Light coupling in TIR-based optical touch systems

Information

  • Patent Grant
  • 10146376
  • Patent Number
    10,146,376
  • Date Filed
    Friday, January 16, 2015
    10 years ago
  • Date Issued
    Tuesday, December 4, 2018
    6 years ago
Abstract
A touch-sensitive apparatus operates by light frustration (FTIR) and comprises a light transmissive panel that defines a front surface and a rear surface, a light emitter optically connected to the panel so as to generate light that propagates by total internal reflection inside the panel, and a light detector optically connected to the panel to receive propagating light from the emitter. The emitter is a VCSEL array including a number of VCSELs driven to collectively form one light emitter, and a light coupling mechanism connecting the emitter to the panel is configured to give light from a plurality of the VCSELs in the VCSEL array substantially the same spread in the panel.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit and priority to and is a U.S. National Phase of PCT International Application Number PCT/SE2015/050043, filed on Jan. 16, 2015. This application claims the benefit and priority to Swedish patent application No. 1450038-3, filed 16 Jan. 2014. The disclosure of the above-referenced applications are hereby expressly incorporated by reference in their entirety.


TECHNICAL FIELD

The present invention generally relates to optical touch-sensing systems, and in particular to such systems that operate by projection measurements of light that propagates by total internal reflection (TIR) inside a light transmissive panel.


BACKGROUND ART

Touch-sensing systems (“touch systems”) are in widespread use in a variety of applications. Typically, the touch systems are actuated by a touching object such as a finger or stylus, either in direct contact, or through proximity (i.e. without contact), with a touch surface. Touch systems are for example used as touch pads of laptop computers, in control panels, and as overlays to displays on e.g. hand held devices, such as mobile telephones. A touch panel that is overlaid on or integrated in a display is also denoted a “touch screen”. Many other applications are known in the art.


There are numerous known techniques for providing touch sensitivity, e.g. by incorporating resistive wire grids, capacitive sensors, strain gauges, etc into a touch panel. There are also various types of optical touch systems, which e.g. detect shadows cast by touching objects onto a touch surface, or detect light scattered off the point(s) of touching objects on a touch panel.


One specific type of optical touch system uses projection measurements of light that propagates on a plurality of propagation paths inside a light transmissive panel that defines a touch surface. The projection measurements thus quantify a property, e.g. power, of the light on the individual propagation paths, when the light has passed the panel. The light propagates inside the panel by total internal reflection (TIR) against the touch surface, such that objects on the touch surface causes the propagating light on one or more propagation paths to be attenuated, commonly denoted FTIR (Frustrated Total Internal Reflection). For touch determination, the projection measurements may be processed by simple triangulation, or by more advanced image reconstruction techniques that generate a two-dimensional distribution of disturbances on the touch surface, i.e. an “image” of everything on the touch surface that affects the measured property. Examples of such touch systems are found in U.S. Pat. No. 3,673,327, U.S. Pat. No. 4,254,333, U.S. Pat. No. 6,972,753, U.S. Pat. No. 7,432,893, US2006/0114237, US2007/0075648, WO2009/048365, US2009/0153519, WO2010/006882, WO2010/064983, WO2010/134865 and WO2012/105893.


The prior art suggests several different approaches for introducing the light into the panel and for detecting the light downstream of the touch surface. For example, U.S. Pat. No. 7,432,893 proposes coupling light into the panel via revolved prisms that are attached to the rear surface of the panel, and detecting the light at photodetectors that are directly attached to the front surface of panel. In WO2010/064983, light is coupled into and out of the panel via the edge surface that connects the front and rear surfaces of the panel, or via wedges that are attached to the front or rear surface of the panel. In WO2012/105893, a sheet-like microstructured element, e.g. a tape of light transmissive material, is provided on the front or rear surface of the panel for coupling light into and out of the panel.


One challenge when designing an optical touch system of this type is to enable consistent touch determination despite the fact that the detectors need to detect small changes in weak optical signals in presence of potentially significant interferences that affect the reliability of the optical signals. One such interference is caused by ambient light, e.g. from sunlight or residential lighting, that may impinge on the detectors and influence the optical signals. Another interference is caused by accumulation of contamination on the touch surface, such a fingerprints, drops of saliva, sweat, smear, liquid spills, etc. The contamination will interact with the propagating light and cause changes to the optical signals that may be difficult to distinguish from changes caused by “true objects”, e.g. objects that are actively manipulated in contact with the touch surface.


In aforesaid U.S. Pat. No. 7,432,893, the impact of ambient light is reduced by attaching the photodetectors to the front surface, such that the photodetectors face away from the ambient light that enters the panel through the front surface. This solution requires a significant bezel to hide and protect the photodetectors and the associated wiring. U.S. Pat. No. 7,432,893 also proposes to intermittently measure ambient levels at the photodetectors and compensate the respective projection measurement for the measured ambient level.


The influence of contamination may be handled by dedicated signal processing that actively estimates the influence of contamination over time and compensates for this influence, e.g. as disclosed in WO2011/028169, WO2011/049512 and WO2012/121652.


However, in view of the weak optical signals and small attenuation caused by touching objects, there is room for further improvement when it comes to increasing the efficiency of touch system.


SUMMARY

It is an objective of the invention to at least partly overcome one or more of the above-identified limitations of the prior art. This object is fulfilled by means of a touch-sensitive apparatus configured in accordance with the claims, which provides an improved light budget by specifically spreading light as needed, in combination with a suitable light source for the emitter.


A first aspect of the invention relates to a touch-sensitive apparatus, comprising:


a light transmissive panel that defines a front surface and an opposite, rear surface; at least one light emitter optically connected to the panel so as to generate light that propagates by total internal reflection inside the panel across a touch-sensitive region on the panel; wherein said light emitter is a VCSEL array including a number of VCSELs driven to collectively form one light emitter; a light coupling mechanism connecting the emitter to the panel, configured to give light from a plurality of the VCSELs in the VCSEL array substantially the same spread in the panel; and at least one light detector optically connected to the panel to receive propagating light from the emitter.


In one embodiment, said light coupling mechanism is configured to direct light from a plurality of the VCSELs of the array to impinge on the front surface at a substantially common predetermined angle (θ) of incidence from within the panel.


In one embodiment, said light coupling mechanism is configured to give light from a plurality of the VCSELs of the array a substantially common fan-shaped spread horizontally within the panel.


In one embodiment, said light coupling mechanism includes a plurality of beam-deflecting elements configured to spread light emanating from the VCSELs of the emitter.


In one embodiment, said light coupling mechanism includes one beam-deflecting element for each VCSEL of the emitter.


In one embodiment, said light coupling mechanism includes one beam-deflecting element for a subset of the number of VCSELs of the emitter, which subset of VCSELs are arranged along a column perpendicular to the front surface of the panel.


In one embodiment, said beam-deflecting elements comprises reflecting elements.


In one embodiment, said beam-deflecting elements comprises refracting elements.


In one embodiment, said beam-deflecting elements are arranged in a layer over the VCSEL array.


In one embodiment, said beam-deflecting elements are staggered over the VCSEL array.


In one embodiment, each beam-deflecting element is a substantially cylindrical convex mirror having a cylinder axis arranged at an angle to a general output beam direction of said VCSELs.


In one embodiment, said light coupling mechanism comprises a layer having a diffractive beam-deflecting pattern configured to deflect light from each VCSEL of the array.


In one embodiment, said emitter is connected to the rear surface of the panel via said light coupling mechanism.


In one embodiment, the touch-sensitive apparatus comprises a visibility filter between the emitter and the rear surface of the panel.


In one embodiment, the plurality of VCSELs of said emitter are connected to be driven in parallel.


In one embodiment the touch-sensitive apparatus comprises a plurality of spaced apart emitters spaced apart so as to define a grid of propagation paths across the touch-sensitive region between respective pairs of one light emitter and one light detector, where each emitter is a separate VCSEL array.


In one embodiment the touch-sensitive apparatus comprises a plurality of spaced apart detectors so as to define a grid of propagation paths across the touch-sensitive region between respective pairs of one light emitter and one light detector.


In one embodiment, a bandpass filter, tailored to an operating wavelength for said VCSELs, is arranged at said detector.


In one embodiment said bandpass filter has a bandwidth of less than 5 nm.


In one embodiment said light detector is optically connected to the light transmissive panel via an angular filter which is applied to an outcoupling region of the panel and is configured to transmit the propagating light only within a confined range of angles with respect to the normal of the outcoupling region; and


wherein said light coupling mechanism is configured to control light input into the panel such that it reaches the outcoupling region predominantly within said confined range of angles.


In one embodiment the confined range extends from a lower angle limit θmin to an upper angle limit θmax, wherein the lower angle limit θmin is equal to or larger than a critical angle θc, which is given by θc=arc sin(1/npanel), with npanel being the refractive index of the light transmissive panel (1) at the outcoupling region.


In one embodiment the lower angle limit θmin exceeds the critical angle by an angle Δθ, which is at least 5°, 10° or 15°.


In one embodiment the lower angle limit θmin is equal to or larger than a first cut-off angle θw=arc sin(nw/npanel), with nw being the refractive index of water, npanel>nw.


In one embodiment the lower angle limit θmin is equal to or larger than a second cut-off angle θf=arc sin(nf/npanel), with nf being the refractive index of finger fat, npanel>nf.


In one embodiment the angular filter includes a dielectric multilayer structure.





BRIEF DESCRIPTION OF DRAWINGS

Embodiments of the invention will now be described in more detail with reference to the accompanying schematic drawings.



FIG. 1 is a section view of a light transmissive panel to illustrate the principle of using TIR for touch detection.



FIG. 2A is a top plan view of a touch-sensitive apparatus according to an embodiment.



FIG. 2B is a 3D plot of an attenuation pattern generated based on energy signals from a TIR-based projection-type touch-sensitive apparatus.



FIG. 3A is section view of a VCSEL, illustrating its internal functional structure.



FIG. 3B is an elevated view of an emitter in the form of a VCSEL array.



FIG. 4A is a section view of a rear-coupled light coupling mechanism for input of light according to one embodiment.



FIG. 4B is a rear side plan view of the embodiment of FIG. 4A.



FIG. 5A is a section view of an edge-coupled light coupling mechanism for input of light according to one embodiment.



FIGS. 5B and 5C show cross-sectional views of variants of the embodiment of FIG. 5A.



FIG. 5D shows a perspective view of an embodiment applicable e.g. to the embodiment of FIG. 5C.



FIG. 6A is a section view of a rear side light coupling mechanism with a visibility filter according to one embodiment.



FIG. 6B is a front side plan view of the embodiment of FIG. 6A.



FIG. 7A shows a sectional view of a light coupling mechanism according to one embodiment.



FIG. 7B shows a sectional view of a variant of the light coupling mechanism of FIG. 7A.



FIG. 8A schematically illustrates a beam-deflecting element of a light coupling mechanism of one embodiment.



FIG. 8B shows a schematic representation of a two-dimensional array of beam-deflecting elements in accordance with FIG. 8A.



FIG. 8C shows a schematic representation of a one-dimensional array of beam-deflecting elements in accordance with FIG. 8A.



FIG. 9A shows a sectional view of another light coupling mechanism, according to an embodiment based on refraction.



FIG. 9B shows a perspective view of a beam-deflecting element applicable e.g. to the embodiment of FIG. 9A.



