This light-controlled superconductor uses electrons as carriers, which includes a light source and a sealed tube, wherein the sealed tube is made of glass or plastic. The sealed tube is filled with electron gas, and the light source produces incident light, and under the irradiation of the incident light, electrons will be forced to vibrate and behave similarly to vibrating electric dipoles, and emit secondary electromagnetic waves, so that the average distance between the electrons in the sealed tube is much smaller than the wavelength of the incident light, causing the vibrating electrons to be in a near-field of each other. When the electric field intensity direction of the incident light and the electric moments of two vibrating electrons are in the same radial straight line and are in the same direction, there exists an attractive force among the vibrating electrons. Such an attractive force reduces the average kinetic energy of the irregular thermal motions of the electrons to zero, so that the resistance of the electron gas is zero, thereby realizing superconductivity. This light-controlled superconductor can also use a nucleus or other charged particles as a carrier.
It is known that current superconductors require a quite low temperature to enter a superconducting state, and maintaining a quite low temperature will consume considerable energy.
The present invention provides a light-controlled superconductor that drops to a quite low temperature when the light-controlled superconductor enters a superconducting state. This light-controlled superconductor uses electrons as carriers, which includes a light source and a sealed tube, wherein the sealed tube is made of glass or plastic. The sealed tube is filled with electron gas, and the light source produces incident light, and under the irradiation of the incident light, electrons will be forced to vibrate and behave similarly to vibrating electric dipoles, and emit secondary electromagnetic waves, so that the average distance between the electrons in the sealed tube is much smaller than the wavelength of the incident light, causing the vibrating electrons to be in a near-field of each other. When the electric field intensity direction of the incident light and the electric moments of two vibrating electrons are in the same radial straight line and are in the same direction, there exists a radial attractive force among the vibrating electrons. Such a radial attractive force reduces the average kinetic energy of the irregular thermal motions of the electrons to zero, so that the resistance of the electron gas is zero, thereby realizing superconductivity. This light-controlled superconductor may also use nucleons or other charged particles as carriers.
This light-controlled superconductor is based on the following principles:
the electrons are negatively charged, and under the irradiation of incident light, the electrons will perform a simple harmonic motion, wherein the simple harmonic motions of the electrons can be considered as vibrating electric dipoles and will emit secondary electromagnetic waves.
When the electric field intensity direction of the incident light and the electric moments of two vibrating electric dipoles are in the same radial straight line and are in the same direction, there exists a mutual-attracting radial acting force among the two vibrating electric dipoles, that is, there exists a mutual-attracting radial acting force among the two vibrating electrons. (Reference document 1).
Assuming that the incident light is produced by a low speed accelerating charge and assuming that the low speed accelerating charge has a charge amount of Q, an amplitude of a, and a frequency of φ, then a radiated electric field of this vibrating electric dipole is :
where ε0 is a vacuum dielectric constant, c is a vacuum light speed, and R is the distance from an observation point to the centre of the vibrating electric dipole.
Let
then formula (1) becomes
=Aω2 cos ωt (3)
The electric field intensity will cause an electron to be forced to vibrate and behave similarly to a vibrating electric dipole that has a vibration frequency equal to the frequency ω of the incident light and emits a secondary electromagnetic wave.
Assuming that an electron 1 has a charge amount of qe and an amplitude of l1, and in a spherical coordinate system, the near-field electric field intensity and the magnetic field intensity of the vibrating electron 1 are respectively:
where r is the distance from an observation point to the centre of the vibrating electron 1, where r>>l1, r<<λ and λ are the wavelength of the incident light.
Assuming that a vibrating electron 2 is at the observation point, the distance between the vibrating electron 1 and the vibrating electron 2 is therefore r. When the electric field intensity is in the direction of , θ=0, and formulas (4), (5) and (6) become
The vibrating electron 2 performs a simple harmonic forced vibration under the action of the electric field intensities of and , and has a vibration frequency equal to the frequency ω of the incident light and will emit a secondary electromagnetic wave. Assuming that the vibrating electron has a mass of me, a charge amount of qe, and an amplitude of l2, then the motion formula of the vibrating electron 2 in the direction of is:
where ω0 is the intrinsic frequency of the vibrating electron 2, and γ is a damping coefficient.
