Light control window covering and method of making same

Information

  • Patent Grant
  • 6440247
  • Patent Number
    6,440,247
  • Date Filed
    Thursday, December 21, 2000
    24 years ago
  • Date Issued
    Tuesday, August 27, 2002
    22 years ago
Abstract
A cellular structure for window coverings has a plurality of cells formed by an upper vane and a lower vane each having a front edge and a rear edge. A C-shaped front wall has an upper end attached to the front edge of the upper vane and a lower end attached to the front edge of the lower vane to form an outwardly extending front tab at each end of the C-shaped front wall. The opposite end of each vane is attached to a rear wall. A C-shaped rear wall could be used for each cell. This structure is made by placing an edge of the vane between a pleat which is bonded to form each front tab and then preferably trimming the tab to a uniform width.
Description




FIELD OF THE INVENTION




The invention relates to window coverings and particularly to a light control window covering having strips or slats that can be tilted from an open position to a closed position to control the amount of light which is admitted.




BACKGROUND OF THE INVENTION




Venetian blinds are well-known window coverings. They have a series of horizontal slats hung from ladders which extend between a headrail and a bottom rail. The slats can be rotated between an open, see through position and a closed position. Additionally, the blinds can be raised and lowered. Venetian blinds contain aluminum, plastic or wood slats and are available in a limited number of colors.




Draperies are another common window covering. Draperies are available in a variety of materials and colors. Commonly a designer will provide a sheer curtain which permits some passage of light in combination with a heavier drapery through which light cannot pass. Consequently, the owner of that drapery system may have a completely open window, a window covered by the sheer which allows for daytime privacy, some passage of light and a view of the outside; or a window covered by the heavier drapery and a sheer which allows night time privacy, little passage of light, and no view of the outside.




In U.S. Pat. No. 3,384,519 to Froget and U.S. Pat. No. 5,313,999 to Colson et al. there are disclosed cellular type window coverings having first and second parallel sheer fabric sheets hung from a roller. A plurality of light impeding or somewhat light impeding vanes extend between the sheer fabric sheets. The vanes are angularly controllable by relative movement of the fabric sheets. Like the combination of a sheer fabric and a light impeding fabric, these system allow the user to have a fully open window, a sheer covered window allowing light transmission with daytime privacy, and a covering providing night time privacy or room darkening. In addition, such systems have intermediate light control of a louvered product like venetian blinds. Both the Froget and Colson window covering systems are difficult to fabricate, have a very flat appearance when in the closed, light impeding position, can only be tilted in one direction and can only be tilted when completely deployed. They also have a very limited selection of fabrics because three layers of fabric must wrap around a tube with the back layer traveling much farther than the front layer.




Judkins in U.S. Pat. No. 5,339,882, discloses a window covering having a series of slats connected to two spaced apart sheets of material. In one embodiment, the slats are attached to tabs extending inward from each sheet. The slats are substantially perpendicular to the sheets of material when the covering is in an open position. The slats are substantially parallel to the first and second sheets of material when the window covering is in a closed position. This product does not roll up readily and is intended to be raised with lift cords.




In U.S. Pat. No. 5,205,333, Judkins discloses a cellular shade formed by attaching an accordion pleated shade to a tabbed sheet. In this shade the tabs extend outwardly.




Pleated cellular window coverings have a spring take-up in the pleat. It is desirable that the cellular structure have a fullness in the pleat and that the face of the structure not go flat. The front face need not be equally spaced from the back face across each cell, nor must the front cell wall have the same height as the back cell wall. Indeed, it is sometimes desirable to have a shorter back wall to keep fullness in the front. Any side to side variances are hidden by the fullness of the pleat. However, in a window covering of the type disclosed by Colson in U.S. Pat. No. 5,313,999 the opposite is true. It is important that the fabric faces be nearly flat and the vanes be equally spaced from side to side and front to back. Since light passes through the cells, variances in cells are readily apparent and detract from the closure.




Most woven and knitted fabrics are not uniform. They go askew, have a bias or have a belly in the middle or sides. This lack of consistency is particularly common in the very soft, light body, sheer fabrics that are most desirable for this type of product. If a cellular structure is formed from most woven and knitted fabrics using conventional bonding practices, the excess material tends to bulge or form a bag. This bagging causes the cells to be non-uniform. Yet, non-uniform cells are undesirable in a light control product. Consequently, there is a need for a method of forming light control window coverings with uniformly sized cells. Such a process must compensate for the irregularities found in most woven and knitted fabrics.




