LCD display monitors are used in a number of commercial applications, including televisions, computer monitors, tablets, laptops, smart phones, and signage. They have the advantage of being thin, relatively lightweight, and affordable.
The light source may be provided by illuminating one or more of the side edges of the light box 16 or by illuminating the back face of the light box 16. Typically, the source of the illumination is a plurality of LEDs, although other light sources may be employed.
The walls of the light box 16 can be perfect reflectors or partly diffusive reflectors. As shown in
The light output from the prismatic layers 20 is polarized by the input polarizer 12 and passed to the LCD panel 10. Depending on the signal to the LCD panel 10, the polarization is modified for each pixel and sent to the output polarizer 14, creating a controlled output. The combination of the output from all of the pixels create the desired screen image. The unused polarized light, which is reflected back from the input polarizer 12, will scatter and eventually find its way back towards the LCD panel again, being recycled in the process.
a and 3b illustrate a typical light box 16 which utilizes edge illumination. Typically, multiple LEDs 30 are positioned along one or more side walls 32 of the light box 16, which may be solid or hollow, and oriented so that output of the LEDs 30 is directed into the interior of the light box 16. The light box acts as a wave guide, with a portion of the input light escaping from the top, which is directed towards the LCD panel 10. The remainder of the light will reflect back and forth within the light box 16, creating a more uniform intensity profile for the LCD panel.
In the past, the light output of LEDs was typically low. In order to provide a uniform intensity profile for the LCD panel, the LEDs were spaced relatively close together, meaning that a large number of LEDs were used, which increased the complexity and cost of the light box 16. As the output of LEDs improved, the number of LEDs required to illuminate an LCD panel 10 has decreased. However, reducing the number of LEDs used as inputs to a light box 16 makes it more difficult for the light box to deliver a uniform backlighting for the LCD panel 10.
The present invention is a light box for use in a display, preferably an LCD display monitor, which allows a smaller number of LEDs to be used, while providing a uniform backlight output, e.g., to the LCD panel. This is achieved by using one or more wave plates of predetermined size and shape which are secured on the inside reflective surface of the edge and/or bottom of the light box. Preferably, an array of wave plates are interspersed with the LEDs. The wave plates can be quarter wave plates or plates with other wave numbers. The wave plates can have any desired shape, such as square, rectangular, circles, etc.
In one embodiment of the invention, an LCD monitor comprises an LCD panel and a backlight for providing illumination to the LCD panel. The backlight includes a light box having a reflective bottom and sides and an open top for allowing light to flow outwardly toward the LCD panel. The light box includes a light source preferably comprising an array of LED elements for generating light either from said edge or from said bottom, or from both said bottom and the edge. The light box further preferably comprises a plurality of wave plates interspersed with the LED elements for intercepting light and changing the polarity of such intercepted light. Preferably, the backlight includes a polarizer for transmitting light from the light box of a first polarization towards the LCD panel and reflecting light of a second polarization back towards the light box. At least some of the reflected light of the second polarization passes through the wave plates, is converted to the first polarization, and is reflected back towards said polarizer. Thus, the wave plates act as secondary light sources.
In an alternative embodiment, the invention comprises a light box as described above which may be used as part of a backlight, e.g., for an LCD or other type of monitor.
a and 3b are a schematic side and top views, respectively, of a light box for use in the LCD monitor of
As noted above, with the light box 16, a portion of the incoming light escapes towards the LCD panel 16, and part of such light, which does not have the desired polarization, is reflected back towards the light box 16. As a result, there is more than one type of polarization present. Moreover, the intensity of the reflected light having a polarization “A” in the light box 16 will be stronger than the light which passes through the polarizers 12, 14 (polarization “B”).
In the embodiment of
The LEDs 30 and wave plates 42 can be positioned with a uniform spacing between them. Alternatively, the spacing can be non-uniform and even random as needed to provide a light intensity profile to the LCD panel 10 which is uniform.
The LEDs can be white LEDs used with LCD panels with color pixels. The LEDs may also be colored, with repeated red, green, and blue, and optional yellow. In an alternative embodiment, the LEDs can be LED arrays, with red, green, and blue, and optionally yellow, clustered together.
Examples of the polarizers, prismatic layers, diffusers, and light box which may be used are sold by 3M Optical Systems Division. 3M Optical Systems also sells a single film, named collimated multilayer optical film (CMOF), which is the combination of all the required films shown in
The present invention may be employed with the CMOF product, using fewer LEDs and, in the extreme, a single LED, while still producing a uniform back light output to the LCD display panel.
The foregoing description represents the preferred embodiments of the invention. Various modifications will be apparent to persons skilled in the art. All such modifications and variations are intended to be within the scope of the invention, as set forth in the following claims.
The present application claims priority on U.S. provisional patent application No. 61/813,816, filed on Apr. 19, 2013.
Number | Date | Country | |
---|---|---|---|
61813816 | Apr 2013 | US |