Because γ<<ω, therefore
Because the vibrating electron 2 can be considered as a vibrating electric dipole, the electric dipole moment of the vibrating electron 2 is defined as and is in the direction of . Then,
The electric field intensity does not depend on the distance r, and therefore will not exert a force in the direction of on the vibrating electron 2.
The near-field electric field intensity of the vibrating electron 1 will exert a force FN in the direction of on the vibrating electron 2, and the electric field intensity {right arrow over (E(t))} and the electric moments of the vibrating electron 1 and the vibrating electron 2 are along the line and are in the same direction.
F
N
=q
e
l
2 cos ωt({right arrow over (r)}·∇={right arrow over (P)}2·∇ (15)
where
From formula (16), it can be known that there exists an attractive force FN in the direction of between the vibrating electron 1 and the vibrating electron 2 in the near-field.
There exists a Coulomb repulsive force FC between the electron 1 and the electron 2:
In a rectangular coordinate system, the attractive force FN between the vibrating electron 1 and the vibrating electron 2 is expressed as:
F
Nx
=F
N sin θ cos ϕ{right arrow over (x)} (18)
F
Ny
=F
N sin θ cos ϕ{right arrow over (y)} (19)
F
Nz
=F
N cos θ{right arrow over (z)} (20)
In a rectangular coordinate system, the Coulomb repulsive force FC between the electron 1 and the electron 2 is expressed as:
F
Cx
=F
C sin θ cos ϕ{right arrow over (x)} (21)
F
Cy
=F
C sin θ cos ϕ{right arrow over (y)} (22)
F
Cz
=F
C cos θ{right arrow over (z)} (23)
Because electrons are quite small, the electrons can be regarded as mass points, and except the moment of collision, the interaction between electrons is negligible, and the electron gas can be considered as an ideal gas, therefore, there is a following relation for the pressure intensity P:
where P is the pressure intensity, n is the total number of electrons, me is an electron mass, kB is the Boltzmann constant, T is the absolute temperature, ni is the number of electrons that have a velocity between Vi and Vi+dVi, and Vix is the X-axis component of Vi.
Because
therefore, there is
A, ω, and nd can all be controlled,
where nd is the electron number density.
For example, when ω=1014 Hz, A=10−13 N·S2/C, Aω2=1015 N/C, λ=1.884*10−5 m, r=10−10 m and l1=10−15 m, there is
Because apart from the moment of collision, the interaction between electrons is negligible, this means that the electrons are approximately free electrons, and ω0≈0. When ω>>ω0,
By integrating formulas (34), (35) and (36), because
When ω=1014 Hz, A=10−13 N·S2/C, r=10−10 m and l1=10−15 m, there is
The pressure and temperature of the electron gas will drop, and the average kinetic energy of the thermal motions of the electrons will also decrease.
When
there is
V
ix=0,P=0,T=0 (47)
Because
therefore, there is
V
x=0 (49)
Similarly, there is
V
y=0 (50)
V
z=0 (51)
When the irregular microscopic velocity and resistance of the electrons drop to zero, the electrons will no longer collide with each other and will no longer hit the wall of the sealed tube.
When the velocity of the electrons drops to zero, because the attractive force FN is greater than the Coulomb repulsive force FC, the distance between the electrons decreases until the attractive force FN equals to the coulomb repulsive force FC, and at this time, the electrons will move in a straight line without collision and resistance, and the resistance decreases to zero.
When the irregular microscopic velocity and resistance of the electrons drop to zero, the external electric field intensity E will give the electrons an initial velocity Ve, and because the resistance is zero, Ve will not decrease, and the electrons will form a persistent current with a superconducting current density of J, where
J=nq
e
V
e (52)
Electrons of which a motion velocity direction is parallel to the magnetic induction intensity B have no magnetic moment.
V⊥ is the velocity component of the motion velocity direction that is perpendicular to the magnetic induction intensity B, V⊥ causes the electrons to perform a uniform circular motion, and the magnetic moment of the electrons is pm, where
where rc is the radius of the uniform circular motion,
The magnetization intensity M is the vector sum of the magnetic moments of electrons per unit volume.
where Σpm is the vector sum of the magnetic moments of electrons in the volume V.
Because
where μr is a relative magnetic permeability, and μ0 is an absolute magnetic permeability.