FIG. 10 shows a schematic view of another light coupling mechanism, according to an embodiment based on diffraction.



FIG. 11 is a section view of a light outcoupling structure according to a first embodiment.



FIG. 12A is a plot of transmission as a function of incidence angle for an angular filter included in the first embodiment, and FIG. 12B is a perspective view of the range of angles that are transmitted by the angular filter.



FIG. 13 is a section view to illustrate characteristic angles of the angular filter and characteristic angles of the panel.



FIG. 14 is a section view to illustrate incoupling of ambient light via contamination on the touch surface.



FIG. 15 is a section view to illustrate a relation between bounce angles in a two-layer panel.



FIG. 16 is a section view to illustrate bounce angles in a panel which is laminated to a display device.



FIG. 17A is a section view of a light outcoupling structure according to a second embodiment.



FIGS. 17B-17C are section and plan views of a light outcoupling structure according to a third embodiment.



FIGS. 18A-18B are section and plan views of an alternative outcoupling structure.



FIG. 19 is a bottom plan view of a sequence of structures arranged on a panel to couple light into and/or out of the panel.



FIG. 20 is a graph of light reflectivity at a panel-water interface as a function of angle of incidence inside the panel.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

In the following, various inventive light coupling mechanism structures will be presented as installed in an exemplifying TIR-based projection-type touch-sensitive apparatus. Throughout the description, the same reference numerals are used to identify corresponding elements.



FIG. 1 illustrates the concept of touch detection based on attenuation of propagating light, commonly denoted FTIR (Frustrated Total Internal Reflection). According to this concept, light is transmitted inside a panel 1 along a plurality of well-defined propagation paths. The panel 1 is made of solid material in one or more layers and may have any shape. The panel 1 defines an internal radiation propagation channel, in which light propagates by internal reflections, also denoted “bounces” in the following. In the example of FIG. 1, the propagation channel is defined between the boundary surfaces 5, 6 of the panel 1, and the front surface 5 allows the propagating light to interact with touching objects 7 and thereby defines the touch surface 4. The interaction is enabled by injecting the light into the panel 1 such that the light is reflected by total internal reflection (TIR) in the front surface 5 as it propagates through the panel 1. The light may be reflected by TIR in the rear surface 6 or against a reflective coating thereon. It is also conceivable that the propagation channel is spaced from the rear surface 6, e.g. if the panel comprises multiple layers of different materials. The panel 1 may thus be made of any solid material (or combination of materials) that transmits a sufficient amount of light in the relevant wavelength range to permit a sensible measurement of transmitted energy. Such material includes glass, poly(methyl methacrylate) (PMMA) and polycarbonates (PC). The panel 1 typically has a refractive index in the range of 1.3-1.7. For example, PMMA has a refractive index of about 1.5 and PC has a refractive index of about 1.6 in the near infrared (NIR). The panel 1 may be designed to be overlaid on or integrated into a display device or monitor (not shown).


As shown in FIG. 1, an object 7 that is brought into close vicinity of, or in contact with, the touch surface 4 may interact with the propagating light at the point of touch. In this interaction, part of the light may be scattered by the object 7, part of the light may be absorbed by the object 7, and part of the light may continue to propagate in its original direction across the panel 1. Thus, the touching object 7 causes a local attenuation or “frustration” of the total internal reflection, which leads to a decrease in the energy (or equivalently, the power or intensity) of the transmitted light, as indicated by the thinned lines downstream of the touching objects 7 in FIG. 1.



FIG. 2A illustrates an example embodiment of a touch-sensitive apparatus 100 that is based on the concept of FTIR. Emitters 2 are distributed along the perimeter of the touch surface 4, beneath the panel 1, to project light onto an incoupling structure on the panel 1 such that at least part of the light is captured inside the panel 1 for propagation by internal reflections in the propagation channel. Detectors 3 are distributed along the perimeter of the touch surface 4, beneath the panel 1, and are optically coupled to the panel 1 so as to receive part of the propagating light from a respective outcoupling structure. The light from each emitter 2 will thereby propagate inside the panel 1 to a number of different detectors 3 on a plurality of light propagation paths D. Even if the light propagation paths D correspond to light that propagates by internal reflections inside the panel 1, the light propagation paths D may conceptually be represented as “detection lines” that extend across the touch surface 4 between pairs of emitters 2 and detectors 3, as indicated by dashed lines in FIG. 2A. Thus, the detection lines correspond to a projection of the propagation paths onto the touch surface 4. Thereby, the emitters 2 and detectors 3 collectively define a grid of detection lines (“detection grid”) on the touch surface 4, as seen in a top plan view. It is appreciated that FIG. 2A is an example, and that a (significantly) larger number of emitters 2 and/or detectors 3 may be included in the apparatus 100. Also, the distribution of emitters 2 and detectors 3 may differ.


The detectors 3 collectively provide an output signal, which is received and sampled by a signal processor 10. The output signal contains a number of sub-signals, also denoted “projection signals”, each representing the energy of light received by a certain light detector 3 from a certain light emitter 2. Depending on implementation, the signal processor 10 may need to process the output signal for separation of the individual projection signals. The projection signals represent the energy, intensity or power of light received by the detectors 3 on the individual detection lines D. Whenever an object touches a detection line, the received energy on this detection line is decreased or “attenuated”.


The signal processor 10 may be configured to process the projection signals so as to determine a property of the touching objects, such as a position (e.g. in the x,y coordinate system shown in FIG. 2A), a shape, or an area. This determination may involve a straight-forward triangulation based on the attenuated detection lines, e.g. as disclosed in U.S. Pat. No. 7,432,893 and WO2010/015408, or a more advanced processing to recreate a distribution of attenuation values (for simplicity, referred to as an “attenuation pattern”) across the touch surface 1, where each attenuation value represents a local degree of light attenuation. An example of such an attenuation pattern is given in the 3D plot of FIG. 2B, where the peaks of increased attenuation represent touching objects. The attenuation pattern may be further processed by the signal processor 10 or by a separate device (not shown) for determination of a position, shape or area of touching objects. The attenuation pattern may be generated e.g. by any available algorithm for image reconstruction based on projection signal values, including tomographic reconstruction methods such as Filtered Back Projection, FFT-based algorithms, ART (Algebraic Reconstruction Technique), SART (Simultaneous Algebraic Reconstruction Technique), etc. Alternatively, the attenuation pattern may be generated by adapting one or more basis functions and/or by statistical methods such as Bayesian inversion. Examples of such reconstruction functions designed for use in touch determination are found in WO2009/077962, WO2011/049511, WO2011/139213, WO2012/050510, and WO2013/062471, all of which are incorporated herein by reference.


In the illustrated example, the apparatus 100 also includes a controller 12 which is connected to selectively control the activation of the emitters 2 and, possibly, the readout of data from the detectors 3. Depending on implementation, the emitters 2 and/or detectors 3 may be activated in sequence or concurrently, e.g. as disclosed in WO2010/064983. The signal processor 10 and the controller 12 may be configured as separate units, or they may be incorporated in a single unit. One or both of the signal processor 10 and the controller 12 may be at least partially implemented by software executed by a processing unit 14, such as a CPU.


Embodiments of emitters will now be explained in detail with reference to FIG. 3. Generally, these embodiments are presented in the context of the touch-sensitive apparatus shown in FIG. 2A.


One of the main challenges in the art of optical touch sensing is the need to obtain a usable optical signal at the detector side that is sufficiently strong or characteristic so as to be recognizable from background noise. The emitters 2 may generate light in any wavelength range, but FTIR systems preferably operate in the near infrared (NIR), i.e. at wavelengths of about 750 nm-1400 nm, which is also the range in which the following emitter 2 examples generates light. As mentioned, both ambient light and changes to propagating light caused by contamination on the touch surface are factors that must be taken into account. Rather than solely trying to shield the detector side of the touch-sensing system, the Applicant behind the present invention suggests that these problems can be alleviated by means of careful arrangement of the emitters 2. While other types of light sources have been suggested, emitters 2 are generally provided by means of lasers, typically edge-emitting diode lasers, in state of the art FTIR systems. Such diode lasers have several benefits, in particular with regard to cost and availability. However, it has been noted that even with high power laser diodes, there is room for improvement in the signal to noise characteristics.


The present invention suggests providing emitters 2 in the form of VCSEL arrays. A VCSEL, Vertical Cavity Surface-Emitting Laser, is a semiconductor laser which is well known in the art of light sources as such, but which is significantly different from standard edge-emitting diode lasers. FIG. 3A illustrates a typical VCSEL 21, with reference to which the basic structure of this type of laser will be briefly described. It should be noted that VCSELs can be built differently, the design of FIG. 3A being merely one example for the purpose of explaining the general function thereof. The layered structure is built up from a substrate 31, typically a GaAs wafer, and the structure comprises a bottom mirror 33A, a top mirror 33B, with a laser cavity 35 in between. The mirrors 33A and 33B are created as a DBRs, Distributed Bragg Reflectors. The lower mirror 33A is typically an n-type DBR, and has very high reflectivity for the laser wavelength, typically 99.9%, whereas the top mirror 33B typically is a p-type DBR with about 99% reflectivity. This means that the illustrated embodiment is designed to be a top emitting VCSEL 21. Alternatively, it is possible to construct a bottom emitting VCSEL, which provides light out through the substrate 31. The laser cavity 35 comprises at least one quantum well structure, i.e. a single quantum well, or several repeated structures forming a multiple quantum well. A typical example of a single quantum well comprises two AlGaAs layers, with a thin GaAs layer in between in which quantum confinement is achieved. This is indicated in the drawing by a grey central layer of the laser cavity 35. Also, oxide layers 37 are formed between the laser cavity 35 and the respective DBRs 33A and 33B. Each oxide layer 37 is typically shaped with a circular aperture, which provides circular shaping of the laser beam that escapes through the top mirror 33B. The laser is electrically fed by means of cooperating electrodes; e.g. a bottom electrode 39A underneath the substrate 31, and a top electrode 39B for current injection. The top electrode 39B has an aperture for allowing the laser light to escape, and is provided by means for current injection, such as by the illustrated bonding wire 39C.


VCSELs have certain benefits compared to traditional edge-emitting lasers, such as low threshold current, circular beam shape with low divergence, and good temperature stability. Still, these characteristics have hitherto not made VCSELs preferable over edge-emitting laser diodes for FTIR emitter purposes. However, VCSELs have another benefit over edge-emitting lasers that can be utilized, they are possible to build into 2D (two-dimensional) arrays. This is possible since they are grown on the surface of a wafer, whereas a side-emitting laser is cut out from the wafer, making at best a one-dimensional array possible. Also, the Applicant has found that a VCSEL array provides an advantage as an emitter 2 for FTIR purposes, other than simply including several VCSELs in one package.



