In general, the invention relates to the field of video displays, and in particular, the invention relates to displays having improved reflectivity.
Displays built from mechanical light modulators are an attractive alternative to displays based on liquid crystal technology. Mechanical light modulators are fast enough to display video content with good viewing angles and with a wide range of color and grey scale. Mechanical light modulators have been successful in projection display applications.
Besides projection-type applications, conventional displays are generally grouped into transmissive-type applications, reflective-type applications, and transflective-type applications. The transmissive-type display includes a lighting element, usually called a backlight, at a back surface of the display for transmitting light towards a viewer. Backlights consume a relatively large amount of power. On the other hand, the reflective-type display includes a reflector for reflecting ambient light towards a viewer. This does not require a backlight, and therefore reduces the amount of required power. However, in conventional reflective-type displays, the reflection of ambient light generally cannot produce a satisfactory contrast ratio (“CR”) or brightness in some lighting situations.
However, with the recent development of portable apparatus, there is a significant increase in demand for power-saving display devices. Reflective, transmissive and transflective displays using mechanical light modulators have not yet demonstrated sufficiently attractive combinations of speed, brightness, and low power. There is a need in the art for fast, bright, low-powered, mechanically actuated reflective, transmissive, and transflective displays.
It is an object of this invention to provide apparatus and methods for displays that utilize an array of light concentrators for concentrating light onto or through a surface of mechanical light modulators to increase the contrast ratio and brightness of the display.
In one aspect, the invention relates to a display for displaying an image to a viewer. The display includes an array of light modulators and an array of reflective light funnels disposed between the array of light modulators and the viewer. The array of reflective light funnels concentrates light on respective ones of the light modulators in the array of light modulators. In one embodiment, the array of light modulators selectively reflects light towards the viewer to display the image. In another embodiment, the array of light modulators selectively modulates light towards the viewer to display the image.
In another aspect, the invention relates to a method of manufacturing a display by forming an array of reflective or transmissive light modulators. The method also includes forming an array of reflective light funnels by forming an array of depressions in a sheet of a substantially transparent material. Each depression has a top, a bottom, and a wall. Forming the array of reflective light funnels also includes depositing a reflective film on the walls of the depressions and forming optical openings at the bottom of the depressions, such that the optical openings have a diameter which is smaller than the diameter of the top of the depression. Alternately the array of reflective light funnels can be formed by forming an array of funnel shaped objects in a transparent material and coating the outside of the walls of the funnel shaped objects with a reflective film.
The above and other advantages of the invention will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
To provide an overall understanding of the invention, certain illustrative embodiments will now be described, including apparatus and methods for displays with light concentration arrays. However, it will be understood by one of ordinary skill in the art that the systems and methods described herein may be adapted and modified as is appropriate for the application being addressed, that the systems and methods described herein may be employed in other suitable applications, and that such other additions and modifications will not depart from the scope hereof.
In one embodiment of the invention, each shutter assembly 102 of light modulation array 100 may correspond to an image pixel 106 in image 104. As described above, each shutter assembly 102 includes a shutter 112 and an exposable surface 114. In one implementation, the surface of the shutter 112 facing the light source 107 is reflective, and the exposable surface 114 is light-absorbing. To illuminate a pixel, the shutter 112 is at least partially closed to reflect light towards the surface 103. In an alternative implementation the surface of the shutter 112 facing the light source 107 absorbs light and the exposable surface 114 reflects light. In this implementation, a pixel 106 is brightest when the shutter 112 is fully open and darkest when the shutter 112 is fully closed.
In alternative implementations, display apparatus 10 may employ multiple shutter assemblies 102 for each image pixel 106. For example, the display apparatus may include three or four color-specific shutter assemblies 102 per image pixel 106. By selectively opening one or more of the color-specific shutter assemblies 102 corresponding to a particular image pixel 106, the display apparatus can generate a color image pixel 106 in image 104. In another example, display apparatus 10 may include shutter assemblies 102 that may provide for multiple partially open or closed states per image pixel 106 to provide grey scale in image 104.
Exposable surface 114 may be formed in various ways from films, depositions, or any other suitable materials, or combinations or lack thereof which either reflect or absorb light, depending on the desired implementation of the shutter assembly 102. Similarly, each shutter 112 may be provided with a surface that reflects light therefrom or absorbs light therein, such that in conjunction with its associated exposable surface 114, light is appropriately reflected or absorbed, towards the viewer by assembly 102, as desired. Such materials are described further in relation to
Light concentration array 150 includes an array of optical elements for concentrating light onto respective light modulators in the array of light modulators 100 to increase the fraction of ambient light impacting on either the shutter 112 or exposable surface 114 depending on the position of the shutter 112. Various types of optical elements may be provided in light concentration array 150, including reflective light funnels, high numerical aperture lenses, and other nonimaging optical devices, for example. In the illustrative embodiment shown in
The first optical opening 156 is preferably sized to match the size of an associated pixel 106, and the second optical opening 154 is preferably sized to match or to be slightly smaller than the size of the exposable surface 114 of its associated shutter assembly 102. Wall 158 is preferably highly reflective and the first optical opening 156 is preferably larger than the second optical opening 154 such that, to the greatest extent possible, beams of ambient light originating from ambient light source 107 may enter funnel 152 at first optical opening 156 from a wide range of angles and be reflected through second optical opening 154 onto a concentrated region of shutter assembly 102. This increases the fraction of available image forming light which gets modulated by each shutter assembly 102, thereby improving the contrast ratio of display apparatus 10. Moreover, funneling and concentrating an increased fraction of ambient light 107 onto a reflective element or elements of shutter assembly 102, display apparatus 10 is able to provide an increased brightness and luminous efficiency while eliminating the need for a backlight and additional power.
Wall 158 may be straight, curved, CPC (Compound Parabolic Collector)-shaped or any suitable combination thereof that provides for an optically efficient concentration of ambient light 107 and which also yields a high fill factor. Wall 158 may be conical or may include multiple sides, depending on the size and shape of the funnel's optical openings. Optical openings 154 and 156 may be of various shapes and sizes without departing from the spirit and scope of the invention. Optical openings 156 could be hexagonal while optical openings 154 could be circular, for example. Wall 158 may be provided with a reflective interior surface or with a transparent interior surface and an exterior reflective coating (as described in more detail below with respect to
In one implementation, filter array 111, which may be deposited on cover sheet 109, may include color filters, for example, in the form of acrylic or vinyl resins, or thin film dielectrics. The filters may be deposited in a fashion similar to that used to form black matrix 120, but instead, the filters are patterned over the first optical openings 156 or the second optical openings 154 of cones 152 of light concentration array 150 to provide appropriate color filters for color-specific shutter assemblies 102. For example, display apparatus 10 may include multiple groupings of three or more color-specific shutter assemblies 102 (e.g., a red shutter assembly, a green shutter assembly, and a blue shutter assembly; a red assembly, a green shutter assembly, and a blue shutter assembly, and a white shutter assembly; a cyan shutter assembly, a magenta shutter assembly, and a yellow shutter assembly, etc. although any other numerical and/or color combination of shutter assemblies for forming an image pixel may be provided without departing from the spirit and scope of the invention), such that each of the sub-pixels associated with the color-specific shutter assemblies 102 of a grouping may form an image pixel 106. There could be more than three color sub-pixels to make up one full image pixel. By selectively opening one or more of the color-specific shutter assemblies 102 in a grouping corresponding to a particular pixel, display apparatus 10 can generate an image pixel 106 of various colors for image 104.
