The field of the present subject matter relates to systems and methods for the collection of light from a light source. Example embodiments relate to systems and methods for collecting light from an electrodeless plasma lamp that emits light into a hemisphere.
Electrodeless plasma lamps may be used to provide light sources. Because electrodes are not used, they may have longer useful lifetimes than other lamps. In many lighting applications it may be important to collect as much light as possible into a given etendue (into a given area with a given angular distribution).
Embodiments are illustrated by way of example, and not limitation, in the figures of the accompanying drawings, in which like references indicate similar elements unless otherwise indicated. In the drawings:
In most applications of High Intensity Discharge (HID) plasma lamps light emitted from a plasma arc has to be collected and focused into an aperture of a certain area and with a certain angular extent. These applications include, but are not limited to, projection displays where the light has to be focused and homogenized for illumination of a micro-display, technical applications like microscope illumination or endoscopes where the light has to be focused into an optical fiber, or theatrical and entertainment applications like spotlights and moving heads, where the light has to uniformly illuminate an aperture. Typical HID lamps with electrodes emit into a sphere with most of the light in the direction perpendicular to the electrodes.
In an example embodiment, the plasma lamp 200 is a Radio Frequency (RF) plasma lamp that emits light into a hemisphere with a substantial amount of light emitted into a forward direction 203. The plasma lamp 200 may include a solid dielectric lamp body 204 having a relative permittivity (also referred to as dielectric constant) greater than 2. A bulb 206 may be positioned in an opening 208 in the lamp body 204 and positioned along an optical axis of the collection optics 202. In an example embodiment, the bulb 206 is elongate and has an axis of rotational symmetry that coincides with an optical axis of the collection optics. At least one end of the bulb 206 may protrude outside of the lamp body 204. In the example plasma lamp 200 shown in
An outer surface 210 of the lamp body 204 may be coated with an electrically conductive coating, such as a silver paint. RF power may be provided to the lamp body 204 from a drive circuit 212, which may include an oscillator 214 and amplifier 216. The radio frequency power may be provided at about a resonant frequency for the lamp body 204 and excite a light emitting plasma in the bulb 206. The plasma lamp 200 may include a reflecting surface on a back portion of the bulb 206, such as packed ceramic powder 217, a mirror, or a thin-film specular reflecting coating. The reflecting surface may cause the plasma lamp 200 to emit light into a hemisphere with a substantial amount of light emitted in the forward direction 203. The plasma lamp 200 is shown by way of example to further include a microprocessor 218, a coupler 220 and a drive probe 222 that provides RF power to the lamp body 204.
In an example embodiment, the lamp body 204 has a cylindrical outer surface. However, it is to be noted that other symmetric shapes, such as square or rectangular prisms, and asymmetric shapes may be used.
As shown in
Example electrodeless plasma lamps that may be used in combination with the optics described herein are described in U.S. Patent Application Publication No. 20080054813, entitled “Plasma Lamp With Conductive Material Positioned Relative To RF Feed”; U.S. Patent Application Publication No. 20070252532 entitled “Plasma Lamp With Stable Feedback Amplification And Method Therefor”; U.S. Patent Application Publication No. 20070241688 entitled “Plasma Lamp With Conductive Material Positioned Relative To RF Feed”; U.S. Patent Application Publication No. 20070236127 entitled “Plasma Lamp Using A Shaped Waveguide Body”; and U.S. Patent Application Publication No. 20070217732 entitled “Plasma Lamp And Methods Using A Waveguide Body And Protruding Bulb”; each of which is hereby incorporated herein by reference in its entirety. These are examples lamps only and other embodiments may be used with other lamps, including for example, inductively coupled electrodeless plasma lamps or capacitively coupled electrodeless plasma lamps.
