The present disclosure relates generally to a semiconductor device, and more particularly, to an integrated photonic device.
A Light-Emitting Diode (LED), as used herein, is a semiconductor light source including a semiconductor diode and optionally photoluminescence material, also referred to herein as phosphor, for generating a light at a specified wavelength or a range of wavelengths. LEDs are traditionally used for indicator lamps, and are increasingly used for displays. An LED emits light when a voltage is applied across a p-n junction formed by oppositely doping semiconductor compound layers. Different wavelengths of light can be generated using different materials by varying the bandgaps of the semiconductor layers and by fabricating an active layer within the p-n junction. Additionally, the optional phosphor material changes the properties of light generated by the LED.
In LED displays, multiple LEDs are often used to form a color image pixel. In one example, three separate light sources for red, green, and blue in separate LEDs having different compositions, individual optics and control are grouped or driven together to form one pixel. The pixel can generate a full spectrum of colors when individual LEDs are activated and controlled. As this display ages, the white point of the display can move as the different color LEDs age at different rates.
An LED can also be used to generate white light. A white light LED usually generates a polychromatic light through the application of one or more phosphors. The phosphors Stokes shift blue light or other shorter wavelength light to a longer wavelength. The perception of white may be evoked by generating mixtures of wavelengths that stimulate all three types of color sensitive cone cells (red, green, and blue) in the human eye in nearly equal amounts and with high brightness compared to the surroundings in a process called additive mixing. The white light LED may be used as lighting, such as back lighting for various display devices, commonly in conjunction with a liquid crystal display (LCD). There are several challenges with LED backlights. Good uniformity is hard to achieve in manufacturing and as the LEDs age, with each LED possibly aging at a different rate. Thus it is common to see color temperature or brightness changes in one area of the screen as the display age with color temperature changes of several hundreds of Kelvins being recorded.
Other uses of LED light include external vehicular lighting or outdoor lighting such as street lamps and traffic lights. LED lights can last longer and uses less electricity than traditional bulbs and thus their use are becoming more widespread. Many of these uses involve safety applications, such as turn signals, headlights, and traffic lights.
Integrated photonic devices incorporate one or many LEDs in an assembly provided for use as standalone or as part of a consumer product. Integrated photonic devices often include a driver and other components are designed for various lighting and imaging applications. Design of integrated photonic devices aims to maximize the useful life of the entire device, include desirable features, and lower costs.
A lighting apparatus includes a board, a first light-emitting diode (LED) bank disposed on the board, a second LED bank disposed on the board, a light detector coupled to the first LED bank, and a driver coupled to the light detector and to each of the first and second LED banks. The first LED bank includes a plurality of first LEDs. The second LED bank includes a plurality of second LEDs, and is electrically coupled to the first LED bank. The light detector is configured to detect an output decay of light from each of the first LEDs. The second LEDs in the second LED bank are initially deactivated and are subsequently activated in response to light output decay of the first LEDs.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose o f simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Illustrated in
In certain embodiments in accordance with the present disclosure, an optical transmission line 109, or a light transmitter, is disposed proximate to each LED. The light transmitter 109 transmits light generated by the LEDs from the location proximate to the LED to a light detector 105. The light transmitter 109 may be an optic fiber, a light pipe, a covered trench in a substrate, or other available light transmitter. As shown, the light transmitter 109 is disposed next to a lens covering each LED at a horizontal level. In certain embodiments, the light transmitter 109 is located at approximately the same location for each LED so that the detected values are at least initially the same. However, the light transmitter 109 need not be located outside of the lens or be in contact of the lens as shown. For example, the light transmitter 109 may be disposed inside of the lens closer to the LED die. In other instances, the light transmitter 109 may be inserted into the lens material at an angle so as to capture more of the light generated. Generally, care is taken to place the light transmitter so that only the light generated at the particular LED is transmitted, i.e., without capturing interfering light from other LEDs or reflected light.
In certain cases, a different light transmitter 109 may be provided at each LED and multiplexed to the light detector 105. In other cases, the light transmitter 109 may be an optic fiber cable branched to each LED with available techniques so that the light transmitted is additive at the detector.