These color filters can be made in several ways. For example, materials with selective absorptivity can be patterned onto the surface of the display using well known photolithographic techniques, similar to the steps used in fabricating the shutters and passive matrix or active matrix components of the control matrix. Materials with dispersed metals and metal oxides or more generally specific absorptive materials can be photosensitive and defined like a photoresist. Alternatively, such absorptive centers can be applied in a thin film form and subsequently patterned with well known photolithography and etch processes. Furthermore, thin films based on interference properties of the thin film layers can be patterned on the substrate for forming interference filters over the representative red, blue, and green pixels, for example. Color filter materials can also be formed from organic dyes dispersed in a resin, such as polyvinyl acrylate.
The height, thickness, shape, and diameters of the optical openings of funnels 152 can vary according to the materials employed and the application. When the height of wall 158 of funnel 152 is small compared to the difference in size between optical openings 154 and 156, the slope of wall 158 is relatively shallow (i.e., wall 158 is substantially parallel to surface 103), and funnel 152 generally acts like a retro-reflector by reflecting most of ambient light 107 back towards the viewer without first concentrating the light onto the reflective region or regions of shutter assembly 102. On the other hand, when the height of wall 158 of funnel 152 is large compared to the difference in size between optical openings 154 and 156, the slope of wall 158 is relatively steep (i.e., wall 158 is substantially perpendicular to surface 103), resulting in a significant loss of light intensity due to multiple reflections of beams of ambient light 107 off of wall 158. In a preferred embodiment, the diameter of first optical opening 156 can range from between 75 and 225 microns, and is preferably 150 microns; the diameter of second optical opening 154 can range from between 25 and 75 microns, and is preferably 50 microns; and the height of cone 152 can range from between 100 and 300 microns, and is preferably 200 microns, for example, yielding slopes ranging from about 3.5 to 4.
In addition, a lens array may be provided with lenses 157 for focusing incoming ambient light into a respective funnel 152, and thereby onto the associated shutter assembly 102, thereby reducing both the number of reflections off of wall 158 and the chance of retro-reflection paths (note that no lenses 157 are shown in
Color filtering can also be done at other locations in display apparatus 10. In addition to within the cover sheet 109, color filter array 111 may be applied at the second optical opening 154 of each reflective light funnel 152, for example. This embodiment may be especially preferable in the implementation where funnels 152 are filled with a hard transparent optical material (as described below in more detail with respect to
Reflective wall 158 has a reflectivity above about 50%. For example, reflective wall 158 may have a reflectivity of 70%, 85%, 92%, 96%, or higher. Smoother substrates and finer grained metals yield higher reflectivities. Smooth surfaces may be obtained by molding plastic into smooth-walled forms. Fine grained metal films without inclusions can be formed by a number of vapor deposition techniques including sputtering, evaporation, ion plating, laser ablation, or chemical vapor deposition. Metals that are effective for this reflective application include, without limitation, Al, Cr, Au, Ag, Cu, Ni, Ta, Ti, Nd, Nb, Rh, Si, Mo, and/or any alloys or combinations thereof.
Alternatively, reflective wall 158 can be formed from a mirror, such as a dielectric mirror. A dielectric mirror is fabricated as a stack of dielectric thin films which alternate between materials of high and low refractive index. A portion of the incident light is reflected from each interface where the refractive index changes. By controlling the thickness of the dielectric layers to some fixed fraction or multiple of the wavelength and by adding reflections from multiple parallel interfaces, it is possible to produce a net reflective surface having a reflectivity exceeding 98%. Some dielectric mirrors have reflectivities greater than 99.8%. Dielectric mirrors can be custom-designed to accept a pre-specified range of wavelengths in the visible range and to accept a pre-specified range of incident angles. Reflectivities in excess of 99% under these conditions are possible as long as the fabricator is able to control the smoothness in the dielectric film stacks. The stacks can include between about 20 and about 500 films, for example.
As similarly described in co-pending, commonly assigned U.S. patent application Ser. No. 11/218,690, entitled “Methods and Apparatus for Spatial Light Modulation” and issued as U.S. Pat. No. 7,417,782 on Aug. 26, 2008, the entire disclosure of which is hereby incorporated herein by reference, the state of each shutter assembly 102 can be controlled using a passive matrix addressing scheme. Each shutter assembly 102 may be controlled by a column electrode 108 and two row electrodes 110a (a “row open electrode”) and 110b (a “row close electrode”). In light modulation array 100, all shutter assemblies 102 in a given column may share a single column electrode 108. All shutter assemblies in a row may share a common row open electrode 110a and a common row close electrode 110b.
An active matrix addressing scheme is also possible. Active matrix addressing (in which pixel and switching voltages are controlled by means of a thin film transistor array or an array of metal insulator metal (“MIM”) diodes) is useful in situations in which the applied voltage must be maintained in a stable fashion throughout the period of a video frame. An implementation with active matrix addressing can be constructed with only one row electrode per shutter assembly row. Additional addressing circuit devices are described in co-pending, commonly assigned U.S. patent application Ser. No. 11/326,696, entitled “Display Methods and Apparatus” and published as U.S. Patent Application Publication No. 20060250325 on Nov. 9, 2006, the entire disclosure of which is hereby incorporated herein by reference.
Referring to
Light modulation array 100 and its component shutter assemblies 102 are formed using standard micromachining techniques known in the art, including lithography; etching techniques, such as wet chemical, dry, and photoresist removal; thermal oxidation of silicon; electroplating and electroless plating; diffusion processes, such as boron, phosphorus, arsenic, and antimony diffusion; ion implantation; film deposition, such as evaporation (filament, electron beam, flash, and shadowing and step coverage), sputtering, chemical vapor deposition (“CVD”), epitaxy (vapor phase, liquid phase, and molecular beam), electroplating, screen printing, and lamination. See generally, Jaeger, Introduction to Microelectronic Fabrication (Addison-Wesley Publishing Co., Reading Mass., 1988); Runyan, et al., Semiconductor Integrated Circuit Processing Technology (Addison-Wesley Publishing Co., Reading Mass., 1990); Proceedings of the IEEE Micro Electro Mechanical Systems Conference, 1987-1998; and Rai-Choudhury, ed., Handbook of Microlithography, Micromachining & Microfabrication (SPIE Optical Engineering Press, Bellingham, Wash., 1997), each of which is hereby incorporated by reference herein in its entirety.