In the electrodeless plasma lamp 120 (see
Referring in particular to
In an example embodiment, the collections optics includes a lens system that uses two (e.g., for a nearly collimated beam) and three lenses (e.g., for a focused beam) to collect the light emitted by the bulb 206 into a given area or aperture. In an example embodiment, the angular range that can be practically captured by the lenses is limited to <60 degrees from the optical axis due to the limited size of the lenses. Capturing a larger angular range may increase the diameter and thickness of the lenses and therefore the overall system size, weight and cost. The lenses may also image the bulb 206 onto the collection area. To increase collection efficiency extending the angular range and using non-imaging optics may be beneficial.
The collection optics 202 of the example plasma lamp 200 can be a single optical element or multiple optical elements designed to collect light emitted from the bulb 206 close to the theoretical limit given by the lumen/etendue curve. Unlike a lens system, the light collecting system may be a non-imaging optical system. Example embodiments (e.g., the collection optics 250 and 300) combine refractive and reflective elements to efficiently collect the light from the bulb 206 of the plasma lamp 200.
The collection optics 250 of
The optical element 252 (see
Ray-tracing calculations using a design as shown in
It should be noted that the collection optics 252 does not need to be rotationally symmetric around the optical axis 262. In fact, for projection display applications where light has to be coupled into a rectangular area, the shape of the optical surfaces 254, 256, 258 can be optimized in three-dimensions in such a way that best coupling is achieved. Similarly if the source of light (the bulb 206) itself is not rotationally symmetric, but the target area or aperture 264 is, as for example with an optical fiber, an optical element that is not rotationally symmetric can be designed to achieve best light collection.
The collection optics 300 of
For applications where the target collection aperture 262, 364 is much larger than the source (see bulb 206) the collection optics for light collection should be increased in size as well. In this case, a single element as shown by the example optical elements 252, 302 may be difficult and expensive to manufacture and a two-piece design may be more advantageous.
The optical system 400 is an example of a two-piece or composite optical arrangement. In the two-piece optical arrangement, the reflective portion and the refractive portion are physically separate components. The lens 404 is shown by way of example to be an aspheric lens nested inside the reflector 402 and collects the center rays and directs them towards an aperture 406. The reflector 402 is configured to collect the light from the higher angles relative to the optical axis and reflect it towards the aperture 406.
As shown in
When the plasma lamp 200 includes a physical template (e.g., GOBO (“GOes Before Optics”) template used in theatrical lighting) to control the shape of emitted light, a distance between the template and the collection optics 500 may be about 92 mm.
The collection optics 600 includes a reflective portion 602 combined (e.g., integrally formed) with a refractive portion 604. The refractive portion 604 directs light rays emitted close to an optical axis of the collection optics to an aperture, and the reflective portion 602 directs the light rays emitted into higher angles relative to the optical axis to the aperture. As can be seen in
In an example embodiment, the collection optics 202, 250, 300, 400, 500, 600 may comprise optical glass, examples including B270, ZK10, BaK7, or the like available from ChinaOpticsNet (the USA offices of which are located in Orlando Fla. and optical glass available from their website ChinaOpticsNet.com).
As shown at block 802, the method 800 may comprise generating radio frequency (RF) power using a power source and feeding the power into a lamp body 204 including a dielectric material with a relative permittivity greater than 2 (see block 804). Light from the lamp body 204 may be coupled to the bulb 206 containing a fill that forms a plasma that emits light (see block 806). As shown at block 808, the method 600 may include directing the light using an optical element (e.g., the collection optics 250, 300, 400) along an optical path to an aperture, wherein the optical path includes at least one reflective surface and at least two refractive surfaces.