The light detector 105 includes a photo sensor disposed to receive light through the light transmitter. The photo sensor may be a charge-coupled device or a Complementary metal-oxide-semiconductor (CMOS) sensor. The photo sensor may also be a simple photovoltaic cell such as a solar cell or another LED.
A controller 106 is connected to the light detector 105 and converts the signal corresponding to a light property detected to a control signal, which is sent to a driver 107. The controller 106 may be very simple. In some embodiments, the controller 106 may compare two values and instruct the driver to increase the current if one value is sufficiently different from the another. One of those values is the detected light, and the other value may be a specified value, a user inputted value, or another detected value. In some embodiments, the controller 106 may receive a signal from a user input device 111. The user input device 111 may be a dimmer, the signal may be the user inputted value that is compared against the detected value.
The controller 106 may be more complex. In certain embodiments, the controller includes a logic processor and memory. The processor may perform an algorithm using the detected value, memory value, and user inputted value and output the result to the driver 107.
The driver 107 is connected to individual LEDs and drives a current to each LED that causes the LED to generate light. An LED generates light when a current is driven across a p-n junction in the semiconductor diode of the LED. The intensity of the light generated by the LED is correlated to the amount of current driven through the diode and the voltage across the diode. Each LED may be rated for certain luminosity and power based on its size and composition. In some embodiments, within a certain current range, the intensity of light generated by the LED is roughly linear. Above a certain current, the LED is saturated and the light intensity does not increase further. At current levels below the saturation current, an increase in current driven causes the light intensity to increase. However, the correlation between current and intensity varies over time as the LED decays. As the LED is subjected to repeated use, more and more current is required to generate the same light intensity. Further, the current adjustment required to change the light intensity from 50% of rating to 100% of rating may also increase over time. If the LED degrades to the point that the amount of current required to achieve 100% light intensity exceeds the saturation current, then the 100% light intensity would be unattainable regardless of current driven through the LED.
The LED decay process can last much longer than that of other light sources. When an incandescent bulb starts to decay, comparatively little more use would cause the bulb to break, most likely at the filament and to cause an open circuit. If more current is driven through the incandescent bulb, the decay would be accelerated. While an increase in current also causes a LED to decay faster, a LED can pass current far longer even while as it decays.
LEDs having the same composition may decay differently. Usually, LEDs in the same device are binned to have very similar initial properties, such as intensity and spectral distribution. Even LEDs with similar initial properties, however, do not necessarily decay at the same rate. Over the life time of the device, each of the LEDs in the same device generates light having different properties. One LED may reduce in light intensity faster than others when the same current is driven through it. Another LED may drift in spectral distribution and perceived color difference is generated.
Referring back to
Referring to
In the embodiment shown in
In operation 217, the detector output is fed back to the driver or a controller where the detector output is compared in operation 219. In
The detector output may be compared with an expected value stored in the driver/controller, a historic value, i.e. an initial value or a value from the previous detection, or a neighboring LED light output value. Different comparison modes are suitable for different types of apparatus operation. For example, when uniformly high light intensity for the device is important, the LED light output is compared to its neighbor. If a LED light intensity is lower than its neighbor, its current may be increased in operation 221, where the driver adjusts LED light individually. The increase in current would be set to have the LED light output increase to that of its neighbor so as to maintain a uniformly high intensity output.
On the other hand, if only uniform light intensity is required, the lower light intensity LED current may not be changed, because increasing its current may accelerate decay. In this case the current to the higher intensity LED may be reduced to match the output of the lower intensity LED. The total output for the entire device would reduce, but device useful life may be prolonged by maintaining uniform intensity, albeit at a lower total value.
In still other instances, the driver may change the current so as to maintain a specified total light output. This may be important in a safety or calibration situation. The feedback loop would then be used to maintain an initial light intensity or a specified light intensity from a controller.
The methods of
An integrated photonic device may have user configurable controls that allow various settings to be set, for example, a dimmer. A user selects a setting depending on a desired intensity level. While a conventional driver/controller would output a current based on the setting as proportion of a maximum current, a driver/controller in accordance with various embodiments of the present disclosure would output a current that best matches the desired intensity level using the intensity feedback mechanism as described. Thus a setting of 50% intensity would not decrease in intensity over time as would when a conventional driver/controller is used.
