This invention relates to white-light illumination sources, and, more particularly to a light collector for a White light LED illuminator.
Light-emitting diodes (LEDs) are desirable for generating white-light illumination in that they consume considerably less energy than comparable light sources, But there are also drawbacks to the use of LEDs that can make them undesirable as light sources in optical fiber illuminators, such as ophthalmic endoilluminators. One of the most significant drawbacks is the wide range of emission angle. White-light LEDs typically include a yellow phosphor cap that converts blue light to white light and, in most cases, a dome lens that collimates white light emitted by the LED. Because of the large area of the LED, it acts an extended light source such that the degree of light collimation is limited and the light is emitted over a large solid angle. This makes it difficult to couple the light from the LED into optical fibers or other light guides. What light can be coupled into the light guide is typically not bright enough to provide adequate illumination. Accordingly, there remains a need for a light source that can be coupled into a fiber while still providing the energy efficiency characteristic of LED light sources.
In certain embodiments of the present invention, a white light source includes a light-emitting diode (LED) configured to emit white light in an angular distribution. The white light source further includes a light guide and a light collector configured to collect light across the angular distribution. The light collected by the light collector contributes to a total luminous flux of the white light coupled into the light guide.
In particular embodiments of the present invention, the light collector includes a central collimator, an outer parabolic reflector, and a condensing lens focusing collimated light from the central collimator onto the light guide.
In particular embodiments of the present invention, the light collector includes a central collimator extending across a first portion of the angular distribution, a ring-shaped spherical mirror reflecting light in a second portion of the angular distribution outside the first portion, and a condensing lens focusing collimated light from the central collimating lens into the light guide.
In particular embodiments of the present invention, the light guide is a distal light guide and the light collector includes a proximal light guide. The proximal light guide has a proximal end abutting the LED and also includes a reflective material at a distal end reflecting light back from the second light guide to the LED.
Other objects, features and advantages of the present invention will become apparent with reference to the drawings, and the following description of the drawings and claims.
The LED 102 is surrounded on an emission side by a light collector 104. In the depicted embodiment, the light collector 104 includes a central collimating lens 106 and an outer parabolic reflector 108. As the LED 102 emits white light across a wide angular distribution, the central collimating lens 106 collimates light emitted in the central region of the angular distribution, while the parabolic reflector 108 reflects back light rays emitted outside of the central region to produce parallel beam paths surrounding the central collimated beam. Both the collimated beam from the central collimating lens 106 and the parallel rays from the parabolic reflector 108 then travel to a condensing lens 110, which focuses the light onto a light guide 112. Thus, the white light from the LED 102 emitted over a broad angular distribution is collected and coupled into the light guide 112 efficiently, so that the luminous flux of the white light coupled into the fiber is sufficiently high to provide effective illumination.
The proximal light guide 304 may advantageously configured to allow the LED 302 to be coupled more easily to the proximal light guide 304 than the distal light guide 306. In the depicted embodiment, an optical coupling interface 310 between the proximal light guide 304 and the distal light guide 306 transitions between the different sizes of the light guides 304 and 306. In particular embodiments, this region may also be enclosed. with a reflective material., such as the reflective material 308 used at the proximal end of the proximal light guide 304, in turn allowing light that does not enter the distal light is guide 306 to return through the proximal light guide 304 to be recycled by the LED 302. In such an embodiment, the reflective material can also extend along the entire length of the proximal light guide 304, so that, for example, the proximal light guide 304 could be a hollow glass light guide lines on the inside with silver. To further improve the efficiency of the white light source 300, mirror 310 having a central aperture can also be placed over the LED 302, so that light not emitted into the proximal light guide 304 is reflected back onto the LED 302 and energy from light that would otherwise escape is recycled by the LED 302.
The present invention is illustrated herein by example, and various modifications may be made by a person of ordinary skill in the art. Although the present invention is described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the scope of the invention as claimed.
This application claims priority to U.S. provisional application Serial No. 61/288,949, filed on Dec. 22, 2009, the contents which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61288949 | Dec 2009 | US |