The present application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Patent Application Ser. No. 61/104,021, filed Oct. 9, 2008, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3787705 | Bolin et al. | Jan 1974 | A |
3826950 | Hruda et al. | Jul 1974 | A |
4001631 | McNeill et al. | Jan 1977 | A |
4206387 | Kramer et al. | Jun 1980 | A |
4485332 | Ury et al. | Nov 1984 | A |
4498029 | Yoshizawa et al. | Feb 1985 | A |
4633140 | Lynch et al. | Dec 1986 | A |
4749915 | Lynch et al. | Jun 1988 | A |
4795658 | Kano et al. | Jan 1989 | A |
4887192 | Simpson et al. | Dec 1989 | A |
4950059 | Roberts | Aug 1990 | A |
4975625 | Lynch et al. | Dec 1990 | A |
4978891 | Ury | Dec 1990 | A |
5039903 | Farrall | Aug 1991 | A |
5070277 | Lapatovich | Dec 1991 | A |
5072157 | Greb et al. | Dec 1991 | A |
5086258 | Mucklejohn et al. | Feb 1992 | A |
5361274 | Simpson et al. | Nov 1994 | A |
5438242 | Simpson | Aug 1995 | A |
5448135 | Simpson | Sep 1995 | A |
5498937 | Korber et al. | Mar 1996 | A |
5525865 | Simpson | Jun 1996 | A |
5594303 | Simpson et al. | Jan 1997 | A |
5786667 | Simpson et al. | Jul 1998 | A |
5894195 | McDermott | Apr 1999 | A |
5894196 | McDermott | Apr 1999 | A |
5899267 | Kroetsch et al. | May 1999 | A |
5910710 | Simpson | Jun 1999 | A |
5910754 | Simpson et al. | Jun 1999 | A |
5923116 | Mercer et al. | Jul 1999 | A |
6020800 | Arakawa et al. | Feb 2000 | A |
6031333 | Simpson | Feb 2000 | A |
6049170 | Hochi et al. | Apr 2000 | A |
6137237 | MacLennan et al. | Oct 2000 | A |
6246160 | MacLennan et al. | Jun 2001 | B1 |
6252346 | Turner et al. | Jun 2001 | B1 |
6265813 | Knox et al. | Jul 2001 | B1 |
6313587 | MacLennan et al. | Nov 2001 | B1 |
6424099 | Kirkpatrick et al. | Jul 2002 | B1 |
6566817 | Lapatovich | May 2003 | B2 |
6617806 | Kirkpatrick et al. | Sep 2003 | B2 |
6666739 | Pothoven et al. | Dec 2003 | B2 |
6737809 | Espiau et al. | May 2004 | B2 |
6856092 | Pothoven et al. | Feb 2005 | B2 |
6922021 | Espiau et al. | Jul 2005 | B2 |
7034464 | Izadian et al. | Apr 2006 | B1 |
7291985 | Espiau et al. | Nov 2007 | B2 |
7348732 | Espiau et al. | Mar 2008 | B2 |
7358678 | Espiau et al. | Apr 2008 | B2 |
7362054 | Espiau et al. | Apr 2008 | B2 |
7362055 | Espiau et al. | Apr 2008 | B2 |
7362056 | Espiau et al. | Apr 2008 | B2 |
7372209 | Espiau et al. | May 2008 | B2 |
7391158 | Espiau et al. | Jun 2008 | B2 |
7429818 | Chang et al. | Sep 2008 | B2 |
20010035720 | Guthrie et al. | Nov 2001 | A1 |
20050212456 | Espiau et al. | Sep 2005 | A1 |
20050286263 | Champion et al. | Dec 2005 | A1 |
20060250090 | Guthrie et al. | Nov 2006 | A9 |
20070109069 | Espiau et al. | May 2007 | A1 |
20070217732 | Chang et al. | Sep 2007 | A1 |
20070236127 | DeVincentis et al. | Oct 2007 | A1 |
20070241688 | DeVincentis et al. | Oct 2007 | A1 |
20070252532 | DeVincentis et al. | Nov 2007 | A1 |
20080054813 | Espiau et al. | Mar 2008 | A1 |
20080211971 | Pradhan | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
8148127 | Jun 1996 | JP |
2001266803 | Sep 2001 | JP |
2003249197 | Sep 2003 | JP |
1020050018587 | Feb 2005 | KR |
WO-2006070190 | Jul 2006 | WO |
WO-2006129102 | Dec 2006 | WO |
WO-2007138276 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100123407 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
61104021 | Oct 2008 | US |