More specifically, multiple layers of material (typically alternating between metals and dielectrics) may be deposited on top of a substrate forming a stack. After one or more layers of material are added to the stack, patterns may be applied to a top most layer of the stack marking material either to be removed from, or to remain on, the stack. Various etching techniques, including wet and/or dry etches, may then be applied to the patterned stack to remove unwanted material. The etch process may remove material from one or more layers of the stack based on the chemistry of the etch, the layers in the stack, and the amount of time the etch is applied. The manufacturing process may include multiple iterations of layering, patterning, and etching.
The process may also include a release step. To provide freedom for parts to move in the resulting device, sacrificial material may be interdisposed in the stack proximate to material that will form moving parts in the completed device. An etch or other fugitive phase process removes much of the sacrificial material, thereby freeing the parts to move.
After release, the surfaces of the moving shutter may be insulated so that charge does not transfer between moving parts upon contact. This can be accomplished by thermal oxidation and/or by conformal chemical vapor deposition of an insulator such as Al2O3, Cr2O3, TiO2, HfO2, V2O5, Nb2O5, Ta2O5, SiO2, or Si3N4, or by depositing similar materials using techniques such as atomic layer deposition. The insulated surfaces may be chemically passivated to prevent problems such as friction between surfaces in contact by chemical conversion processes such as fluoridation or hydrogenation of the insulated surfaces.
As similarly described in co-pending, commonly assigned U.S. patent application Ser. No. 11/251,035, entitled “Methods and Apparatus for Actuating Displays” and issued as U.S. Patent No. 7,271,945 on Sep. 18, 2007, the entire disclosure of which is hereby incorporated herein by reference, dual compliant electrode actuators make up one suitable class of actuators for driving shutters 112 in shutter assemblies 102. It is to be noted that many other various types of actuators, including non-dual compliant electrode actuators, may be utilized for driving shutters 112 in shutter assemblies 102 without departing from the spirit and scope of the invention. A dual compliant beam electrode actuator, in general, is formed from two or more at least partially compliant beams. At least two of the beams serve as electrodes (also referred to herein as “beam electrodes”). In response to applying a voltage across the beam electrodes, the beam electrodes are attracted to one another from the resultant electrostatic forces. Both beams in a dual compliant beam electrode are, at least in part, compliant. That is, at least some portion of each of the beams can flex and or bend to aid in the beams being brought together. In some implementations the compliance is achieved by the inclusion of corrugated flexures or pin joints. Some portion of the beams may be substantially rigid or fixed in place. Preferably, at least the majority of the length of the beams are compliant.
Dual compliant electrode actuators have advantages over other actuators known in the art. Electrostatic comb drives are well suited for actuating over relatively long distances, but can generate only relatively weak forces. Parallel plate or parallel beam actuators can generate relatively large forces but require small gaps between the parallel plates or beams and therefore only actuate over relatively small distances. R. Legtenberg et. al. (Journal of Microelectromechanical Systems v.6, p. 257, 1997) demonstrated how the use of curved electrode actuators can generate relatively large forces and result in relatively large displacements. The voltages required to initiate actuation in Legtenberg, however, are still substantial. As shown herein such voltages can be reduced by allowing for the movement or flexure of both electrodes.
In a dual compliant beam electrode actuator-based shutter assembly, a shutter is coupled to at least one beam of a dual compliant beam electrode actuator. As one of the beams in the actuator is pulled towards the other, the pulled beam moves the shutter, too. In doing so, the shutter is moved from a first position to a second position. In one of the positions, the shutter interacts with light in an optical path by, for example, and without limitation, blocking, reflecting, absorbing, filtering, polarizing, diffracting, or otherwise altering a property or path of the light. The shutter may be coated with a reflective or light absorbing film to improve its interferential properties. The exposable surface 114 interacts with the light in the optical path by, for example, and without limitation, blocking, reflecting, absorbing, filtering, polarizing, diffracting, or otherwise altering a property or path of the light, in a fashion that is complimentary to that of the optical effect provided by the shutter. For example, if one is absorbing the other is reflective or if one polarizes in one orientation the other surface polarizes in a perpendicular orientation.
Shutters 112a and 112b are each formed from a solid, substantially planar, body Shutters 112a and 112b can take virtually any shape, either regular or irregular, such that in a closed position shutters 112a and 112b sufficiently obstruct the optical path to exposable surface 114. In addition, shutters 112a and 112b must have a width consistent with the width of the exposable surface, such that, in the open position (as depicted in
As shown in
The shutter assembly 102 includes a pair of drive beams 212 and a pair of drive beams 214, one of each located along either side of each load beam 210. Together, the drive beams 212 and 214 and the load beams 210 form an actuator. Drive beams 212 serve as shutter open electrodes and the other drive beams 214 serve as shutter close electrodes. Drive anchors 216 and 218 located at the ends of the drive beams 212 and 214 closest to the shutter 112 physically and electrically connect each drive beam 212 and 214 to circuitry formed or the substrate 122. In this embodiment, the other ends and most of the lengths of the drive beams 212 and 214 remain unanchored or free to move.
The load beams 208 and the drive beams 212 and 214 are compliant. That is, they have sufficient flexibility and resiliency such that they can be bent out of their unstressed (“rest”) position or shape to at least some useful degree, without any significant fatigue or fracture. As the load beams 208 and the drive beams 212 and 214 are anchored only at one end, the majority of the lengths of the beams 208, 212, and 214 is free to move, bend, flex, or deform in response to an applied force. Corrugations (e.g., corrugations 208a on beams 208) may be provided to overcome axial stress due to foreshortening of the flexure and to provide higher deflections at a given voltage, for example.
Display apparatus 10 actuates shutter assembly 102 (i.e., changes the state of the shutter assembly 102) by applying an electric potential, from a controllable voltage source, to drive beams 212 or 214 via their corresponding drive anchors 216 or 218, with the load beams 208 being electrically coupled to ground or some different potential, resulting in a voltage across the beams 208, 212, and 214. The controllable voltage source, such as a passive or active matrix array driver, is electrically coupled to load beams 208 via a passive or active matrix array as described in U.S. Patent Application Publication No. 20060250325, referred to above. The display apparatus 10 may additionally or alternatively apply a potential to the load beams 208 via the load anchors 210 of the shutter assembly 102 to increase the voltage. An electrical potential difference between the drive beams 212 or 214 and the load beams 208, regardless of sign or ground potential, will generate an electrostatic force between the beams which results in shutter movement transverse in the plane of motion.