An example integrated photonic device having a dimmer is a LED light fixture. The light fixture includes a plurality of light emitting diodes (LEDs), an optical transmission line, a light detector, a driver, a dimmer, and a controller. The light detector includes a photo sensor disposed to receive light through the optical transmission line. The driver is coupled to the LEDs and the light detector and includes a current generator. The dimmer switch includes one or more dimmed positions. The controller is coupled to the driver and the light detector and configured to adjust the current generated such that a total light detected equals to a specified value corresponding to a dimmed position when the dimmer switch is set on the dimmed position.
Another example integrated photonic device having a dimmer may be a backlight for a display. The device may include a light detector that detects the ambient light in addition to light generated by the LEDs in the device. The controller in such a device would be able to adjust the amount of backlight based on ambient light, for example, dimming the backlight for nighttime viewing.
The integrated photonic device may include some memory that allows the controller to compare the detected value with a historical value, which may be an initial value. The ability to save an initial value in the memory is useful because the detected light values may not be the same for the same LED output due to light transmitter location and installation variability. In other words, the detected light values for each LED may be calibrated or normalized from the initial value. If LEDs with similar initial values are binned before they are grouped into the same device, the initial value corresponds to an initial light intensity. In other embodiments, the LEDs may be tested so that the initial value is a calibration point.
Another aspect of the use of memory involves relaxing of binning limitations, which reduces manufacturing costs. LEDs are binned into groups having similar initial output properties before they are installed into a device. For many devices the groups are defined very narrowly, causing many LEDs to be rejected into a lower bin that can only be used in devices having a lower economic value. The rationale behind the narrow bin groups has to do with uniformity, both initial and over time. Because the detection and control mechanisms according various embodiments of the present disclosure can ensure uniform light output over time, the binning requirements can be relaxed, thereby reducing rejects.
Although
According to various embodiments of the present disclosure, the LEDs in the device may be different from each other. LEDs 102, 103, and 104 of
The detector 105 in a RGB device may detect the light color, intensity, and other spectral information of each LED in sequence, for example, by using separate light transmitters for each LED, or by turning on the LEDs sequentially when one light transmitter with many branches is used. The information is used to adjust the current output to change the generated light properties, for example, changing intensity, color, or color temperature. In one embodiment, the controller maintains the device output color temperature and intensity.
In some embodiments, the assemblies 301 and 302 are individual image pixels having separate RGB LEDs. The pixels can generate the same light or different light based on the controller's instructions to the drivers 307A and 307B. In other embodiments, the assemblies 301 and 302 are light bar modules in a backlight unit, for example, for an LCD television. For an LCD television, light output uniformity in the backlight unit is highly desirable. Thus, controller 309 would compare the total output of the light bars 301 and 302 and instruct the drivers to make them equal. The controller 309 may also ensure that light intensities of individual LEDs are the same. Although
As disclosed above, the comparison may be performed after some computation, for example, summing of the light output for all LEDs in a light bar assembly. Additionally or alternatively, further computations may be performed after the comparison. For example, the difference between the measured value and expected value may be calculated and a current adjustment for the difference found on a calibration curve or a look up table.
Various embodiments of the present disclosure pertain to a display having many light bars as back lighting. Backlit displays include LCD television and monitors and certain commercial displays. Each light bar includes a number of LEDs, a driver coupled to each LED and having a current generator, and an optical transmission line to transmit a portion of light generated by each LED. The light portions are transmitted to a detector that includes a photo sensor disposed to receive light through the optical transmission line. The display also includes a controller coupled to the light detector and the driver. The controller may include memory and logic configured to adjust LED light intensity or color depending on the detected values.
As discussed, LED output depends on current driven and the voltage drop across the LED. The LEDs in the figures are shown connected to the driver in parallel so that the current flowed through each LED is separately controlled by the driver; however, the present disclosure is not so limited. In other embodiments, the LEDs are connected to the driver in series so that the current flown through each LED are the same. Individual LED control may be achieved by changing a voltage drop across each LED. One such method involves changing a resistance, i.e., of a potentiometer, across each LED separately. In other words, other methods to achieve individual LED control are available and the present disclosure is not limited to current adjustment only modes.