Lift cords are required in those cellular products which are not attached to a roller. Because some customers find lift cords detract from the appearance of the shade, most fabric light control window coverings are being offered on rollers. Yet, lift cords allow tilt in both directions, tilt in intermediate positions, and bottom and top stacking shades. Lift cords even allow non-rectangular shades to tilt. Consequently, there is a need in the marketplace for cellular products and particularly light control cellular products having lift cords which are not noticeable. There is also a need for a light control window covering having two sheets of sheer fabric connected by light impeding vanes which is controllable by lift cords and which can be tilted in either direction even when the product is partially stacked. Additionally, there is a need for light control window coverings that can be made as arches, slant tops, and other non-rectangular shapes and can be used in a wide variety of specialty applications.




SUMMARY OF THE INVENTION




We provide a light controllable window covering in which there is an outwardly or inwardly tabbed front sheet and a back sheet which preferably is also tabbed outwardly or inwardly. As the outwardly facing tabs are formed one edge of a vane is inserted between the segments of the sheet that form each tab. The tabs are bonded in a manner to assure uniform length of the material between tabs to maintain uniform cell size. Frequently, maintaining uniform cell size for light transmissive fabric creates a tab having a curved outer edge. This is usually not noticeable because the tab is perpendicular to the viewer. However, we prefer to trim the tab as it is bonded to create a uniform width in the tab, especially for tabs formed in the front sheet. If desired, the outwardly facing tabs could be trimmed off entirely or trimmed to be only a few thousandths of an inch in width.




We further prefer to provide a striated fabric for the back sheet and optionally the front sheet of the window covering. This fabric has vertically oriented striate yarns having a diameter close to the diameter of the lift cords. As a result the lift cords are hidden.




Other objects and advantages of the present invention will become apparent from the description of certain preferred embodiments shown in the drawings.











BRIEF DESCRIPTION OF THE FIGURES





FIG. 1

is a side view of a present preferred embodiment of our window covering.





FIG. 2

is a perspective view of a portion of the cellular structure in the window covering of FIG.


1


.





FIG. 3

is a side view of a second preferred cellular structure.





FIG. 4

is a side view of a portion of a cellular structure made in accordance with this invention.





FIG. 5

is a perspective view of the tab of the cellular structure of FIG.


4


.





FIG. 6

is a perspective view illustrating a first preferred method for making our cellular structure.





FIG. 7

is a diagram showing a second present preferred method of manufacturing our cellular structure.





FIG. 8

is a side view of a third present preferred cellular structure.





FIG. 9

is a side view of a fourth present preferred cellular structure.





FIG. 10

is a perspective view of a fifth present preferred cellular structure.





FIG. 11

is an enlarged view of the fabric taken on the dotted circle XI of FIG.


10


.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




A first present preferred embodiment of our window covering is illustrated in

FIGS. 1 and 2

. This window covering


1


has a headrail


2


, bottom rail


3


and cellular structure


4


connected therebetween. The cellular structure has a series of cells


5


. Each cell is formed by an outwardly facing front C-shaped wall


6


and an outwardly facing rear C-shaped wall


10


connected to vanes


14


. As can be seen from

FIG. 1

each vane forms one wall of the cells above and below that vane. For example, the second cell from the top is formed by a rear C-shaped wall


6


, a front C-shaped wall


10


and vanes


14




a


and


14




b.


The third cell is formed by a rear C-shaped wall, a front C-shaped wall and vanes


14




b


and


14




c.


Each vane


14


has a rear transverse edge


13


that is connected to the upper end


7


of the rear C-shaped wall below the vane and to the lower end


8


of the rear C-shaped wall above the vane. Similarly, the front transverse edge


15


of each vane


14


is connected to the upper end of the front C-shaped wall below the vane and to the lower end


12


of the front C-shaped wall above the vane. These attachments form rear tab


16


and front tab


17


. Lift cords


18


extend from the bottom rail


3


through holes in tabs


16


and through the headrail


18


. Although only one lift cord is shown in the figures it should be understood that typically two or more lift cords will be provided depending upon the width of the window covering. Lift cords also could run through the front tabs


17


or be within the cells and pass through the vanes as in the embodiment shown in FIG.


3


.




The second preferred embodiment shown in

FIG. 3

is a cellular structure


20


in which vanes


24


are attached to front sheet


21


in a conventional manner. Typically this would be done by gluing or ultrasonic welding. The rear portion of the cellular structure is the same as in the first embodiment. There is a C-shaped wall


26


having an upper end


27


connected to the vane above it and a lower end


28


connected to the vane below it.