The tiling or pixel arrangements for shutter assemblies need not be limited to the constraints of a square array. Dense tiling can also be achieved using rectangular, rhombohedral, or hexagonal arrays of pixels, for example, all of which find applications in video and color imaging displays.
Preferably shutter assemblies 102 are packed close together with as little dead area therebetween as possible to provide an increased fill factor. As shown in
In other alternate implementations, the display apparatus 102 can include multiple (for example, between 1 and 10) with corresponding exposable surfaces 114 and corresponding shutters 112 per image pixel 106. In changing the state of such an image pixel 106, the number of actuators activated can depend on the switching voltage that is applied or on the particular combination of row and column electrodes that are chosen for receipt of a switching voltage. Implementations are also possible in which partial openings of an aperture are made possible in an analog fashion by providing switching voltages partway between a minimum and a maximum switching voltage. These alternative implementations provide an improved means of generating a spatial grey scale, for example.
Funnels 152 of light concentration array 150 may be micro-molded, embossed, or investment casted from a very large family of polymers like acrylics, imides, and acetates, for example, as well as plastics, glass, or UV curing epoxies. Micro-molding may include subtractive techniques, such as photolithography, and etching or embossing techniques in which the inverse pattern is made in a hard material and subsequently aligned with and pressed into a soft material on the surface that can subsequently be cured or hardened. Alternatively, funnels 152 may be fabricated, for example, out of photo-imageable material, such as Novalac or PMMA or Polyimide amongst many polymers that can be cross-linked, or whose cross-links can be broken, with the aid of light. See, for example, “Plastic vs. Glass Optics: Factors to Consider (part of SPIE ‘Precision Plastic Optics’ short course note),” of Nov. 17, 1998, by Alex Ning, Ph.d.; “Micro Investment Molding: Method for Creating Injection Molded Hollow Parts,” Proceedings of IMECE2005, of Nov. 5-11, 2005, by Julian M. Lippmann et al.; and “In-Plane, Hollow Microneedles Via Polymer Investment Molding, of 2005, by Julian M. Lippmann et al., each of which is hereby incorporated by reference herein in its entirety.
In one embodiment, referring to
Alternatively, in another embodiment, referring to
Reflective shutter assembly 1102 can take substantially the same form as shutter assembly 102 of
Alternatively, reflective surface 1015 can be formed from a mirror, such as a dielectric mirror. A dielectric mirror is fabricated as a stack of dielectric thin films which alternate between materials of high and low refractive index. A portion of the incident light is reflected from each interface where the refractive index changes. By controlling the thickness of the dielectric layers to some fixed fraction or multiple of the wavelength and by adding reflections from multiple parallel interfaces, it is possible to produce a net reflective surface having a reflectivity exceeding 98%. Some dielectric mirrors have reflectivities greater than 99.8%. Dielectric mirrors can be custom-designed to accept a pre-specified range of wavelengths in the visible range and to accept a pre-specified range of incident angles. Reflectivities in excess of 99% under these conditions are possible as long as the fabricator is able to control the smoothness in the dielectric film stacks. The stacks can include between about 20 and about 500 films, for example. Alternately layer 1118 can be covered with an absorptive film while the front surface of shutter 1112 can be covered in a reflective film. In this fashion, light is reflected back to the viewer through funnel 152 only when shutter 1112 is at least partially closed.
Reflective surface 1015 may be roughened in order to provide diffusiveness thereon for combating glare. This roughening can be done by any one of several processes, including mechanical, chemical, or deposition processes. Roughening the reflective surface causes reflected light to be scattered at various angles into funnel 152, and thus at various angles towards the viewer as diffuse beams 703′, thereby creating wider viewing angles and increasing the ratio of diffuse (Lambertian) to specular reflections.
The absorbing film 1152 can be formed, for example from a metal film. Most metal films absorb a certain fraction of light and reflect the rest. Some metal alloys which are effective at absorbing light, include, without limitation, MoCr, MoW, MoTi, MoTa, TiW, and TiCr. Metal films formed from the above alloys or simple metals, such as Ni and Cr with rough surfaces can also be effective at absorbing light. Such films can be produced by sputter deposition in high gas pressures (sputtering atmospheres in excess of 20 mtorr). Rough metal films can also be formed by the liquid spray or plasma spray application of a dispersion of metal particles, following by a thermal sintering step. A dielectric layer such as a dielectric layer 404 is then added to prevent spalling or flaking of the metal particles.
Semiconductor materials, such as amorphous or polycrystalline Si, Ge, CdTe, InGaAs, colloidal graphite (carbon) and alloys such as SiGe are also effective at absorbing light. These materials can be deposited in films having thicknesses in excess of 500 nm to prevent any transmission of light through the thin film. Metal oxides or nitrides can also be effective at absorbing light, including without limitation CuO, NiO, Cr2O3, AgO, SnO, ZnO, TiO, Ta2O5, MoO3, CrN, TiN, or TaN. The absorption of these oxides or nitrides improves if the oxides are prepared or deposited in non-stoichiometric fashion—often by sputtering or evaporation—especially if the deposition process results in a deficit of oxygen in the lattice. As with semiconductors, the metal oxides should be deposited to thicknesses in excess of 500 nm to prevent transmission of light through the film.
A class of materials, called cermets, is also effective at absorbing light. Cermets are typically composites of small metal particles suspended in an oxide or nitride matrix. Examples include Cr particles in a Cr2O3 matrix or Cr particles in an SiO2 matrix. Other metal particles suspended in the matrix can be Ni, Ti, Au, Ag, Mo, Nb, and carbon. Other matrix materials include TiO2, Ta2O5, Al2O3, and Si3N4.
It is possible to create multi-layer absorbing structures using destructive interference of light between suitable thin film materials. A typical implementation would involve a partially reflecting layer of an oxide or nitride along with a metal of suitable reflectivity. The oxide can be a metal oxide e.g. CrO2, TiO2, Al2O3 or SiO2 or a nitride like Si3N4 and the metal can be suitable metals such as Cr, Mo, Al, Ta, Ti. In one implementation, for absorption of light entering from the substrate a thin layer, ranging from 10-500 nm of metal oxide is deposited first on the surface of substrate 402 followed by a 10-500 nm thick metal layer. In another implementation, for absorption of light entering from the direction opposite of the substrate, the metal layer is deposited first followed by deposition of the metal oxide. In both cases the absorptivity of bi-layer stack can be optimized if the thickness of the oxide layer is chosen to be substantially equal to one quarter of 0.55 microns divided by the refractive index of the oxide layer.