In this embodiment, the backup bank of LEDs is not used initially in device operation. After some device use, one or more LEDs may start to decay, and at a certain point the LEDs in the backup bank is put into service. In one example, the switch is activated to change the LED in use to the LED in the backup bank. If LED 502 light output starts to decay, at a certain point the LED 503 is put into use instead or in addition to LED 502 so that the total light output stays constant. As pictured, the counterpart LEDs are mounted in pairs so that this transition is relatively transparent to the end user. An example of the point at which the transition occurs is when even at maximum current, the light output of the decayed LED cannot meet a specified output.
In another example, a switch is activated to change the entire LED device to the backup bank. This way, the driver need not adjust the output on a LED-by-LED basis. Using the backup bank allows continued use of the device while the LED in the first bank can be replaced.
In still another example, a LED in the backup bank that is not the counterpart LED may be put into service. If LED 502 goes out completely, in this example, LEDs 503 and 508 may be both put into service to maintain the total light output. One skilled in the art would recognize that many control schemes and possibilities exist using this concept of having additional backup LEDs on a device. This concept is especially suitable for applications where disruptions in light output is highly undesirable or if light output uniformity is very important.
In other aspects, the feedback structure for a LED device may be used to warn an operator in a safety application. Increasingly, LEDs are used for lighting and warning applications outside of vehicles, such as cars, airplanes, and trains. The method may include measuring a light intensity of a number of LEDs mounted on an exterior of a vehicle, comparing the measured light intensities to a specified baseline, and warning an operator if the measured light intensities are below a specified baseline. LED decays may occur slowly over time and go unnoticed; however, the reduced light output may reduce visibility and cause safety issues without triggering an alarm or warning. Measuring the light intensity periodically and comparing the measured value against a specified baseline allows a timely warning to be issued to an operator. The warning can take many forms, including a sound, or a light.
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the detailed description that follows. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
The present application is a continuation application of U.S. patent application Ser. No. 14/078,631, filed on Nov. 13, 2013, now U.S. Pat. No. 8,884,529 issued Nov. 11, 2014, which is a continuation application of U.S. patent application Ser. No. 12/789,763, filed on May 28, 2010, now U.S. Pat. No. 8,624,505 issued Jan. 7, 2014, the disclosures of each are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6069676 | Yuyama | May 2000 | A |
6411046 | Muthu | Jun 2002 | B1 |
6448550 | Nishimura | Sep 2002 | B1 |
7012382 | Cheang et al. | Mar 2006 | B2 |
7064498 | Dowling et al. | Jun 2006 | B2 |
7108413 | Kwong et al. | Sep 2006 | B2 |
7157694 | May et al. | Jan 2007 | B2 |
7230222 | Cheng et al. | Jun 2007 | B2 |
7432659 | Park et al. | Oct 2008 | B2 |
7518319 | Konno et al. | Apr 2009 | B2 |
7557524 | Chevalier et al. | Jul 2009 | B2 |
7560677 | Lyons et al. | Jul 2009 | B2 |
8013758 | Suzuki | Sep 2011 | B2 |
20050242742 | Cheang et al. | Nov 2005 | A1 |
20060022935 | Sakai et al. | Feb 2006 | A1 |
20060097978 | Ng et al. | May 2006 | A1 |
20060238368 | Pederson et al. | Oct 2006 | A1 |
20080297066 | Meijer et al. | Dec 2008 | A1 |
20100288637 | Wei et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
10049074 | Feb 1998 | JP |
2005310997 | Nov 2005 | JP |
Entry |
---|
Korean Patent Office, Office Action dated Aug. 22, 2012, 9-5-2012-048946549, Notice of Preliminary Rejection, 11 pages including English translation. |
Number | Date | Country | |
---|---|---|---|
20150054412 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14078631 | Nov 2013 | US |
Child | 14524060 | US | |
Parent | 12789763 | May 2010 | US |
Child | 14078631 | US |