We prefer that the C-shaped walls


6


and


10


in the first embodiment as well as the front sheet


21


and the C-shaped walls


26


in the second embodiment be made of a light transmissive material, preferably a sheer fabric. The fabric may be woven, knit, film or non-woven. The vanes


14


and


24


can be made from any light impeding fabric. Consequently, when the cellular structure is positioned as shown in

FIGS. 1

,


2


and


3


light can pass through the cellular structure. By moving the rear C-shaped portions relative to the front sheet or front C-shaped portions, one can tilt the vanes


14


and


24


at any desired angle until a closed position is achieved substantially preventing passage of the light through the cellular structure.




Referring to

FIGS. 4 and 5

, we have found that when a sheer fabric material


31


and


32


is bonded to a vane


34


to form a cellular structure


30


there will often be more material toward the center of the cellular structure than the edges. To maintain the same height for all cells, it is necessary to draw this additional material into the tab forming a bowed portion


35


at the center of the tab. As a consequence, tab


36


will have a non-uniform depth. Depending on the variation and whether the tab is on the front or the back, tabs with non-uniform depths are less attractive than tabs of uniform depth throughout the length. The alternative cellular structure having a non-uniform cell sizes, is less attractive and usually does not tilt as well as those which are of uniform cell size. In order to achieve uniform cell size for sheer fabric cellular structures and tabs of uniform depth, we create a tab such as shown in

FIGS. 4 and 5

. To improve the appearance of the product we prefer to trim the tab along the dotted line in

FIG. 5

so that the tab has a width “x” which is uniform throughout the length of the tab.




One present preferred method for forming the cellular structure having uniform cell size and tabs of constant width is shown in FIG.


6


. There we provide a sheet of fabric


40


. Upper pinch rollers


41


and lower pinch rollers


42


are passed across the width of the fabric to form a tab structure


36


and assure that the cells are uniform. Ultrasonic weld head


44


welds the top portion and bottom portion of the tab to the longitudinal edge


13


of vane


14


as it is being inserted into the tab. Cutter


46


trims away a sufficient amount of material so that a tab


16


of constant width is formed. The material


45


that has been trimmed away is discarded. The width of the discarded material usually is from 0.010 to 0.150 inches. The result of the process forms a tab


16


such as is shown in

FIGS. 1 and 2

. There is created an outwardly facing C-shaped wall


6


having an upper end


7


connected to the underside of the longitudinal edge


13


of vane


14


. The lower end


8


of the C-shaped wall that is formed is attached to the upper surface of the longitudinal edge of vane


14


.




Another method of forming this cellular structure is shown in FIG.


7


. As the fabric


50


is unrolled, a glue head


52


applies an adhesive, preferably a thermoplastic adhesive, to one surface of the material. Then, pinch rollers


54


and


56


form a pleat in the fabric as vane


14


is inserted within the pleat. Consequently, the adhesive bonds the longitudinal edge of vane


14


to the fabric


50


forming a tab. A cutter


46


trims the tab to have a uniform width across its length.




In the embodiment


60


shown in

FIG. 8

we provide a rear sheet


61


with inwardly extending tabs


63


and a front sheet


62


having outwardly extending tabs


64


. Vanes


66


are attached between the front sheet


62


and rear sheet


61


. The rear edge of each vane can be attached to the top of the rear tab


63


as shown or to the underside of the rear tab which is not shown. The front edge of each vane is inserted within a front tab


64


as is done in the previous embodiments. The lift cords


18


are threaded through the inwardly facing tabs


63


but alternatively could pass through the outwardly extending tabs


64


. Outwardly extending tabs


64


can be partially cut as already described, or completely cut away to create the structure shown in FIG.


9


. In that embodiment the front edge of each vane is flush with or nearly flush with and separates two front walls


68


of adjacent cells. The tabs


64


can be trimmed immediately after being formed preferably using the method shown in

FIG. 6

or FIG.


7


. Preferably the remaining portion of the tab does not exceed 0.005 inches.




Tabs contribute to the three dimensional character if the fabric. Inwardly facing tabs give the shade a thickness when closed. Outwardly facing tabs add a surface to the face of the product. The appearance of the tab may be varied by changing the size of the tab. Tabs with cords passing through them would be relatively large. Tabs cut completely or almost completely off would render a flat appearance which is preferred with certain fabrics.




We prefer to provide cellular structures such as shown in

FIG. 10

in which a striated fabric


80


is used for either the front portion


81


or the rear portion


83


of the cellular structure. In the striated fabric shown in enlarged version in

FIG. 11

there are vertical threads


84


and horizontal threads


85


woven together. At spaced apart intervals there are relatively wide striate yarn segments


82


. We prefer that the striate yarn segments be oriented vertically as shown in FIG.