In another implementation, a metal layer is deposited on a substrate followed by a suitable oxide layer of calculated thickness. Then, a thin layer of metal is deposited on top of the oxide such that the thin metal is only partially reflecting (thicknesses less than 0.02 microns). Partial reflection from the metal layer will destructively interfere with the reflection from substrate metal layer and thereby produce a black matrix effect. Absorption will be maximized if the thickness of the oxide layer is chosen to be substantially equal to one quarter of 0.55 microns divided by the refractive index of the oxide layer.
Transflective shutter assembly 2102 can take substantially the same form as shutter assembly 102 of
Even with funnels 152 designed to concentrate ambient light 802 onto one or more of exposed reflective surfaces 2015 that are positioned among transmissive apertures 2018 on exposable surface 2114, some portion of ambient light 802 may pass through apertures 2018 of transfiective shutter assembly 2102. When transfiective shutter assembly 2102 is incorporated into spatial light modulators having optical cavities and light sources, as described in U.S. Pat. No. 7,417,782, referred to above, the ambient light 802 passing through apertures 2018 enters an optical cavity and is recycled along with the light 801 introduced by backlight 105. In alternative transfiective shutter assemblies, the transmissive apertures in the exposable surface are at least partially filled with a semi-reflective—semitransmissive material or alternately the entire exposable area 2114 con be formed of a semitransmissive semi-reflective material to achieve the same net effect as if portions of the areas are defined as reflective and transmissive.
Transmissive shutter assembly 3102 can take substantially the same form as shutter assembly 102 of
As shown, funnel 152 of light concentration array 150 is provided between shutter assembly 3102 and backlight 105 to concentrate backlight beams 901 entering first optical opening 156 and through second optical opening 154 onto the transmissive region (i.e., transmissive surface 3018 of exposable surface 3114) of transmissive shutter assembly 3102. Thus, use of arrays of transmissive shutter assembly 3102 in display apparatus 3010 with such a configuration of funnels 152 increases the fraction of image forming light (i.e., backlight beams 901) from backlight 105 that gets concentrated onto the modulating surface (i.e., exposable surface 3114) of the display apparatus. The array of light funnels 152 may also serve as a front reflective layer for the backlight to provide for light recycling in the backlight, obviating the need for a separate reflective layer. The light entering the funnels at angles not conducive to making it to the surface 3114 will be reflected back out of the light funnels into the backlight for recycling until such time as it reaches an angle conducive to exit.
It should be noted that, although apparatus and methods for displays utilizing light concentration arrays of the invention have been described as utilizing an array of reflective light funnels (e.g., funnels 152), the invention also relates to apparatus and methods for displays that utilize light concentration arrays of other types of optical elements (i.e., not funnels) for concentrating available image forming light onto an array of light modulators to maximize the contrast ratio of the display. This may be accomplished, for example, with the previously described display apparatus embodiments by replacing each reflective light funnel 152 with a high numerical f-number aperture lens. For example, a high aperture lens, similar to lens 157 shown in
Those skilled in the art will know or be able to ascertain using no more than routine experimentation, many equivalents to the embodiments and practices described herein. Accordingly, it will be understood that the invention is not to be limited to the embodiments disclosed herein, but is to be understood from the following claims, which are to be interpreted as broadly as allowed under the law.
This application claims priority to and benefit of U.S. Provisional Patent Application No. 60/676,053, entitled “MEMS Based Optical Display” and filed on Apr. 29, 2005, and U.S. Provisional Patent Application No. 60/655,827, entitled “MEMS Based Display Modules” and filed on Feb. 23, 2005, each of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4067043 | Perry | Jan 1978 | A |
4074253 | Nadir | Feb 1978 | A |
4564836 | Vuilleumier et al. | Jan 1986 | A |
4582396 | Bos et al. | Apr 1986 | A |
4673253 | Tanabe et al. | Jun 1987 | A |
4744640 | Phillips | May 1988 | A |
4958911 | Beiswenger et al. | Sep 1990 | A |
4991941 | Kalmanash | Feb 1991 | A |
5005108 | Pristash et al. | Apr 1991 | A |
5042900 | Parker | Aug 1991 | A |
5050946 | Hathaway et al. | Sep 1991 | A |
5062689 | Koehler | Nov 1991 | A |
5093652 | Bull et al. | Mar 1992 | A |
5128787 | Blonder | Jul 1992 | A |
5136480 | Pristash et al. | Aug 1992 | A |
5142405 | Hornbeck | Aug 1992 | A |