Therefore, there is
When
V
⊥=0,T=0,P=0 (58)
there is
B=0 (59)
This means that when the electron gas transitions from a normal state to a superconducting state, the magnetic field is repelled from the interior of the electron gas.
According to the above principle of the light-controlled superconductor, the sealed tube is evacuated first to remove impurities in the sealed tube, so that the pressure intensity in the sealed tube is less than 1 Pa, and then the electron gas is injected, and when the electron gas is injected, the electron gas is first irradiated with a low-frequency electromagnetic wave, and the electron gas is then irradiated with a high-frequency electromagnetic wave, so that the attractive force among vibrating electrons becomes greater, and the average distance between the electrons in the sealed tube becomes smaller. The sealed tube is made of glass or plastic, and the sealed tube is wrapped with a heat insulation material outside.
After the sealed tube is filled with the electron gas, the average distance between electrons in the sealed tube is much smaller than the wavelength of incident light, and an electron number density is much greater than the negative third power of the wavelength of the incident light, so that vibrating electrons are in a near-field of each other; the light source produces the incident light, and the electrons are irradiated with the incident light, so that an attractive force is produced between the vibrating electrons; the radial attractive force among the vibrating electrons is controlled by controlling the charge amount and amplitude of an accelerating charge that produces the incident light and the distance between the light source and the vibrating electrons, so that the average kinetic energy of the thermal motions of the electrons decreases to nearly zero, and the resistance of the electron gas is zero, and the electron gas transitions from a normal state to a superconducting state to realize superconductivity; the electron number density is controlled by controlling the frequency of the incident light, thereby controlling a superconducting current density; it is also possible to use nucleons or other charged particles as carriers for the light-controlled superconductor.
A specific embodiment is described below, but specific implementations are not limited to this example.
If there is air in a sealed tube, the thermal kinetic energy of molecules in the air will affect the transition of an electron gas from a normal state to a superconducting state, therefore, the sealed tube needs to be evacuated first, so that the pressure in the sealed tube is lower than 1 Pa. After the evacuation, the electron gas is injected, and in order to allow the vibrating electrons to be in a near-field of each other, the average distance between electrons in the sealed tube should be much smaller than the wavelength of incident light, r<<λ. Because there is the following relationship between the average distance r between electrons and a particle number density nd:
Therefore, there is the following relationship between the particle number density nd and the wavelength λ of the incident light:
That is, the third power of the particle number density is much greater than the wavelength of the incident light. A required particle number density can be known from the wavelength of the incident light.
Because electrons are produced from gas ionization, a hydrogen molecule contains 2 electrons, and there are 6.023×1023 hydrogen molecules per mole of hydrogen, the number of moles of hydrogen that need to be ionized can be known from the wavelength of the incident light.
The sealed tube is made of glass or plastic, and the sealed tube is wrapped with a heat insulation material outside to prevent the electron gas from absorbing heat to change from the superconducting state to the normal state.
When the electron gas is injected, the electron gas is first irradiated with a low-frequency electromagnetic wave, and the electron gas is then irradiated with a high-frequency electromagnetic wave, so that the attractive force among vibrating electrons becomes greater, and the average distance between the electrons in the sealed tube becomes smaller.
From formulas (2) and (16), it can be seen that the attractive force FN between the vibrating electrons increases with the increase of A and ω and increases with the decrease of the distance r, and A increases with the increase of Q and A increases with the decrease of R. Therefore, controlling the charge amount Q and amplitude a of an accelerating charge that produces the incident light and the distance R can control the radial attractive force among the vibrating electrons, thereby controlling the average kinetic energy of the thermal motions of the electrons to realize superconductivity.
At the same time, it can be known according to formula (54) that the electron number density is controlled by controlling the frequency of the incident light, thereby controlling a superconducting current density. This light-controlled superconductor may also use nucleons or other charged particles as carriers.
Number | Date | Country | Kind |
---|---|---|---|
201510740482.9 | Oct 2015 | CN | national |
The present application is a Continuation Application of PCT Application No. PCT/CN2016/102228 filed on Oct. 14, 2016, which claims the benefit of Chinese Patent Application No. 201510740482.9 filed on Oct. 27, 2015. All the above are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2016/102228 | Oct 2016 | US |
Child | 15964122 | US |