FIG. 3B schematically shows an emitter 2 comprising a 2D VCSEL array, which in turn includes 9 individual VCSELs 21 in a 3×3 arrangement. Each VCSEL 21 may e.g. be of the type described with reference to FIG. 3A. However, the specific details of the VCSELs 21 are not illustrated in FIG. 3B for the sake of simplicity. All VCSELs 21 in the array are driven in parallel, with the respective top electrodes 39B being interconnected. In one embodiment, indicated by the dashed overhead layer, a common conductive sheet 39D, such as a metal layer, may be provided over the array structure with apertures for each VCSEL 21, either so as to operate as a common top electrode, or connecting to the respective top electrodes 39B of the individual VCSELs 21. The 3×3 array illustrated in FIG. 3B is merely an example to indicate the 2D displacement of the individual VCSELs 21. In other embodiments, the emitter 2 may be formed of a 2D VCSEL array comprising hundreds of individual VCSELs 21. The pitch between two individual VCSELs 21 may be as small as in the order of single μm or larger. It should be noted that the individual VCSELs of the array need not be dispersed in a Cartesian type grid as in FIG. 3B. In other embodiments, the individual VCSELs may be arranged in a hexagonal grid, i.e. in parallel lines, each one offset half a pitch with respect to its neighboring lines. In yet another embodiment the individual VCSELs 21 may be arranged along concentric circles, or in other shapes. Regardless of the specific grid character, it may be realized that in the near field immediately over the emitter 2 the grid-like structure of the individual VCSELs 21 will characterize the irradiance over the field angle of the emitter 2. However, the light beams 23 of the individual VCSELs 21 will blend within a very short distance to form an aggregate light beam of the emitter 2. A benefit of the VCSEL array is a consequence of this aggregation, namely a short coherence length, which means that it has very low speckle. This is believed to be one of the reasons why the Applicant has found that a VCSEL array emitter 2 provides improved signal readout for touch detection in FTIR systems than with a single laser with corresponding power.


Also, a VCSEL array emitter 2 typically provides a light beam with a substantially circular cross-section with a narrow divergence of less than 20° (1/e2), even down to 15°. Preferred embodiments further build on this fact, so as to improve signal detection at the detector 3 side, namely by restricting signal detection to a certain angular range with respect to an outcoupling area of the panel where the detector 3 is connected.


Embodiments of light coupling mechanisms for incoupling of light will now be explained in detail with reference to FIGS. 4-10. Generally, these embodiments are presented in the context of the touch-sensitive apparatus shown in FIG. 2A, in which the light coupling mechanisms are denoted 120.



FIG. 4A illustrates a section that may be taken along any one of the detection lines D of the touch-sensitive apparatus in FIG. 2A. For the sake of simplicity, only a portion of the apparatus at and around the light coupling mechanism is shown. The embodiment of FIG. 4A is a rear side coupled solution, in which the light coupling mechanism comprises a prism 25 configured to direct light from the VCSEL array emitter 2 into the panel 1. More specifically, the prism 25 is preferably configured so as to couple light from the emitter 2 into the panel 1 along a general beam direction having an advantageous angle θ of incidence to the front 5 and rear surfaces 6. Obviously, the angle θ shall be larger than the critical angle θc. The prism 25 may be made from the same material as the panel 1, or any other material which is transmissive to the wavelength of the emitter 2. Dependent on the specific configuration, the prism 25 may also have a reflective surface 27, rather than having a simply refractive function, provided e.g. by means of a metal coating of the surface 27. For the purpose of optimizing the optical coupling, an index-matching component 29 may further be disposed to link the emitter 2 to the prism 25, such as e.g. a layer of silicone.



FIG. 4B illustrates a bottom plan view of an embodiment of the light coupling mechanism of FIG. 4A. While it is beneficial that the emitter 2 has a narrow beam divergence vertically, it is in some embodiments nevertheless preferable that the divergence in the horizontal plane is comparatively wide. The reason is that light from one emitter 2 then can be detected by several detectors 3 dispersed along the periphery of the touch surface 4, as seen in FIG. 2A. One way of obtaining this is to sweep the beam from the emitter 2 over the angular range of interest in the plane of the panel 1. Another way is to optically modify the beam shape from the emitter 2, so as to be more fan-shaped. FIG. 4B schematically illustrates one way of obtaining this effect. In this embodiment, the surface 27 of the prism 25 in which the beam from the VCSEL array emitter 2 is reflected, has a microstructure with repeated curved portions, each portion forming a convex mirror from the inside of the prism 25. This way, light from the emitter 2 may be dispersed in the horizontal plane of the panel, as schematically indicated by the dashed arrows. In the drawing of FIG. 4B there is no index-matching component 29 illustrated, but such a component may of course still be employed. The curved portions of the surface 27 preferably have the same pitch as the pixels of the VCSEL array emitter 2, such that the surface 27 will act as a light coupling mechanism for giving light from a plurality of the VCSELs 21 in the VCSEL array 2 substantially the same spread in the panel 1, preferably all VCSELs 21 of the array 2.



FIG. 5A illustrates an alternative to the embodiments of FIGS. 4A and 4B. This embodiment makes use of an edge-coupled design, i.e. where light from the emitters 2 is coupled in through a side edge 28 of the panel 1 rather than through the front 5 or rear 6 surface. In the exemplary embodiment of FIG. 5A, a beam direction from the VCSEL array emitter 2 with a suitable angle of incidence to the front 5 and rear 6 surfaces is obtained by means of a wedged shape of the side edge 28, at least at the incoupling site. The VCSEL array emitter 2 may be attached directly to the side edge 28 by means of an index-matching adhesive such as silicone 29. An alternative solution (not shown) may be to couple light from the emitters 2 to the side edge 28 by means of an optical fiber.



FIG. 5B shows the embodiment of FIG. 5A in a side sectional view, taken along line A-A as indicated in FIG. 5A. In other words, FIG. 5B shows a planar view which is perpendicular to the side edge 28. In this embodiment, the light coupling mechanism comprises a structured side edge 28, configured to provide the desired spread to input light. The structure formed at side edge 28 may be provided only where the emitter 2 is attached. Alternatively, it may be provided consistently at longer portions of the side edge 28, or all the way around the periphery. Preferably, light from the emitter 2 shall be input in a substantially collimated beam in a plane perpendicular to the panel 1 (as indicated by the arrows in FIG. 5A). The structured edge surface 28 may be configured to collimate the light by refraction. However, the light output from the VCSEL array emitter is typically already substantially collimated, and the side edge 28 may therefore alternatively be substantially straight, or flat, in a plane through the panel 1, such as in the view shown in FIG. 5A. Along the side edge, on the other hand, the light coupling mechanism includes a structure which preferably is repeated with the same pitch as that of the VCSELs 21 of the VCSEL array. The structure is designed and aligned to give substantially the same spread to light from a plurality of the VCSEL 21, preferably each, of the array 2, typically in a fan-shape within the panel 1 as indicated by the arrows. The specific shape of the structured edge 28 is dependent on the relative difference in refractive index inside and outside the structured edge 28. If there is an air gap, or an index-matching material 29 with a refractive index lower than that of the panel 1, between the emitter 2 and the panel 1, the structured edge 28 may be configured with a series of concave surface portions aligned to the VCSEL array 2. This is illustrated in the example of FIG. 5B. However, since the VCSEL array is made of a semiconductor structure, it normally has a very high index of refraction. Just as an example, with a VCSEL type as outlined with reference to FIG. 3A, the average index of refraction for the top GaAs/AlGaAs DBR mirror 33B may be in the order of 3.6 for light at 980 nm. This is a lot higher than the index of refraction for the panel 1, regardless of the material chosen from the examples given before, which are all in the range around 1.5. So, if an index matching material 29 is employed which has an index of refraction between that of the VCSEL array 2 and the panel, and preferably closer to that of the VCSEL array 2, the structures on the edge 28 may instead be convex to provide a fan-shaped spread to the input emitter light.



FIG. 5C is provided in the same perspective as FIG. 5B, but shows an alternative variant of the embodiment of FIG. 5A. In this embodiment, the light coupling mechanism is provided by means of a structured surface 24 of the emitter 2, rather than on the edge 28 of the panel. As mentioned, the VCSEL array emitter 2 is typically made from a material which has a higher index of refraction than the panel 1. A spread input is thus obtained by means of a concave structure at the emitter surface 24. An index matching material 29 is employed to optically connect the emitter 2 to the panel 1, preferably with an index of refraction which is closer to that of the panel 1.



FIG. 5D shows an example of a VCSEL array emitter 2 as used in the embodiment shown in FIG. 5C, comprising plural individual VCSELs 21. As outlined with respect to FIG. 3B, both the arrangement and the number of VCSELs 21 in the array 2 are exemplary. However, it may be advantageous in some embodiments to arrange the VCSELs 21 in a substantially Cartesian grid, as illustrated. That way a refracting surface 24 pattern which changes in only one dimension, along the y axis in FIGS. 5C and 5D, of the plane of the emitter 2 can be used. If the arrangement of the individual VCSELs 21 in the array 2 is instead such that e.g. every second line of VCSELs 21 along the x axis is offset half a pixel pitch, i.e. in an hexagonal arrangement, a structured surface 24 which also is offset must be used. The repetitive lens pattern 24 on the emitter 2 may e.g. be produced by means of an imprint process. In an alternative embodiment, the lens pattern 24 may be produced in a separate process on an optical wafer, which is later bonded to a wafer on which the VCSEL array 2 is created, and subsequently cut into separate emitter elements.



FIGS. 6A and 6B illustrate an alternative to the embodiments of FIGS. 4A and 4B. This embodiment makes use of a rear-side coupled design, i.e. where the emitters 2 are coupled substantially perpendicular to the rear 6 surface. The emitter 2 is coupled to the panel 1 through a light coupling mechanism 65, which is configured to give light from a plurality of the VCSELs 21 in the VCSEL array emitter 2 substantially the same spread in the panel 1, and preferably each VCSEL 21. The drawings of FIGS. 6A and B are quite schematic, and predominantly show the presence of the light coupling mechanism 65, and how light is thereby controlled to propagate in the panel 1. Specific example of how the light coupling mechanism 65 may be configured in a rear-side coupled design will follow below. In preferred embodiments, light is controlled to propagate in a substantially collimated beam vertically at an angle θ to the front surface, as indicated in FIG. 6A. In one embodiment, this angle of incidence is in the range of 50-80°. The lower limit is physically set by Snell's law dependent on the index of refraction for the panel, but care may also be taken to e.g. contamination on the panel surface 5, as will be described below. A very high upper limit will make the pitch between reflections in the front surface 5 higher, which will produce less loss but also limit the resolution of the touch-sensing device. In a preferred embodiment, the angle of incidence may be in the range of 70-80°. Within the plane of the panel 1, on the other hand, light shall preferably be spread in a wide angle φ. The larger the spread the better, and in a preferred embodiment the spread within the panel 1 should be up to 170°



FIG. 6A furthermore illustrates the incorporation of a visibility filter 50, arranged to hide at least the emitter 2, the light-coupling mechanism 65, and the internal structure of the touch-sensitive apparatus 100 from view through the front surface 5. The visibility filter 50 is non-transmissive (opaque) to visible light and transmissive to NIR light, and preferably only transmissive to NIR light in the wavelength region of the propagating light. The visibility filter 50 may be implemented as a coating or film, in one or more layers. In FIG. 6A, the visibility filter 50 is arranged beneath the panel 1, intermediate the rear surface 6 and the light coupling mechanism 65. This enables the front surface 5 to be perfectly flat and free of projecting elements. In a variation, not shown, the visibility filter 50 is applied to the front surface 5. It is to be understood that the visibility filter 50 may be implemented in conjunction with any light coupling mechanism described herein, such as that of FIGS. 4A and 5A, and also in conjunction with any outcoupling structure and related detector, as described below.