5184248 | de Vaan et al. | Feb 1993 | A |
5198730 | Vancil | Mar 1993 | A |
5202950 | Arego et al. | Apr 1993 | A |
5233459 | Bozler et al. | Aug 1993 | A |
5245454 | Blonder | Sep 1993 | A |
5319491 | Selbrede | Jun 1994 | A |
5339179 | Rudisill et al. | Aug 1994 | A |
5396350 | Beeson et al. | Mar 1995 | A |
5416631 | Yagi | May 1995 | A |
5440197 | Gleckman | Aug 1995 | A |
5465175 | Woodgate et al. | Nov 1995 | A |
5467104 | Furness, III et al. | Nov 1995 | A |
5479279 | Barbier et al. | Dec 1995 | A |
5493439 | Engle | Feb 1996 | A |
5519565 | Kalt et al. | May 1996 | A |
5528262 | McDowall et al. | Jun 1996 | A |
5559389 | Spindt et al. | Sep 1996 | A |
5568964 | Parker et al. | Oct 1996 | A |
5578185 | Bergeropn et al. | Nov 1996 | A |
5579035 | Beiswenger | Nov 1996 | A |
5579240 | Buus | Nov 1996 | A |
5596339 | Furness, III et al. | Jan 1997 | A |
5613751 | Parker et al. | Mar 1997 | A |
5618096 | Parker et al. | Apr 1997 | A |
5619266 | Tomita et al. | Apr 1997 | A |
5655832 | Pelka et al. | Aug 1997 | A |
5659327 | Furness, III et al. | Aug 1997 | A |
5666226 | Ezra et al. | Sep 1997 | A |
5684354 | Gleckman | Nov 1997 | A |
5694227 | Starkweather | Dec 1997 | A |
5731802 | Aras et al. | Mar 1998 | A |
5745203 | Valliath et al. | Apr 1998 | A |
5771321 | Stern | Jun 1998 | A |
5781331 | Carr et al. | Jul 1998 | A |
5784189 | Bozler et al. | Jul 1998 | A |
5794761 | Renaud et al. | Aug 1998 | A |
5801792 | Smith et al. | Sep 1998 | A |
5810469 | Weinreich | Sep 1998 | A |
5835255 | Miles | Nov 1998 | A |
5854872 | Tai | Dec 1998 | A |
5867302 | Fleming | Feb 1999 | A |
5876107 | Parker et al. | Mar 1999 | A |
5884872 | Greenhalgh | Mar 1999 | A |
5889625 | Chen et al. | Mar 1999 | A |
5894686 | Parker et al. | Apr 1999 | A |
5895115 | Parker et al. | Apr 1999 | A |
5921652 | Parker et al. | Jul 1999 | A |
5936596 | Yoshida et al. | Aug 1999 | A |
5953469 | Zhou | Sep 1999 | A |
5975711 | Parker et al. | Nov 1999 | A |
5986628 | Tuenge et al. | Nov 1999 | A |
5986796 | Miles | Nov 1999 | A |
5990990 | Crabtree | Nov 1999 | A |
6008781 | Furness, III et al. | Dec 1999 | A |
6008929 | Akimoto et al. | Dec 1999 | A |
6028656 | Buhrer et al. | Feb 2000 | A |
6030089 | Parker et al. | Feb 2000 | A |
6034807 | Little et al. | Mar 2000 | A |
6040796 | Matsugatani et al. | Mar 2000 | A |
6040937 | Miles | Mar 2000 | A |
6046840 | Huibers | Apr 2000 | A |
6049317 | Thompson et al. | Apr 2000 | A |
6055090 | Miles | Apr 2000 | A |
6079838 | Parker et al. | Jun 2000 | A |
6130735 | Hatanaka et al. | Oct 2000 | A |
6158867 | Parker et al. | Dec 2000 | A |
6162657 | Schiele et al. | Dec 2000 | A |
6168395 | Quenzer et al. | Jan 2001 | B1 |
6174064 | Kalantar et al. | Jan 2001 | B1 |
6201633 | Peeters et al. | Mar 2001 | B1 |
6201664 | Le et al. | Mar 2001 | B1 |
6206550 | Fukushima et al. | Mar 2001 | B1 |
6219119 | Nakai | Apr 2001 | B1 |
6249370 | Takeuchi et al. | Jun 2001 | B1 |
6266240 | Urban et al. | Jul 2001 | B1 |
6282951 | Loga et al. | Sep 2001 | B1 |
6285270 | Lane et al. | Sep 2001 | B1 |
6288824 | Kastalsky | Sep 2001 | B1 |
6296383 | Henningsen | Oct 2001 | B1 |
6300154 | Clark et al. | Oct 2001 | B2 |
6317103 | Furness, III et al. | Nov 2001 | B1 |
6323834 | Colgan et al. | Nov 2001 | B1 |
6329967 | Little et al. | Dec 2001 | B1 |
6367940 | Parker et al. | Apr 2002 | B1 |
6402335 | Kalantar et al. | Jun 2002 | B1 |
6424329 | Okita | Jul 2002 | B1 |
6429625 | LeFevre et al. | Aug 2002 | B1 |
6798935 | Bourgeois et al. | Aug 2002 | B2 |
6471879 | Hanson et al. | Oct 2002 | B2 |
6473220 | Clikeman et al. | Oct 2002 | B1 |
6476886 | Krusius et al. | Nov 2002 | B2 |
6483613 | Woodgate et al. | Nov 2002 | B1 |
6498685 | Johnson | Dec 2002 | B1 |
6504985 | Parker et al. | Jan 2003 | B2 |
6507138 | Rodgers et al. | Jan 2003 | B1 |
6508563 | Parker et al. | Jan 2003 | B2 |
6523961 | Ilkov et al. | Feb 2003 | B2 |
6529250 | Murakami et al. | Mar 2003 | B1 |
6529265 | Henningsen | Mar 2003 | B1 |
6531947 | Weaver et al. | Mar 2003 | B1 |
6532044 | Conner et al. | Mar 2003 | B1 |
6535256 | Ishihara et al. | Mar 2003 | B1 |
6535311 | Lindquist | Mar 2003 | B1 |
6556258 | Yoshida et al. | Apr 2003 | B1 |
6556261 | Krusius et al. | Apr 2003 | B1 |
6559827 | Mangerson | May 2003 | B1 |
6567063 | Okita | May 2003 | B1 |
6567138 | Krusius et al. | May 2003 | B1 |
6574033 | Chui et al. | Jun 2003 | B1 |
6582095 | Toyoda | Jun 2003 | B1 |
6852095 | Toyoda | Jun 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6591049 | Williams et al. | Jul 2003 | B2 |
6600474 | Heines et al. | Jul 2003 | B1 |
6859625 | Kothari et al. | Jul 2003 | B2 |
6893677 | Behin et al. | Jul 2003 | B2 |
6626540 | Ouchi et al. | Sep 2003 | B2 |
6639570 | Furness, III et al. | Oct 2003 | B2 |
6639572 | Little et al. | Oct 2003 | B1 |
6650455 | Miles | Nov 2003 | B2 |
6650822 | Zhou | Nov 2003 | B1 |
6671078 | Flanders et al. | Dec 2003 | B2 |
6674562 | Miles | Jan 2004 | B1 |
6677709 | Ma et al. | Jan 2004 | B1 |
6677936 | Jacobsen et al. | Jan 2004 | B2 |
6680792 | Miles | Jan 2004 | B2 |
6690422 | Daly et al. | Feb 2004 | B1 |