10


. Thus, the striate yarn fabrics will be parallel or substantially parallel to the lift cord


18


. The striate yarn segments are selected to have a diameter d


s


perceptively different from the surrounding yarns and approximately the same as the diameter of the lift cord


18


. To avoid having the lift cords easily seen, the diameter of the lift cords should not exceed twice the diameter of the striate yams. Typically, the lift cord will be a very thin cord or a monofilament line having a diameter of about 0.020 inches or at least twice the diameter of the majority of vertical threads


84


from which the fabric is woven. When the cellular structure such as shown in

FIG. 10

is placed in the window, the lift cord


18


appears to be a striated yam within the fabric. Thus, the lift cord is disguised to be part of the fabric from which the cellular structure is made.




In describing the preferred embodiments we have identified a front and rear of each structure. These terms were used for ease of understanding and are not intended to limit the claimed invention. What we have called the front could be the rear and what is identified as the rear could be the front.




Although we have shown certain present preferred embodiments of our window covering cellular structure and methods of making the same, it should be distinctly understood that our invention is not limited thereto, but may be variously embodied within the scope of the following claims.



Claims
  • 1. A method of forming a cellular structure comprising the steps of:a. forming a tab in a front portion of fabric, the tab having a top and a bottom; b. inserting one edge of a vane between the top and the bottom; c. bonding the top and the bottom of the tab to the vane between them; d. attaching an opposite edge of the vane to a rear portion of fabric; and f. repeating steps a through d until a desired number of cells have been formed.
  • 2. The method of claim 1 also comprising removing material from at least one tab so that the at least one tab has a consistent width along its length.
  • 3. The method of claim 1 wherein the tops, bottoms and vanes are bonded by ultrasonic welding.
  • 4. The method of claim 1 wherein the tops, bottoms and vanes are bonded with an adhesive.
  • 5. The method of claim 4 wherein the adhesive is a thermoplastic adhesive.
  • 6. The method of claim 1 wherein material is being removed from a tab while portions of the top of that tab, the bottom of that tab and the vane between them are being bonded.
  • 7. The method of claim 6 wherein the top of that tab, the bottom of that tab and the vane between them are ultrasonically bonded.
  • 8. The method of claim 6 wherein the top of the tab, the bottom of the tab and the vane between them are bonded with a thermoplastic adhesive.
  • 9. The method of claim 1 wherein at least a portion of the material that is removed has a width of from 0.010 to 0.150 inches.
  • 10. The method of claim 1 wherein the rear portion of fabric is attached to the opposite edge of at least one vane by the steps of:a. forming a rear tab in the rear sheet, the rear tab having a top and a bottom; b. inserting the opposite edge of the at least one vane between the top and the bottom of the rear tab; and c. bonding the top of the rear tab, the bottom of the rear tab and the opposite edge of the at least one vane between them together.
  • 11. The method of claim 10 also comprising removing material from the top and the bottom of the rear tab so that the rear tab has a consistent width along its length.
  • 12. The method of claim 10 also comprising running at least two lift cords through one of each tab, each rear tab and each vane.
  • 13. The method of claim 12 wherein the at least two lift cords have a lift cord diameter and wherein at least one of the front portion of fabric and the rear portion of fabric are a striated fabric having striate yarns which have a striate yarn diameter and comprising the step of selecting the lift cord diameter and the striate yarn diameter so that the lift cords are not perceptibly different in diameter from the striate yarn.
  • 14. The method of claim 12 wherein at least one of the front portion of fabric and the rear portion of fabric are a striated fabric.
  • 15. The method of claim 1 also comprising running at least two lift cords through one of each tab and each vane.
  • 16. The method of claim 15 wherein the at least two lift cords have a lift cord diameter and wherein at least one of the front portion of fabric and the rear portion of fabric are a striated fabric having striate yarn which have a striate yam diameter and comprising the step of selecting the lift cord diameter and the striate yarn diameter so that the lift cords are not perceptibly different in diameter from the striate yarn.
  • 17. The method of claim 15 wherein at least one of the front portion of fabric and the rear portion of fabric are a striated fabric.
  • 18. The method of claim 1 wherein the front portion of fabric and the rear portion of fabric are a light transmissive material.
  • 19. The method of claim 18 also comprising removing each tab.
CROSS REFERENCE TO RELATED APPLICATION

This application is a divisional application of U.S. patent application Ser. No. 08/979,438, filed Nov. 26, 1997 now U.S. Pat. No. 6,196,291.

US Referenced Citations (3)
Number Name Date Kind
3384519 Froget May 1968 A
5339882 Judkins Aug 1994 A
5558925 Fritzman Sep 1996 A