FIG. 7A shows a sectional view of a VCSEL array emitter 2 and a light coupling mechanism 65 in accordance with one embodiment suited for rear-side coupling to a panel 1 as shown in FIG. 6A. In this embodiment, a layer structure is provided over the VCSELs 21, in which beam-deflecting elements 66 are included. These beam-deflecting elements 66 will act as separate mirrors for each one VCSEL 21, in the embodiment shown in FIG. 7A, and thus act as beam-reflecting elements 66. However, it should be noted that other embodiments may employ one beam-deflecting element 66 for two or more VCSELs arranged in a row, such as for the row of VCSELs illustrated in FIG. 7A (cf. FIG. 8C below). A benefit with the configuration shown in FIG. 7A, though, is that it allows for a more compact design. The individual beam-deflecting element 66 are configured to give substantially the same spread to light from each VCSEL 21. In one direction, within the plane through which the cross-sectional view of FIG. 7A is illustrated, that spread is preferably a mere deflection to a certain angle. For this purpose, the respective beam-deflecting elements 66 are preferably flat or straight in a projection to that plane, as shown in the drawing. This angle of the beam-deflecting elements 66 with respect to the light output direction of the VCSELs 21, may be selected with consideration taken to the desired propagation angle θ in a panel 1 to which the emitter 2 and light coupling mechanism 65 is to be connected, and to the respective indices of refraction of such a panel 1 and of the light-coupling mechanism 65. In a variant of this embodiment, not shown, where the light cone angle of the VCSELs 21 of the emitter 2 is larger than desired, each beam-deflecting element 66 may be slightly curved to produce a concave mirror configured to collimate the respective VCSEL beam.



FIG. 7B shows a variant of the embodiment of FIG. 7A. When the individual VCSELs 21 of the emitter 2 are tightly packed and/or the desired angle of deflection of the light coupling mechanism 65 is high, a situation may occur where one individual beam-deflecting element 66 at least partly obscures the light path from a VCSEL 21 farther back, i.e. farther to the left in the drawing of FIG. 7A. One solution to this problem is to arrange the individual beam-deflecting elements 66 in a staggered manner, as illustrated in FIG. 7B. This way the total deflected beam is widened, i.e. the aggregate of the individual beams, and VCSEL light deflected from one light-deflecting element 66 will pass safely over the beam-deflecting elements 66 in front. In the example shown in FIG. 7B, each beam-deflecting element 66 is disposed completely over its closest neighboring beam-deflecting elements 66 in the deflection direction, i.e. to the right in the drawing. However, it should be noted that the staggered arrangement may be less pronounced, such that each beam-deflecting element 66 is offset to its neighboring beam-deflecting elements 66 only to a small extent. In such an embodiment (not shown) two adjacent beam-deflecting elements 66 overlap vertically, and are thus partly arranged in the same plane over the VCSEL emitter array 2. There are different conceivable ways of manufacturing structures according to FIG. 7A or 7B, which are all well known in the art, including repeated chemical vapor deposition and etching, or using a micro imprint technique, together with metallization to form the mirrors of the beam-deflecting elements 66. One way of manufacture, as outlined with respect to FIG. 5D, may be to create the light coupling mechanism 65 with its individual beam-deflecting element 66 lens pattern 24 in a separate process on an optical wafer, which is later bonded to a wafer on which the VCSEL array 2 is created, and subsequently cut into separate emitter elements.


As indicated in FIG. 6B, it may be desirable to obtain a wide spread of light from the emitter 2, such that light may propagate to plural detectors 3 disposed at different positions along the periphery of the panel 1. FIGS. 8A to 8C are included to illustrate how this effect may be achieved in selected embodiments of the light coupling mechanism 65. FIG. 8A schematically illustrates one VCSEL 21 and one associated beam-deflecting element 66, shown in a perspective view, and may represent one beam path of the embodiments of FIG. 7A or 7B. The dashed ring on the beam-deflecting element 66 is meant to indicate where VCSEL light hits. The beam-deflecting element 66 may be configured as a planar mirror, so as to deflect the beam in the plane of a main direction of propagation. However, the mirror 66 is also slightly curved about an axis in the plane of the main direction of propagation of the VCSEL light, as is clearly illustrated in the drawing. This way, a convex mirror effect is obtained, which functions to spread VCSEL light about the main direction of propagation.



FIG. 8B is a top plan view illustrating a subset of the individual beam-deflecting elements 66 of a light coupling mechanism 65. From this drawing it may be gathered that the light from each VCSEL 21 is given substantially the same spread by means of the light coupling mechanism 65, or at least from a plurality of the VCSELs 21. A benefit of this is that light from all VCSELs 21 will combine and propagate to the same detectors 3, as a plurality of aggregate beams. This way, speckle will effectively be minimized at the detector side. The light coupling mechanism 65 of FIG. 8B may e.g. be used in the embodiment of FIG. 7A or 7B.



FIG. 8C is a top plan view of an alternative embodiment of a light coupling mechanism 65, compared to that of FIG. 8B. This drawing is merely included to show what was discussed as an alternative solution to that shown in FIG. 7A, namely with one beam-deflecting element 66 operating to deflect light from two or more VCSELs 21. However, since there is only a plane deflecting effect in the main direction of propagation (upwards in the drawing) also this embodiment will have the effect of steering light from all VCSELs 21 of the array to the same detectors 3.


While FIGS. 7 and 8 illustrate light coupling mechanisms 65 relying on reflection, FIGS. 9A and 9B show another embodiment relying on refraction. This embodiment may be seen as a variant of the embodiment of FIG. 5C, adapted for rear-side coupling to a panel 1 as indicated in FIG. 6A. In this embodiment, a layer structure is provided over the VCSELs 21, in which beam-deflecting elements 67 are included. These beam-deflecting elements 67 will act to deflect the respective VCSEL beam by refraction, and are thus beam-refracting elements 67. It should thus be understood that the each beam-refracting element 67 is disposed immediately below a layer having an index of refraction which is lower than that of the beam-refracting element 67. Typically, as mentioned before, the light coupling mechanism 65 is connected to a panel 1 by means of an index-matching member, which preferably has an index of refraction between that of the uppermost layer of the light coupling mechanism 65 and that of the panel 1. Also this embodiment may alternatively be devised with beam-refracting elements 67 which are configured to deflect light from two or more VCSELs 21, corresponding to the embodiment of FIG. 8C.



FIG. 9B schematically illustrates one beam-refracting element 67 of the light coupling mechanism 65 of FIG. 9A. To make the drawing more lucid, coordinate axes are inserted in both FIGS. 9A and 9B. From this information it may be gathered that in the xz plane, the beam-refracting element 67 is configured to merely deflect all light a certain angle, as shown in FIG. 9A. However, the curved profile will lead to a spreading in the y direction of light from a VCSEL 21 disposed underneath the beam-refracting element 67, similar to what is indicated in FIG. 6B.


The description of embodiments for spreading of VCSEL light has been given for either reflective beam deflectors or refractive beam deflectors. However, it should be understood that a combination of the two is also possible. As a mere example, the embodiment of FIG. 7B may be configured with flat light-deflecting elements 66, i.e. planar mirrors. This will only result in the deflection shown in FIG. 7B, but no individual spreading of light from the VCSELs in the y direction. However, the uppermost layer of the light coupling mechanism 65 may be configured in accordance with the structured surface 24 of FIG. 5C, which will provide a spread only in the y direction, but not in the x direction. In aggregate, both the deflection to the desired collimated angle θ of propagation within a panel 1 is obtained, and a fan-shaped spread from each individual VCSEL 21 is obtained within an angle φ.



FIG. 10 illustrates schematically a quite different type of beam deflection, which can be used with the present invention. Rather than reflecting or refracting a VCSEL beam, the light coupling mechanism 65 comprises a layer 68 devised with a diffractive beam-deflecting pattern. The diffractive layer 68 is configured to deflect light from each VCSEL of the array, and any selected beam pattern can be obtained within limits. An example of such a diffractive layer 68 may be a NAFgram sheet as manufactured by the company Nanocomp Oy Ltd. These sheets can be provided in e.g. PET, PMMA or PC in thicknesses of 100-500 μm, and with a spreading angle of up to 90°. The drawing of FIG. 10 intends to show that light from each VCSEL 21 of the array emitter 2 is deflected to all parts of the beam pattern 69, and said beam pattern is indicated to be a substantially one dimensional line. Also the mere deflection may optionally be obtained by means of the diffractive layer 68. Alternatively, the diffractive layer 68 may be combined with e.g. a beam-deflecting light coupling mechanism 65 as that of FIG. 7A, 7B or 9A, with said diffractive layer 68 being configured to provide the fan-shaped spreading in the panel 1. Such a diffractive layer 68 may in such an embodiment e.g. be configured as the uppermost layer in the light-coupling mechanism of the mentioned drawings.


Embodiments of structures for outcoupling and detection of light will now be explained in detail with reference to FIGS. 11-20. Generally, these embodiments are presented in the context of the touch-sensitive apparatus shown in FIG. 2A.



FIG. 11 illustrates a section that may be taken along any one of the detection lines D of the touch-sensitive apparatus in FIG. 2A. For simplicity, only a portion of the apparatus at and around the outcoupling structure is shown. The outcoupling structure is made up of a sheet-like angular filter 20 which is applied with its front face to the panel 1 at the periphery of the touch surface 4 to define an outcoupling port for the light propagating in the panel 1. A detector 3 is applied with its light-sensing surface 3A onto the rear face of the angular filter 20. In an alternative (not shown), a spacer of light transmissive material is disposed between the surface 3A and the filter 20. As used herein, the detector 3 may be any device capable of converting light, at least within a portion of the wavelength range that the emitter operates, into an electrical signal, such as a photo-detector, a CCD device, a CMOS device, etc. The angular filter 20 is designed to only be transmissive to light within a given angular range, i.e. for light that impinges on the filter 20 at certain angles of incidence to the normal N (FIG. 12B) of the filter 20. FIG. 12A is a plot of the transmission of the filter 20 as a function of angle of incidence. As seen, the filter 20 transmits light within a given angular range between a lower limit θmin and an upper limit θmax, while reflecting light that impinges on the filter at other angles of incidence. Any criterion may be used for defining the limits θmin, θmax, e.g. a percentage (e.g. 25, 50 or 75) of absolute or maximum transmission. FIG. 12B illustrates the angular range in relation to a single position on the front surface of the filter 20. As seen, the angular range is equal in all directions in the plane of the filter 20. Preferably, the angular range is essentially the same at all positions on the filter 20.


The filter 20 may be designed as a dielectric multilayer structure of at least two different materials, similar to an interference filter. It lies within the reach of the person skilled in optical design to select appropriate materials and number of layers to achieve the desired angular range for light at a wavelength generated by the emitters 2.


