving signals for application to the mud transmitter. These driving signals can be used to apply appropriate modulation to the mud siren. The generated acoustic mud wave travels upward in the fluid through the center of the drill string at the speed of sound in the fluid. The acoustic wave is received at the surface of the earth by transducers represented by reference numeral 31. The transducers, which are, for example, piezoelectric transducers, convert the received acoustic signals to electronic signals. The output of the transducers 31 is coupled to the surface receiving subsystem 90 which is operative to demodulate the transmitted signals, which can then be coupled to processor 85 and the recording unit 45. A surface transmitting subsystem 95 may also be provided, and can control interruption of the operation of pump 29 in a manner which is detectable by transducers (represented at 99) in the communication subassembly 150, so that there can be two way communication between the subassembly 150 and the surface equipment when the wellbore measurement instrument is disposed in the wellbore. In such systems, surface to wellbore communication may be provided, e.g., by cycling the pump(s) 29 on and off in a predetermined pattern, and sensing this condition downhole at the transducers 99. The foregoing or other technique of surface-to-downhole communication can be utilized in conjunction with the features disclosed herein. The communication subsystem 150 may also conventionally include (not show separately for clarity of the illustration) acquisition, control and processor electronics comprising a microprocessor system (with associated memory, clock and timing circuitry, and interface circuitry) capable of storing data from one or more sensors, processing the data and storing the processed data (and/or unprocessed sensor data), and coupling any selected portion of the information it contains to the transmitter control and driving electronics for transmission to the surface. A battery (not shown) may provide electrical power for the communications subassembly 150. As is known in the art, a downhole generator (not shown) such as a so-called “mud turbine” powered by the drilling fluid, can also be used to provide power, for immediate use or battery recharging, during times when the drilling fluid is moving through the drill string 12. It will be understood that alternative acoustic or other techniques can be employed for communication with the surface of the earth. As will be explained in more detail below, communication with the microprocessor system in the communications subassembly 150 when the instrument is at the surface is an element of one embodiment.
The communications subassembly 150 may have a first communications port 151 in the wall of the part of the drill string 12 including the communications subassembly 150 for such purpose to be explained in more detail below. The communications subassembly may also include, in some examples, a second communications port 152 to be used for such purpose as will be more fully explained below.
In other examples of a wellbore measurement instrument that are conveyed other than as part of a drill string (see the examples described above), the instrument housing (e.g., wall of part of the drill string 12) may include a second, similarly configured communications port through the wall thereof.
The light source 302 may be molded or otherwise formed into a casing 307. The casing 307 should be made from a material that is electrically non-conductive and is at least impermeable to moisture, and may in some cases be resistant to pressure so as to exclude entry of wellbore fluid into the interior of the instrument in the event of failure of a port plug (
In another example, wherein a second optical communications port (152 in
An example of the measuring instrument including bidirectional communication capability is shown in
Using the communication coupling 320 as shown in
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Priority is claimed from U.S. Provisional Application No. 61/258,660 filed on Nov. 6, 2009.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/37232 | 6/3/2010 | WO | 00 | 8/22/2012 |
Number | Date | Country | |
---|---|---|---|
61258660 | Nov 2009 | US |