6701039 | Bourgeois et al. | Mar 2004 | B2 |
6707176 | Rodgers | Mar 2004 | B1 |
6710538 | Ahn et al. | Mar 2004 | B1 |
6710908 | Miles et al. | Mar 2004 | B2 |
6710920 | Mashitani et al. | Mar 2004 | B1 |
6712481 | Parker et al. | Mar 2004 | B2 |
6731355 | Miyashita | May 2004 | B2 |
6731492 | Goodwin-Johansson | May 2004 | B2 |
6733354 | Cathey et al. | May 2004 | B1 |
6738177 | Gutierrez et al. | May 2004 | B1 |
6741377 | Miles | May 2004 | B2 |
6749312 | Parker et al. | Jun 2004 | B2 |
6750930 | Yoshii et al. | Jun 2004 | B2 |
6752505 | Parker et al. | Jun 2004 | B2 |
6755547 | Parker | Jun 2004 | B2 |
6762743 | Yoshihara et al. | Jul 2004 | B2 |
6762868 | Liu et al. | Jul 2004 | B2 |
6764796 | Fries | Jul 2004 | B2 |
6774964 | Funamoto et al. | Aug 2004 | B2 |
6775048 | Starkweather et al. | Aug 2004 | B1 |
6778228 | Murakami et al. | Aug 2004 | B2 |
6785454 | Abe | Aug 2004 | B2 |
6788371 | Tanada et al. | Sep 2004 | B2 |
6794119 | Miles | Sep 2004 | B2 |
6796668 | Parker et al. | Sep 2004 | B2 |
6800996 | Nagai et al. | Oct 2004 | B2 |
6819465 | Clikeman et al. | Nov 2004 | B2 |
6822734 | Eidelman et al. | Nov 2004 | B1 |
6825470 | Bawolek et al. | Nov 2004 | B1 |
6825499 | Nakajima et al. | Nov 2004 | B2 |
6827456 | Parker et al. | Dec 2004 | B2 |
6831678 | Travis | Dec 2004 | B1 |
6835111 | Ahn et al. | Dec 2004 | B2 |
6846082 | Glent-Madsen et al. | Jan 2005 | B2 |
6847425 | Tanada et al. | Jan 2005 | B2 |
6857751 | Penn et al. | Feb 2005 | B2 |
6687896 | Miles | Mar 2005 | B1 |
6863219 | Jacobsen et al. | Mar 2005 | B1 |
6864618 | Miller et al. | Mar 2005 | B2 |
6867896 | Miles | Mar 2005 | B2 |
6886956 | Parker et al. | May 2005 | B2 |
6887202 | Currie et al. | May 2005 | B2 |
6888678 | Nishiyama et al. | May 2005 | B2 |
6897164 | Baude et al. | May 2005 | B2 |
6900072 | Patel et al. | May 2005 | B2 |
6906847 | Huibers et al. | Jun 2005 | B2 |
6911891 | Qiu et al. | Jun 2005 | B2 |
6911964 | Lee et al. | Jun 2005 | B2 |
6919981 | Clikeman et al. | Jul 2005 | B2 |
6934080 | Saccomanno et al. | Aug 2005 | B2 |
6936968 | Cross et al. | Aug 2005 | B2 |
6939013 | Asao | Sep 2005 | B2 |
6940631 | Ishikawa | Sep 2005 | B2 |
6943495 | Ma et al. | Sep 2005 | B2 |
6947107 | Yoshii et al. | Sep 2005 | B2 |
6950240 | Matsuo et al. | Sep 2005 | B2 |
6953375 | Ahn et al. | Oct 2005 | B2 |
6962419 | Huibers | Nov 2005 | B2 |
6965375 | Gettemy et al. | Nov 2005 | B1 |
6969635 | Patel et al. | Nov 2005 | B2 |
6985205 | Chol et al. | Jan 2006 | B2 |
7004610 | Yamashita et al. | Feb 2006 | B2 |
7004611 | Parker et al. | Feb 2006 | B2 |
7012726 | Miles | Mar 2006 | B1 |
7012732 | Miles | Mar 2006 | B2 |
7014349 | Shinohara et al. | Mar 2006 | B2 |
7042618 | Selbrede et al. | May 2006 | B2 |
7042643 | Miles | May 2006 | B2 |
7046905 | Gardiner et al. | May 2006 | B1 |
20010001260 | Parker et al. | May 2001 | A1 |
20010028993 | Sanford | Oct 2001 | A1 |
20010043208 | Furness, III et al. | Nov 2001 | A1 |
20010053075 | Parker et al. | Dec 2001 | A1 |
20020001051 | Krusius et al. | Jan 2002 | A1 |
20020009275 | Williams et al. | Jan 2002 | A1 |
20020015215 | Miles | Feb 2002 | A1 |
20020024641 | Ilkov et al. | Feb 2002 | A1 |
20020024711 | Miles | Feb 2002 | A1 |
20020047172 | Reid | Apr 2002 | A1 |
20020054424 | Miles | May 2002 | A1 |
20020054487 | Parker et al. | May 2002 | A1 |
20020056900 | Liu et al. | May 2002 | A1 |
20020063661 | Comiskey et al. | May 2002 | A1 |
20020070931 | Ishikawa | Jun 2002 | A1 |
20020075555 | Miles | Jun 2002 | A1 |
20020080598 | Parker et al. | Jun 2002 | A1 |
20020126364 | Miles | Sep 2002 | A1 |
20020126387 | Ishikawa et al. | Sep 2002 | A1 |
20020141174 | Parker et al. | Oct 2002 | A1 |
20020163482 | Sullivan | Nov 2002 | A1 |
20020163484 | Furness, III et al. | Nov 2002 | A1 |
20020171327 | Miller et al. | Nov 2002 | A1 |
20020185699 | Reid | Dec 2002 | A1 |
20020196522 | Little et al. | Dec 2002 | A1 |
20030007344 | Parker | Jan 2003 | A1 |
20030009898 | Slocum et al. | Jan 2003 | A1 |
20030029705 | Qiu et al. | Feb 2003 | A1 |
20030036215 | Reid | Feb 2003 | A1 |
20030043157 | Miles | Mar 2003 | A1 |
20030048036 | Lemkin | Mar 2003 | A1 |
20030058543 | Sheedy et al. | Mar 2003 | A1 |
20030076649 | Speakman | Apr 2003 | A1 |
20030085650 | Cathey et al. | May 2003 | A1 |
20030085867 | Grabert | May 2003 | A1 |
20030095081 | Furness, III et al. | May 2003 | A1 |
20030095398 | Parker et al. | May 2003 | A1 |
20030102810 | Cross et al. | Jun 2003 | A1 |
20030123245 | Parker et al. | Jul 2003 | A1 |
20030123246 | Parker | Jul 2003 | A1 |
20030123247 | Parker et al. | Jul 2003 | A1 |
20030133284 | Chipchase et al. | Jul 2003 | A1 |
20030137499 | Iisaka | Jul 2003 | A1 |
20030174422 | Miller et al. | Sep 2003 | A1 |
20030174931 | Rodgers et al. | Sep 2003 | A1 |
20030184189 | Sinclair | Oct 2003 | A1 |
20030190535 | Fries | Oct 2003 | A1 |
20030190536 | Fries | Oct 2003 | A1 |
20030202338 | Parker | Oct 2003 | A1 |
20030023110 | Yoshihara et al. | Dec 2003 | A1 |
20030231160 | Yoshihara et al. | Dec 2003 | A1 |
20040012946 | Parker et al. | Jan 2004 | A1 |