It should be understood that the filter 20 need not be designed to define the given angular range for all wavelengths, but only for a limited wavelength range that includes the wavelength(s) of the propagating light. In a preferred embodiment, the angular filter 20 is reflective to all angles outside the limited wavelength range. In this aspect, the use of a VCSEL array as emitter 2 provides an additional benefit, since it is very narrow light source. Typically, a VCSEL is a single mode laser, and a VCSEL array emitter 2 may have a spectral width of <1 nm FWHM (Full Width at Half Maximum). In addition, a VCSEL exhibits high temperature stability, with very little drift of less than 0.1 nm/deg. It is thereby possible to have a very narrow band pass filter of less than 5 nm. This way it is possible to block out virtually all ambient light outside the spectral range of the emitter, by means of an appropriate band pass filter, which may significantly increase the signal to noise ratio at the detector side. Such a band pass filter function may be arranged in the angular filter 20 by means of the structure and material choice of said dielectric layers in the filter 20. Alternatively, the band pass filter function may be provided as a separate element in addition to the angular filter 20, e.g. if the angular filter is of a more mechanically shielding nature as described below with reference to FIGS. 18A and 18B.


It should also be understood that the filter 20 is designed to provide the angular range [θminmax] for a specific installation, i.e. when mounted with its front face to the panel 1 and with its rear side to the surface 3A (or a spacer). For example, the design may be adapted to the refractive index of the panel 1 and the refractive index of the light-sensing surface 3A (or the spacer).


In embodiments of the invention, the filter 20 is tailored to suppress the amount of ambient light received at the light-sensing surface 3A in relation to the amount of useful light, i.e. light that has propagated on one or more detection lines from a respective incoupling structure. This effect may be achieved by adapting the angular range of the filter 20 to the angles of incidence (AOI) of the propagating light on the filter 20. Ambient light typically contains daylight and/or light from artificial light sources. Such ambient light includes NIR light which, if it falls on the surface 3A, will interfere with the detection of the propagating NIR light inside the panel 1. As exemplified by ray A1 shown in FIG. 11, ambient light that falls on the front surface 5 is refracted into the panel 1 and would have impinged on the surface 3A were it not for the angular filter 20. The angular filter 20 is designed to reflect the ambient light A1 back towards the front surface 5. Ambient light that falls onto the touch surface 4 at other areas than over the detector 3 will, irrespective of its angle to the touch surface 4, be transmitted through the panel 1, as exemplified by ray A2. The ambient light will not be captured by TIR in the panel 1 since it cannot be refracted into the panel 1 at an angle larger than the critical angle (see below). As exemplified by ray P1, light that propagates in the panel 1 by TIR and strikes the filter at an AOI within the angular range of the filter 20, is transmitted to the light-sensing surface 3A. FIG. 11 also indicates a ray P2 that propagates in the panel 1 by TIR and strikes the filter 20 at a smaller AOI, which is outside the angular range of the filter 20. This ray P2 is reflected by the filter 20. However, with an emitter 2 in the form of a narrow beam VCSEL array, and careful design of the filter 20, a substantial amount of light injected from the emitter 2 may be used for detection by the detector 3. In other words, very few, if any, rays of light emanating from the emitter 2 will propagate like ray P2 of FIG. 11. Preferably, the filter 20 is configured to let through light to the detector 3 within an angular range which is tailored to the beam divergence of the VCSEL array emitter 2. It should be noted that a beam divergence of e.g. 19° (1/e2), such as offered in VCSEL arrays provided by Princeton Optronics Inc., translates to about 12.5° (1/e2) in a panel with a refractive index of 1.5. It can thereby be understood that it is possible to make use of a very narrow angular filter, virtually without sacrificing or losing any emitter light. The use of an angular filter 20 in combination with a VCSEL array emitter 2 thus provides a simple technique for selecting the light that is passed to the detector 3 to be represented in the projection signals.


The present Applicant has realized that advantageous technical effects may be achieved by careful selection of the lower limit θmin of the filter 20. FIG. 13 illustrates, in section view, a portion of the panel 1, where different characteristic angles of the panel 1, as well as the limits θmin, θmax of the filter 20, are mapped to a position on the front surface 5. In this example, it is assumed that the panel 1 is made of a single material and has the same refractive index npanel at the front and rear surfaces 5, 6. All angles are defined with respect to the normal N of the front surface 5.



FIG. 13 indicates the critical angle θc, which is given by θc=arc sin(1/npanel) and is the minimum AOI of the light that propagates by TIR between the surfaces 5, 6. FIG. 13 also indicates a cut-off angle θw for interaction between the propagating light and water deposited on the front surface 5. Propagating light that strikes the surface 5 at AOIs below θw will be partly coupled out of the panel 1 and into water on the surface 5, whereas propagating light at AOIs above θw will be totally reflected at the interface between the surface 5 and water. According to Snell's law: npanel·sin(θw)=nw·sin(90°), which yields θw=arc sin(nw/npanel), where the refractive index of water, nw, is in the range 1.31-1.34, depending on temperature, wavelength, salt content, etc. In the following examples, it is assumed that nw=1.33. FIG. 13 also indicates a cut-off angle θf for interaction between the propagating light and finger fat deposited on the front surface 5. Propagating light that strikes the surface 5 at AOIs below θf will be partly coupled out of the panel 1 and into finger fat on the surface 5, whereas propagating light at AOIs above θf will be totally reflected at the interface between the surface 5 and finger fat. According to Snell's law: npanel·sin(θf)=nf·sin(90°), which yields θf=arc sin(nf/npanel), where the refractive index of finger fat, nf, is in the range of 1.36-1.48, depending on temperature, wavelength, composition, etc. In the following examples, it is assumed that θf=1.45. In the example of a panel made of PMMA with npanel=1.49, this approximately yields θc=42°, θw=63°, and θf=77°.


In one embodiment, the angular range is set to θmin≈θcmax<90°. This will ensure that all propagating light reaches the light-sensing surface 3A while preventing a major part of the ambient light from striking the light-sensing surface 3A.


Further suppression of interferences, i.e. unwanted signal components at the light-sensing surface 3A, may be achieved by setting θmin to exceed θc.


In one such embodiment, the angular range is set to θminc+Δθ<θmax<90°, with Δθ equal to, or larger than, e.g. 5°, 10° or 15°. This embodiment has been found to significantly reduce the influence of ambient light that is coupled into the panel 1 through deposits on the touch surface 4, such as water, saliva, fingerprints, smear, etc (collectively denoted “contamination” herein). With reference to ray A2 in FIG. 11, it was mentioned that all ambient light that falls onto the touch surface 4 will pass through the panel 1. However, the present Applicant has found that this is only true for a perfectly clean touch surface 4. As indicated in FIG. 14, contamination 30 on the touch surface 4 may allow ambient light at an angle of incidence near or larger than θc to leak into the panel 1 and be trapped by TIR therein. The present Applicant has realized that this ambient light may have a sizeable influence on the measured signal levels at the detector 3. The Applicant has also found, surprisingly, that the trapped ambient light is largely concentrated to a limited range of AOIs at the filter 20, close to and above the critical angle θc. Thus, the trapped ambient light can be prevented from reaching the detector 3 by choosing θminc+Δθ with an angular span Δθ equal to or larger than the limited range of AOIs. It is currently believed that the concentration of the ambient light to the limited range of AOIs is caused by Mie scattering in the contamination 30, as well as refraction by contamination droplets, causing the ambient light to enter the panel with a slightly widened distribution, as indicated by 32 in FIG. 14. The widening due to Mie scattering and refraction in contamination droplets may be in the range of ±5° to ±10°. The ambient light typically falls onto the contamination 30 at many different angles. Since all ambient light that enters the panel 1 at an angle below θc will pass through the panel 1 and since the intensity of the ambient light typically decreases with increasing angle to the normal N of the panel, the trapped ambient light will be concentrated at and slightly above θc. It should also be noted that if the refractive index of the panel 1 is larger than the refractive index of the contamination 30: npanel>ncont, the AOIs for the ambient light refracted into the panel 1 via the contamination 30 cannot exceed arc sin(ncont/npanel).


The present Applicant has found that further advantageous and unexpected effects are achieved by designing the filter 20 with a given relation between the lower limit θmin and the cut-off angle θw or θf.


In one such embodiment, the angular range is set to θmin≤θ≤θmax, where θmin≥θw and θmax<90°. Thus, the filter 20 is designed to only transmit light with AOIs that are equal to or larger than the cut-off angle θw for water. This embodiment has the ability of significantly reducing the influence on the resulting projection signals from water-containing deposits on the touch surface 4. As noted above, the portion of the propagating light that strikes water at AOIs below θw will be at least partially coupled out of the panel 1 and interact with the water. Thus, the portion of the propagating light that reaches the filter 20 at AOIs below θw has been significantly more attenuated by water than the remainder of the propagating light. This embodiment also has the ability of reducing the impact of differences in finger interaction between users and even between fingers of a single user. These differences may make it difficult to properly detect all touching objects on the touch surface, and it may require the signal processor 10 to be configured with a large dynamic range for retrieving and processing the projection signals. A significant part of the differences in finger interaction has been found to emanate from different moisture levels on the fingers. The filter design of this embodiment will suppress the influence of moisture in the projection signals and thus reduce the impact of differences in finger interaction.


In this embodiment, the propagating light that is transmitted by the filter 20 has impinged on the touch surface 4 with AOIs at or above θw. At these AOIs, the propagating light will still be coupled into the outermost layer of the finger that form part of the epidermis, since this layer (stratum corneum) is known to have a refractive index of about 1.55 in the infrared, e.g. according to measurement results presented in “A survey of some fundamental aspects of the absorption and reflection of light by tissue”, by R. J. Scheuplein, published in J. soc. cos. CHEM. 15, 111-122 (1964), and “The optics of human skin”, by Anderson and Parrish, published in Journal of Investigative Dermatology 77, 1, 13-19 (1981). This means that propagating light is coupled into the finger for AOIs at least up to a cutoff angle θcs=arc sin(1.55/npanel). If npanel≤1.55, the cutoff angle θcs is not relevant, and all AOIs below 90° will interact with the stratum corneum (and other outer layers of the finger). If npanel>1.55, it is conceivable to set θmax≤θcs for the filter 20, should there be a need to suppress propagating light at AOIs above θcs.


It should also be noted that this embodiment fully eliminates ambient light that has been coupled into the panel via water on the touch surface 4 and has propagated by TIR to the filter 20. As explained above, this ambient light has a maximum AOI of arc sin(ncont/npanel), which is equal to θw with ncont=nw.


In another embodiment, the angular range is set to θmin≤θ≤θmax, where θmin≥θf and θmax<90°. This embodiment has the ability of significantly reducing the influence on the resulting projection signals from deposits containing finger fat, e.g. fingerprints, on the touch surface 4. Fingerprints is typically a substantial part of the contamination on the touch surface, and is a major concern when processing the projection signals for detecting the touching objects. It is thus a significant technical achievement to be able to suppress the influence of fingerprints, and it will reduce the requirements on the signal processor 10 to track and compensate for contaminations. This embodiment also has the ability of further reducing the impact of differences in finger interaction, since it suppresses the interaction caused by fat on the fingers. Furthermore, this embodiment fully eliminates ambient light that has been coupled into the panel via finger fat on the touch surface 4 and has propagated by TIR to the filter 20. This ambient light has a maximum AOI of arc sin(ncont/npanel), which is equal to θf with ncont=nf.


Reverting to FIG. 11, the width W of the filter 20 (in the direction of the respective detection line) may be optimized with respect to the range of AOIs of the propagating light that should be transmitted onto the light-sensing surface 3A. To ensure that all of this propagating light (i.e. the light with appropriate AOIs) strikes the filter at least once, the width W may be set to exceed the relevant minimum distance between bounces in the rear surface (“minimum bounce distance”). If the panel is made of a single material, the minimum bounce distance is given by 2·t·tan(θmin), where t is the thickness of the panel 1. To achieve a consistent detection of the propagating light within the limits θmin, θmax, it may be desirable to set the width to exceed the relevant maximum distance between bounces in the rear surface (“maximum bounce distance”). If the panel is made of a single material, the maximum bounce distance is given by 2·t·tan(θmax). In practice, the width W may be given by other design considerations, which may (but need not) set the limit θmax of the filter 20. Further, the skilled person is able to calculate the minimum bounce distance and the maximum bounce distance for a panel consisting of more than one layer.


The foregoing design rules for the angular filter were given for a panel 1 with a single index of refraction. However, corresponding design rules are applicable for the angular filter 20 when applied to a panel 1 made up of two or more layers with different index of refraction. FIG. 15 illustrates a panel 1 formed by a top layer with index of refraction n1 and a bottom layer with index of refraction n2. Light having an angle of incidence θ1 at the front surface 5 will impinge on the rear surface 6 with an angle of incidence θ2=arc sin(n1/n2·sin(θ1)). This means that the limits θmin, θmax of the filter 20, if mounted on the rear surface 6, should be set with respect to the critical angle θc at the front surface 5 as represented at the rear surface 6, or with respect to the cut-off angles θw, θf at the front surface 5 as represented at the rear surface 6. The skilled person realizes that npanel in the above expressions for θc, θw and θf is the refractive index of the panel 1 at the outcoupling region where the filter is mounted. In the example of FIG. 15, npanel=n2.


A different situation may arise if the panel 1 is laminated to a display 34 by means of a lamination layer 36, as shown in FIG. 16. If the display 34 does not reflect light back to the panel 1, the lamination layer 36 may be designed with a smaller refractive index nlam than the panel. This will cause light that impinges on the interface between the panel and the lamination layer 36 at angles equal to θc,l=arc sin(nlam/npanel), or larger, to be totally reflected at this interface. Light that impinges on the interface at smaller angles, e.g. as indicated by a dotted arrow in FIG. 16, will be transmitted via the lamination layer 36 to the display 34. This means that the minimum AOI of the light that propagates by TIR between the surfaces 5, 6 and strikes the filter 20, is θc,l rather than θc. In such an embodiment the angular range of the filter 20 may be set according to θmin≤θ≤θmax, where θmin≥θc,l and θmax<90°. Of course, the angular range may instead be designed with respect to θw or θf, according to the embodiments described above.


It should be noted that a lamination layer 36 may generally be introduced between the rear surface 6 of the panel 1 and any external device when it is desirable to “optically isolate” the propagating light in panel from the external device, whereby the propagating light is shifted to larger angles of incidence by virtue of θc,lc. Based on the foregoing discussion, it is understood that it may be desirable to select the material of the lamination layer 36 such that θc,l≥θw or θc,l≥θf, so as to reduce the attenuation caused by contamination on the touch surface 4. In another variant, it may be desirable to select the material of the lamination layer 36 such that θc,l≥θc+Δθ, where Δθ is selected to reduce the influence of ambient light that enters the panel via contamination on the touch surface 4, as discussed above with reference to FIG. 14. For efficient utilization of light, the light emitters 2 may be coupled to the panel 1 such that the injected light impinges on the lamination layer 36 at an AOI that exceeds θc,l, to avoid that useful light is leaked into the lamination layer 36. The concept of using a lamination layer 36 for reducing the impact of ambient light or contamination may, but need not, be used in combination with an angular filter in the outcoupling structure and/or an angular filter in the incoupling structure (see below).


In the foregoing, it has been assumed that the cutoff angles θw and θf are given by the TIR angle at the interface between the panel and water and finger fat, respectively. However, it shall be appreciated that the TIR angles correspond to 100% reflection at the interface, and that the reflectivity at the interface does not exhibit a step change at the TIR angle but is a continuous, but steep, function within increasing AOI until the TIR angle. This is illustrated in FIG. 20, which is a graph of the reflectivity R at a panel-to-water interface as a function of AOI, θ, given by the equations:







R
p

=







n
panel

*
cos





θ

-


n
w

*


1
-


(



n
panel


n
w



sin





θ

)

2








n
panel

*
cos





θ

+


n
w

*


1
-


(



n
panel


n
w



sin





θ

)

2








2








R
s

=







n
panel

*


1
-


(



n
panel


n
w



sin





θ

)

2




-


n
w

*
cos





θ





n
panel

*


1
-


(



n
panel


n
w



sin





θ

)

2




+


n
w

*
cos





θ





2







R
=



R
s

+

R
p


2





with npanel=1.51 and nw=1.33.


As understood from FIG. 20, it is possible to define the cutoff angles θw and θf at a given fraction of 100% reflection, e.g. 0.25 or 0.50, while still achieving an essentially complete suppression of the influence of water and finger fat, respectively. In practice, this means that it is possible to adjust the cutoff angles slightly from the TIR angles towards smaller AOIs: θw=arc sin(nw/npanel)−δθ and θf=arc sin(nf/npanel)−δθ, where δθ is typically less than 2°. As used herein, any reference to θw and θf is intended to inherently include this minor shift δθ.


Generally, it may be desirable to limit the size of the individual detectors 3, and specifically the extent of the light-sensing surface 3A. For example, the cost of light detectors may increase with size. Also, a larger detector typically has a larger capacitance, which may lead to slower response (longer rise and fall times) of the detector. It is realized that it may be difficult to reduce the extent W of the detector 3 in the embodiment of FIG. 11, without sacrificing the ability to consistently detect the propagating light.



FIG. 17A illustrates an alternative embodiment that at least partly overcomes this problem. Like in FIG. 11, the angular filter 20 is applied to the rear surface 6, but the detector 3 is arranged with its light-sensing surface 3A essentially perpendicular to the main extent of the panel 1. As used herein, “essentially perpendicular” is intended to include deviations of about ±20° or less from perpendicular. A spacer 22 is disposed between the angular filter 20 and the light-sensing surface 3A. The spacer 22 may be made of any suitable light transmissive material, such a plastic material or glass, or a silicone compound, a glue, a gel, etc. In the example of FIG. 17A, the spacer 22 is made of the same material as the panel 1, i.e. nspacer=npanel. By arranging the surface 3A vertically, the extent of the surface 3A may be reduced significantly compared to the embodiment in FIG. 11. When the extent of the angular filter is W, the minimum vertical extent of the surface 3A may be given by W/tan(θmin) to ensure that all of the transmitted light from the filter 20 is received at the surface 3A. The extent of the surface 3A may be reduced further by selecting the material of the spacer 22 such that nspacer<npanel, causing the transmitted light to be refracted away from the normal and resulting in a smaller projected height at the location of the surface 3A.


Even if the outcoupling structure in FIG. 17A allows for a smaller light-sensing surface 3A, the extent of the surface 3A is still dependent on the angular range of the filter 20. Further, the vertical extent of the surface 3A has a direct impact on the thickness of the apparatus 100. At present, the embodiment in FIG. 17A is believed to be useful only when θmin is larger than about 45°, to avoid that the height of the outcoupling structure becomes excessive.


This problem is at least partly overcome by the embodiment illustrated in FIGS. 17B-17C. As shown in section in FIG. 17B, the angular filter 20 is applied to the rear surface 6, and a light recycler 40 is arranged beneath the filter 20 in surrounding relationship to the light-sensing surface 3A. The recycler 40 is designed to internally reflect the light that is transmitted by the filter 20 and to modify the angular distribution of the transmitted light. The recycler 40 defines a reflective enclosure around the light-sensing surface 3A. The enclosure is filled by a spacer material 22, e.g. any of the spacer materials discussed in relation to FIG. 17A. The recycler 40 comprises a reflective bottom surface 42A with an opening for the detector 3 (illustrated as mounted on a PCB 45) and reflective sidewalls 42B that extend from the bottom surface 42A to the filter 20. In the illustrated embodiment, the bottom surface 42A is diffusively reflective to impinging light, whereas the sidewalls 42B are specularly reflective to impinging light. As used herein, “specular reflection” is given its ordinary meaning, which refers to the mirror-like reflection of light from a surface, in which light from a single incoming direction (a ray) is reflected into a single outgoing direction. Specular reflection is described by the law of reflection, which states that the direction of incoming light (the incident ray), and the direction of outgoing light reflected (the reflected ray) make the same angle with respect to the surface normal, and that the incident, normal, and reflected directions are coplanar. As used herein, “diffuse reflection” is given its ordinary meaning, which refers to reflection of light from a surface such that an incident ray is reflected at many angles rather than at just one angle as in specular reflection. The diffuse reflection is also known as “scattering”. The skilled person appreciates that many surfaces/elements/materials exhibit a combination of specular and diffuse reflection. As used herein, a surface is considered “diffusively reflective” when at least 20% of the reflected light is diffuse. The relation between diffuse and specular reflection is a measurable property of all surfaces/elements/materials.


To exemplify the function of the outcoupling structure, FIG. 17B illustrates a single ray P1 that is transmitted and refracted into the recycler 40 by the filter 20. The ray strikes the bottom wall 42A and is diffusively reflected, as indicated by the encircled rays 46. The diffusively reflected light spreads over a large solid angle in the recycler 40, and some of this light is specularly reflected by the filter 20 onto the light-sensing surface 3A. Although not shown, other parts of the diffusively reflected light is likely to undergo further reflections in the recycler 40, against the sidewalls 42B, the angular filter 20 and the bottom wall 42A, and eventually impinge on the surface 3A. It should be noted that the angular filter 20 will also transmit light from the recycler 40 back into the panel 1, specifically light that has an angle of incidence within a given angular range which may, but need not, be identical to the angular range [θminmax]. If these angular ranges are identical, or at least substantially overlapping, it is necessary to redistribute the light by diffuse reflection inside the recycler 40 to prevent that the light that enters the recycler 40 from the panel 1 escapes back into the panel 1 via the filter 20. If the filter 20 is designed such that the angular ranges are sufficiently different, the recycler 40 may be configured with only specularly reflective walls 42A, 42B.


In the embodiment of FIG. 17B, the use of specular side walls 42B ensures that all of the light that enters the recycler 40 via the filter 20 is re-directed by specular reflection(s) towards the bottom of the recycler 40, where it is either redistributed by diffuse reflection in the bottom wall 42A or directly received by the light-sensing surface 3A. The diffusively reflected light is typically, but not necessarily, emitted with a main direction that is perpendicular to the bottom wall 42A, as shown in FIG. 17B. The bottom wall 42A may e.g. be a near-Lambertian diffuser. The use of a planar bottom wall 42A, as in FIG. 17B, ensures that most of the diffusively reflected light hits the filter 20 at AOIs outside the angular range, such that main portion of the diffusively reflected light is reflected by the filter 20 back into the recycler 40.


In an alternative, both the bottom wall 42A and the side walls 42B are diffusively reflective. In another alternative, the side walls 42B are diffusively reflective, while the bottom surface 42A is specularly reflective. In all embodiments, it is possible that only a part of the bottom wall 42A and/or the side walls 42B is diffusively reflective. Generally, it may be advantageous to provide diffusive scattering on surfaces that are arranged such that a significant portion of the light impinging on these surfaces would otherwise be specularly reflected onto the filter 20 within the angular range.