20040058532 | Miles et al. | Mar 2004 | A1 |
20040080240 | Miller et al. | Apr 2004 | A1 |
20040080484 | Heines et al. | Apr 2004 | A1 |
20040080927 | Parker et al. | Apr 2004 | A1 |
20040085749 | Parker et al. | May 2004 | A1 |
20040090144 | Miller et al. | May 2004 | A1 |
20040095739 | Parker et al. | May 2004 | A1 |
20040100677 | Huibers et al. | May 2004 | A1 |
20040114346 | Parker et al. | Jun 2004 | A1 |
20040122328 | Wang et al. | Jun 2004 | A1 |
20040125346 | Huibers | Jul 2004 | A1 |
20040135273 | Parker et al. | Jul 2004 | A1 |
20040135951 | Stumbo et al. | Jul 2004 | A1 |
20040136204 | Asao | Jul 2004 | A1 |
20040145580 | Perlman | Jul 2004 | A1 |
20040157664 | Link | Aug 2004 | A1 |
20040165372 | Parker | Aug 2004 | A1 |
20040171206 | Rodgers | Sep 2004 | A1 |
20040179146 | Nilsson | Sep 2004 | A1 |
20040196215 | Duthaler et al. | Oct 2004 | A1 |
20040207768 | Liu | Oct 2004 | A1 |
20040218149 | Huibers | Nov 2004 | A1 |
20040218154 | Huibers | Nov 2004 | A1 |
20040218292 | Huibers | Nov 2004 | A1 |
20040218293 | Huibers | Nov 2004 | A1 |
20040223088 | Huibers | Nov 2004 | A1 |
20040223240 | Huibers | Nov 2004 | A1 |
20040227428 | Sinclair | Nov 2004 | A1 |
20040233392 | Huibers | Nov 2004 | A1 |
20040240032 | Miles | Dec 2004 | A1 |
20040246275 | Yoshihara et al. | Dec 2004 | A1 |
20040263944 | Miles et al. | Dec 2004 | A1 |
20050002082 | Miles | Jan 2005 | A1 |
20050002086 | Starkweather et al. | Jan 2005 | A1 |
20050007759 | Parker | Jan 2005 | A1 |
20050024849 | Parker et al. | Feb 2005 | A1 |
20050059184 | Sniegowski et al. | Mar 2005 | A1 |
20050062708 | Yoshihara et al. | Mar 2005 | A1 |
20050063037 | Selebrede et al. | Mar 2005 | A1 |
20050072032 | McCollum et al. | Apr 2005 | A1 |
20050088404 | Heines et al. | Apr 2005 | A1 |
20050093465 | Yonekubo et al. | May 2005 | A1 |
20050094240 | Huibers et al. | May 2005 | A1 |
20050094418 | Parker | May 2005 | A1 |
20050111238 | Parker | May 2005 | A1 |
20050111241 | Parker | May 2005 | A1 |
20050116798 | Bintoro et al. | Jun 2005 | A1 |
20050122560 | Sampsell et al. | Jun 2005 | A1 |
20050122591 | Parker et al. | Jun 2005 | A1 |
20050123243 | Steckl et al. | Jun 2005 | A1 |
20050134805 | Conner et al. | Jun 2005 | A1 |
20050141076 | Bausenwein et al. | Jun 2005 | A1 |
20050151940 | Asao | Jul 2005 | A1 |
20050157365 | Ravnkilde et al. | Jul 2005 | A1 |
20050157376 | Huibers et al. | Jul 2005 | A1 |
20050168789 | Glent-Madsen | Aug 2005 | A1 |
20050171408 | Parker | Aug 2005 | A1 |
20050195468 | Sampsell | Sep 2005 | A1 |
20050207154 | Parker | Sep 2005 | A1 |
20050207178 | Parker | Sep 2005 | A1 |
20050213183 | Miles | Sep 2005 | A9 |
20050213322 | Parker | Sep 2005 | A1 |
20050213323 | Parker | Sep 2005 | A1 |
20050213349 | Parker | Sep 2005 | A1 |
20050219679 | Ishikawa | Oct 2005 | A1 |
20050219680 | Ishikawa | Oct 2005 | A1 |
20050225501 | Srinivasan et al. | Oct 2005 | A1 |
20050225519 | Naugler, Jr. | Oct 2005 | A1 |
20050225732 | Conner et al. | Oct 2005 | A1 |
20050225827 | Kastalsky | Oct 2005 | A1 |
20050237596 | Selbrede | Oct 2005 | A1 |
20050242710 | Yamazaki et al. | Nov 2005 | A1 |
20050243023 | Reddy et al. | Nov 2005 | A1 |
20050244099 | Pasch et al. | Nov 2005 | A1 |
20050244949 | Miles | Nov 2005 | A1 |
20050245313 | Yoshino et al. | Nov 2005 | A1 |
20050258571 | Dumond et al. | Nov 2005 | A1 |
20050259198 | Lubart et al. | Nov 2005 | A1 |
20050286114 | Miles | Dec 2005 | A1 |
20060028811 | Ross, Jr. et al. | Feb 2006 | A1 |
20060028817 | Parker | Feb 2006 | A1 |
20060028840 | Parker | Feb 2006 | A1 |
20060028841 | Parker | Feb 2006 | A1 |
20060028843 | Parker | Feb 2006 | A1 |
20060028844 | Parker | Feb 2006 | A1 |
20060033975 | Miles | Feb 2006 | A1 |
20060004928 | Chui et al. | Mar 2006 | A1 |
20060044246 | Mignard | Mar 2006 | A1 |
20060044928 | Chui et al. | Mar 2006 | A1 |
20060092490 | McCollum et al. | May 2006 | A1 |
20060104061 | Lerner et al. | May 2006 | A1 |
Number | Date | Country |
---|---|---|
0 359 450 | Sep 1989 | EP |
0 415 625 | Mar 1991 | EP |
0 438 614 | Jul 1991 | EP |
0 359 450 | Nov 1994 | EP |
0 495 273 | Sep 1996 | EP |
0 415 625 | Jan 1997 | EP |
0 751 340 | Jan 1997 | EP |
0 884 525 | Dec 1998 | EP |
0 751 340 | May 2000 | EP |
1 202 096 | May 2002 | EP |
1 426 190 | Jun 2004 | EP |
2 726 135 | Oct 1994 | FR |
03-142409 | Jun 1991 | JP |
04-249203 | Sep 1992 | JP |
09-198906 | Jul 1997 | JP |
11-015393 | Jan 1999 | JP |
2002-318564 | Oct 2002 | JP |
2003-162904 | Jun 2003 | JP |
WO 9401716 | Jan 1994 | WO |
WO 9804950 | Feb 1998 | WO |
WO 9901696 | Jan 1999 | WO |
WO 0050807 | Aug 2000 | WO |
WO 03008860 | Jan 2003 | WO |
WO 03050448 | Jul 2003 | WO |
WO 03061329 | Jul 2003 | WO |
WO 2004019120 | Mar 2004 | WO |
WO 2004086098 | Oct 2004 | WO |
WO 2005001892 | Jan 2005 | WO |
WO 2005062908 | Jul 2005 | WO |
WO 2006023077 | Mar 2006 | WO |
WO 2006039315 | Apr 2006 | WO |
WO 2006052755 | May 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060250676 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
60676053 | Apr 2005 | US | |
60655827 | Feb 2005 | US |