In yet another alternative, the bottom wall 42A is not specularly or diffusively reflective, but provided with a micro-structure, which is configured to reflect and re-direct impinging light onto the light sensing-surface 3A, by specular reflection against the filter 20 and possibly by reflection against the specular side walls 42B. The micro-structure thus forms a mirror with an optical power that is tailored to the incoming light, i.e. the light that is transmitted by the filter 20 and hits the micro-structure on the bottom wall 42A, either directly or by reflection(s) in the side walls 42B. The use of specularly reflective side walls 42B may facilitate the design of the micro-structure, but it is possible to use diffusively reflective side walls 42B, or a combination thereof. The micro-structure may be implemented as a sheet-like Fresnel mirror.


Compared to the embodiments in FIG. 11 and FIG. 17A, there is no direct relation between the extent of the angular filter 20 and the required size of the light-sensing surface 3A, since the recycler 40 is designed to retain a portion of the transmitted light by internal reflections until it impinges on the surface 3A. Furthermore, there is large freedom of placing the detector 3 in relation to the recycler 40, and it can even be accommodated in a side wall 42B instead of the bottom wall 42A. It is realized that the outcoupling structure may be optimized with respect to manufacturing requirements, without any major loss in outcoupling efficiency. Also, assembly tolerances may be relaxed.


As shown in the plan view of FIG. 17C, the combination of angular filter 20 and recycler 40 will collect light from all directions in the plane of the panel 1, provided that the incoming light impinges on the angular filter 20 with AOIs within the angular range [θminmax]. Thus, the outcoupling structure in FIG. 17C can accept light from many different directions in the plane of the panel 1 and define the end point of detection lines from different emitters (cf. FIG. 2A). In the example of FIG. 17C, the recycler 40 is circular in plan view, but other shapes are possible, e.g. elliptical or polygonal. As described in relation to FIG. 11, it may be desirable that the extent W of the recycler along each of the detection lines is equal to at least the minimum bounce distance or at least the maximum bounce distance.


In all embodiments, the specularly reflective wall(s) of the recycler 40, if present, may be implemented by an external coating, layer or film which is applied to the spacer material 22, e.g. a metal such as aluminum, copper or silver, or a multilayer structure, as is well-known to the skilled person.


In all embodiments, the diffusively reflective wall(s) of the recycler 40, if present, may be implemented by an external coating, layer or film of diffusively reflective material which is applied to the spacer material 22. In one implementation, the diffusively reflective material is a matte white paint or ink. In order to achieve a high diffuse reflectivity, it may be preferable for the paint/ink to contain pigments with high refractive index. One such pigment is TiO2, which has a refractive index n=2.5-2.7. It may also be desirable, e.g. to reduce Fresnel losses, for the refractive index of the paint binder (vehicle) to match the refractive index of the spacer 22. For example, depending on refractive index, a range of vehicles are available such as oxidizing soya alkyds, tung oil, acrylic resin, vinyl resin and polyvinyl acetate resin. The properties of the paint may be further improved by use of e.g. EVOQUE™ Pre-Composite Polymer Technology provided by the Dow Chemical Company. There are many other diffusively reflective coating materials that are commercially available, e.g. the fluoropolymer Spectralon, polyurethane enamel, barium-sulphate-based paints or solutions, granular PTFE, microporous polyester, Makrofol® polycarbonate films, GORE® Diffuse Reflector Product, etc. Also, white paper may be used. Alternatively, the diffusively reflective material may be a so-called engineered diffuser. Examples of engineered diffusers include holographic diffusers, such as so-called LSD films provided by the company Luminit LLC.


According to other alternatives, the diffusively reflective wall(s) of the recycler 40 may be implemented as a micro-structure in the spacer material 22 with an overlying coating of specularly reflective material. The micro-structure may e.g. be provided in the spacer material 22 by etching, embossing, molding, abrasive blasting, etc. Alternatively, the micro-structure may be attached as a film or sheet onto the spacer material 22. The above-described mirror with an optical power tailored to incoming light may also be provided as a micro-structure in or on the spacer material 22.


There are other ways of integrating the angular filter in the outcoupling structure than by arranging the above-described multilayer structure in front of the detector 3. For example, the angular filter may be formed by a structure that geometrically and mechanically limits the light rays that can reach the detector, as exemplified below with reference to FIGS. 18A and 18B.



FIG. 18A is a side view of an alternative outcoupling structure as attached to the panel 1, and FIG. 18B is a top plan view of the outcoupling structure. The outcoupling structure forms an angular filter 20 by defining an angularly limited propagation path from an outcoupling port 60 to the light-sensitive surface 3A. The angular filter 20 is defined by non-transmissive layers 61-63 on a body of light transmissive material, e.g. any of the spacer materials discussed in relation to FIG. 17A. Layers 61 and 62 are arranged on top of the body, to define the outcoupling port 60 at the interface between the body and the panel 1. Layer 61 is light-absorbing and formed as an annulus segment. Layer 61 only needs to be absorbing to light inside the body. Layer 62 is specularly reflective and formed as a semi-circle, which may extend to the inner radius of the annulus segment, as shown, or to the outer radius of the annulus segment (i.e. between layer 61 and the panel 1). The top of the body is attached to the rear surface 5 of the panel 1, and the light detector 3 is attached to a short-side of the body such that the surface 3A is shielded beneath the layers 61, 62. Layer 63 is specularly reflective and attached to bottom side of the body.



FIG. 18A illustrates one propagating ray P1 that passes the outcoupling port 60 at an AOI within the angular range of the filter 20 and is reflected by layer 63 onto surface 3A. FIG. 18A also illustrates a propagating ray P2 that propagates in the panel 1 by TIR and passes the outcoupling port 60 and is reflected by layer 63 onto layer 61 which absorbs the ray. As seen, the structure of layers 61-63 define the angular range of the filter 20. The width of the layer 61 along the respective detection line defines θmin, for a given vertical height of the body. To achieve similar θmin for all detection lines in the plane of the panel, layer 61 is shaped as an annulus segment, although more complicated shapes are conceivable to achieve a corresponding effect. It is conceivable that the refractive index nspacer of the body is selected to yield a desired θmax by TIR in the interface between the body and the panel: nspacer=npanel·sin(θmax).


Further variants of the outcoupling structures in FIGS. 11 and 18 are given in the preceding patent application WO2014/098744, which application is hereby incorporated by reference.



FIG. 19 is a bottom plan view of a part of a touch-sensitive apparatus, to illustrate a sequence of emitters 2 and/or detectors 3 that are optically coupled to a panel 1 near one of the panel edges, via a visibility filter 50 which is applied to the rear surface 6 to extend as a coherent, elongate strip along the panel edge. Each emitter 2 and detector 3 is coupled to the panel 1 by a coupling structure. For the emitters 2 the light coupling mechanism is denoted 120, as in FIG. 2A, but it should be realized that the specific structure of this mechanism 120 may e.g. be anyone of those described with reference to FIGS. 4-10. For the detectors 3, the coupling structure may comprise an angular filter 20 and a possibly a recycler 40 (not shown). The light coupling mechanisms 20 and 120 are arranged as discrete units along the panel edge. It shall be noted that the neither the shape nor the specific location of the respective emitters 2 and detectors 3, and their coupling structures, necessarily reflect an optimum configuration. On the contrary, FIG. 19 is merely intended to provide a schematic representation to indicate the distribution of the emitters 2 and detectors 3 over a common visibility filter 50.


The foregoing description indicates that certain selections of the lower limit θmin (e.g. with respect to the cutoff angles θc,l, θw, θf) results in significant performance improvement. However, it is possible that performance improves gradually as the lower limit θmin is increased from the critical angle θc, e.g. in steps 1°, at least in certain installations. Testing of a certain installation may thus indicate that an acceptable performance improvement is attained at another selected θmin, e.g. any angle between θc and θw, between θw and θf, and between θf and θsc. The same applies to the selection of refractive index of the lamination layer for suppressing the influence of contamination via the cutoff angle θc,l.


While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims.

Claims
  • 1. A touch-sensitive apparatus, comprising: a light transmissive panel comprising a front surface and an opposite, rear surface;at least one light emitter configured to optically connect to the panel and further configured to generate light that propagates by total internal reflection inside the panel across a touch-sensitive region on the panel;wherein said light emitter comprises a vertical-cavity surface-emitting laser (“VCSEL”) array including a number of VCSELs configured to be driven to collectively form one light emitter;a light coupling mechanism configured to connect the emitter to the panel, and further configured to give light from a plurality of the VCSELs in the VCSEL array substantially the same spread in the panel; andat least one light detector configured to optically connect to the panel to receive propagating light from the emitter;wherein said light coupling mechanism includes a plurality of beam-deflecting elements configured to spread light emanating from the VCSELs of the emitter;
  • 2. The touch-sensitive apparatus of claim 1, wherein said light coupling mechanism is configured to direct light from a plurality of the VCSELs of the array to impinge on the front surface at a substantially common predetermined angle (θ) of incidence from within the panel.
  • 3. The touch-sensitive apparatus of claim 1, wherein said light coupling mechanism is configured to give light from a plurality of the VCSELs of the array a substantially common fan-shaped spread horizontally within the panel.
  • 4. The touch-sensitive apparatus of claim 1, wherein said light coupling mechanism includes one beam-deflecting element for each VCSEL of the emitter.
  • 5. The touch-sensitive apparatus of claim 1, wherein said light coupling mechanism includes one beam-deflecting element for a subset of the number of VCSELs of the emitter, which subset of VCSELs are arranged along a column perpendicular to the front surface of the panel.
  • 6. The touch-sensitive apparatus of claim 1, wherein said beam-deflecting elements comprises reflecting elements and refracting elements.
  • 7. The touch-sensitive apparatus of claim 1, wherein said beam-deflecting elements are arranged in a layer over the VCSEL array.
  • 8. The touch-sensitive apparatus of claim 1, wherein said beam-deflecting elements are staggered over the VCSEL array.
  • 9. The touch-sensitive apparatus of claim 1, wherein said light coupling mechanism comprises a layer having a diffractive beam-deflecting pattern configured to deflect light from each VCSEL of the array.
  • 10. The touch-sensitive apparatus of claim 9, comprising a visibility filter between the emitter and the rear surface of the panel.
  • 11. The touch-sensitive apparatus of claim 1, wherein said emitter is connected to the rear surface of the panel via said light coupling mechanism.
  • 12. The touch-sensitive apparatus of claim 1, wherein the plurality of VCSELs of said emitter are connected to be driven in parallel.
  • 13. The touch-sensitive apparatus of claim 1, comprising a plurality of spaced apart emitters spaced apart so as to define a grid of propagation paths across the touch-sensitive region between respective pairs of one light emitter and one light detector, where each emitter is a separate VCSEL array.
  • 14. The touch-sensitive apparatus of claim 1, comprising a plurality of spaced apart detectors so as to define a grid of propagation paths across the touch-sensitive region between respective pairs of one light emitter and one light detector.
  • 15. The touch-sensitive apparatus of claim 1, wherein a bandpass filter, tailored to an operating wavelength for said VCSELs, is arranged at said detector.
  • 16. The touch-sensitive apparatus of claim 15, wherein the confined range extends from a lower angle limit θmin to an upper angle limit θmax, wherein the lower angle limit θmin is equal to or larger than a critical angle θc, which is given by θc=arc sin(1/npanel), with npanel being the refractive index of the light transmissive panel at the outcoupling region.
  • 17. The touch-sensitive apparatus of claim 15, wherein the lower angle limit θmin is equal to or larger than a second cut-off angle θf=arc sin(nf/npanel), with nf being the refractive index of finger fat, npanel>nf.
  • 18. The touch-sensitive apparatus of claim 1, wherein said light detector is optically connected to the light transmissive panel via an angular filter which is applied to an outcoupling region of the panel and is configured to transmit the propagating light only within a confined range of angles with respect to the normal of the outcoupling region; and wherein said light coupling mechanism is configured to control light input into the panel such that it reaches the outcoupling region predominantly within said confined range of angles.
  • 19. A touch-sensitive apparatus, comprising: a light transmissive panel comprising a front surface and an opposite, rear surface; at least one light emitter configured to optically connect to the panel and further configured to generate light that propagates by total internal reflection inside the panel across a touch-sensitive region on the panel;wherein said light emitter comprises a vertical-cavity surface-emitting laser (“VCSEL”) array including a number of VCSELs configured to be driven to collectively form one light emitter;a light coupling mechanism configured to connect the emitter to the panel, and further configured to give light from a plurality of the VCSELs in the VCSEL array substantially the same spread in the panel;at least one light detector configured to optically connect to the panel to receive propagating light from the emitter; anda visibility filter between the at least one light emitter and the rear surface of the panel.
  • 20. A touch-sensitive apparatus, comprising: a light transmissive panel comprising a front surface and an opposite, rear surface; at least one light emitter configured to optically connect to the panel and further configured to generate light that propagates by total internal reflection inside the panel across a touch-sensitive region on the panel;wherein said light emitter comprises a vertical-cavity surface-emitting laser (“VCSEL”) array including a number of VCSELs configured to be driven to collectively form one light emitter;a light coupling mechanism configured to connect the emitter to the panel, and further configured to give light from a plurality of the VCSELs in the VCSEL array substantially the same spread in the panel; andat least one light detector configured to optically connect to the panel to receive propagating light from the emitter;wherein a bandpass filter, tailored to an operating wavelength for said VCSELs, is arranged at said at least one light detector.
Priority Claims (1)
Number Date Country Kind
1450038 Jan 2014 SE national
PCT Information
Filing Document Filing Date Country Kind
PCT/SE2015/050043 1/16/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2015/108479 7/23/2015 WO A
US Referenced Citations (554)
Number Name Date Kind
3440426 Bush Apr 1969 A
3553680 Cooreman Jan 1971 A
3673327 Johnson et al. Jun 1972 A
4129384 Walker et al. Dec 1978 A
4180702 Sick et al. Dec 1979 A
4209255 Heynau et al. Jun 1980 A
4213707 Evans, Jr. Jul 1980 A
4254333 Bergström Mar 1981 A
4254407 Tipon Mar 1981 A
4294543 Apple et al. Oct 1981 A
4346376 Mallos Aug 1982 A
4420261 Barlow et al. Dec 1983 A
4484179 Kasday Nov 1984 A
4507557 Tsikos Mar 1985 A
4521112 Kuwabara et al. Jun 1985 A
4542375 Alles et al. Sep 1985 A
4550250 Mueller et al. Oct 1985 A
4593191 Alles Jun 1986 A
4673918 Adler et al. Jun 1987 A
4688933 Lapeyre Aug 1987 A
4688993 Ferris et al. Aug 1987 A
4692809 Beining et al. Sep 1987 A
4710760 Kasday Dec 1987 A
4736191 Matzke et al. Apr 1988 A
4737626 Hasegawa Apr 1988 A
4746770 McAvinney May 1988 A
4752655 Tajiri et al. Jun 1988 A
4772763 Garwin et al. Sep 1988 A
4782328 Denlinger Nov 1988 A
4812833 Shimauchi Mar 1989 A
4837430 Hasegawa Jun 1989 A
4868912 Doering Sep 1989 A
4891829 Deckman et al. Jan 1990 A
4933544 Tamaru Jun 1990 A
4949079 Loebner Aug 1990 A
4986662 Bures Jan 1991 A
4988983 Wehrer Jan 1991 A
5065185 Powers et al. Nov 1991 A
5073770 Lowbner Dec 1991 A
5105186 May Apr 1992 A
5159322 Loebner Oct 1992 A
5166668 Aoyagi Nov 1992 A
5227622 Suzuki Jul 1993 A
5248856 Mallicoat Sep 1993 A
5254407 Sergerie et al. Oct 1993 A
5345490 Finnigan et al. Sep 1994 A
5383022 Kaser Jan 1995 A
5483261 Yasutake Jan 1996 A
5484966 Segen Jan 1996 A
5499098 Ogawa Mar 1996 A
5502568 Ogawa et al. Mar 1996 A
5525764 Junkins et al. Jun 1996 A
5526422 Keen Jun 1996 A
5539514 Shishido et al. Jul 1996 A
5570181 Yasuo et al. Oct 1996 A
5572251 Ogawa Nov 1996 A
5577501 Flohr et al. Nov 1996 A
5600105 Fukuzaki et al. Feb 1997 A
5672852 Fukuzaki et al. Sep 1997 A
5679930 Katsurahira Oct 1997 A
5686942 Ball Nov 1997 A
5688933 Evans et al. Nov 1997 A
5729249 Yasutake Mar 1998 A
5736686 Perret, Jr. et al. Apr 1998 A
5740224 Müller et al. Apr 1998 A
5764223 Chang et al. Jun 1998 A
5767517 Hawkins Jun 1998 A
5775792 Wiese Jul 1998 A
5945980 Moissev et al. Aug 1999 A
5945981 Paull et al. Aug 1999 A
5959617 Bird et al. Sep 1999 A
6061177 Fujimoto May 2000 A
6067079 Shieh May 2000 A
6122394 Neukermans et al. Sep 2000 A
6141104 Schulz et al. Oct 2000 A
6172667 Sayag Jan 2001 B1
6227667 Halldorsson et al. May 2001 B1
6229529 Yano et al. May 2001 B1
6333735 Anvekar Dec 2001 B1
6366276 Kunimatsu et al. Apr 2002 B1
6380732 Gilboa Apr 2002 B1
6380740 Laub Apr 2002 B1
6390370 Plesko May 2002 B1
6429857 Masters et al. Aug 2002 B1
6452996 Hsieh Sep 2002 B1
6476797 Kurihara et al. Nov 2002 B1
6492633 Nakazawa et al. Dec 2002 B2
6495832 Kirby Dec 2002 B1
6504143 Koops et al. Jan 2003 B2
6529327 Graindorge Mar 2003 B1
6538644 Muraoka Mar 2003 B1
6587099 Takekawa Jul 2003 B2
6648485 Colgan et al. Nov 2003 B1
6660964 Benderly Dec 2003 B1
6664498 Forsman et al. Dec 2003 B2
6664952 Iwamoto et al. Dec 2003 B2
6690363 Newton Feb 2004 B2
6707027 Liess et al. Mar 2004 B2
6738051 Boyd et al. May 2004 B2
6748098 Rosenfeld Jun 2004 B1
6784948 Kawashima et al. Aug 2004 B2
6799141 Stoustrup et al. Sep 2004 B1
6806871 Yasue Oct 2004 B1
6927384 Reime et al. Aug 2005 B2
6940286 Wang et al. Sep 2005 B2
6965836 Richardson Nov 2005 B2
6972753 Kimura et al. Dec 2005 B1
6985137 Kaikuranta Jan 2006 B2
7042444 Cok May 2006 B2
7084859 Pryor Aug 2006 B1
7087907 Lalovic et al. Aug 2006 B1
7133031 Wang et al. Nov 2006 B2
7176904 Satoh Feb 2007 B2
7359041 Xie et al. Apr 2008 B2
7397418 Doerry et al. Jul 2008 B1
7432893 Ma et al. Oct 2008 B2
7435940 Eliasson et al. Oct 2008 B2
7442914 Eliasson et al. Oct 2008 B2
7465914 Eliasson et al. Dec 2008 B2
7613375 Shimizu Nov 2009 B2
7629968 Miller et al. Dec 2009 B2
7646833 He et al. Jan 2010 B1
7653883 Hotelling et al. Jan 2010 B2
7655901 Idzik et al. Feb 2010 B2
7705835 Eikman Apr 2010 B2
7847789 Kolmykov-Zotov et al. Dec 2010 B2
7855716 McCreary et al. Dec 2010 B2
7859519 Tulbert Dec 2010 B2
7924272 Boer et al. Apr 2011 B2
7932899 Newton et al. Apr 2011 B2
7969410 Kakarala Jun 2011 B2
7995039 Eliasson et al. Aug 2011 B2
8013845 Ostergaard et al. Sep 2011 B2
8031186 Ostergaard Oct 2011 B2
8077147 Krah et al. Dec 2011 B2
8093545 Leong et al. Jan 2012 B2
8094136 Eliasson et al. Jan 2012 B2
8094910 Xu Jan 2012 B2
8149211 Hayakawa et al. Apr 2012 B2
8218154 Østergaard et al. Jul 2012 B2
8274495 Lee Sep 2012 B2
8325158 Yatsuda et al. Dec 2012 B2
8339379 Goertz et al. Dec 2012 B2
8350827 Chung et al. Jan 2013 B2
8384010 Hong et al. Feb 2013 B2
8407606 Davidson et al. Mar 2013 B1
8441467 Han May 2013 B2
8445834 Hong et al. May 2013 B2
8466901 Yen et al. Jun 2013 B2
8482547 Cobon et al. Jul 2013 B2
8542217 Wassvik et al. Sep 2013 B2
8567257 Van Steenberge et al. Oct 2013 B2
8581884 Fåhraeus et al. Nov 2013 B2
8624858 Fyke et al. Jan 2014 B2
8686974 Christiansson et al. Apr 2014 B2
8692807 Føhraeus et al. Apr 2014 B2
8716614 Wassvik May 2014 B2
8727581 Saccomanno May 2014 B2
8745514 Davidson Jun 2014 B1
8780066 Christiansson et al. Jul 2014 B2
8830181 Clark et al. Sep 2014 B1
8860696 Wassvik et al. Oct 2014 B2
8872098 Bergström et al. Oct 2014 B2
8872801 Bergström et al. Oct 2014 B2
8884900 Wassvik Nov 2014 B2
8890843 Wassvik et al. Nov 2014 B2
8890849 Christiansson et al. Nov 2014 B2
8928590 El Dokor Jan 2015 B1
8963886 Wassvik Feb 2015 B2
8982084 Christiansson et al. Mar 2015 B2
9024916 Christiansson May 2015 B2
9035909 Christiansson May 2015 B2
9063617 Eliasson et al. Jun 2015 B2
9086763 Johansson et al. Jul 2015 B2
9134854 Wassvik et al. Sep 2015 B2
9158401 Christiansson Oct 2015 B2
9158415 Song et al. Oct 2015 B2
9213445 King et al. Dec 2015 B2
9274645 Christiansson et al. Mar 2016 B2
9317168 Christiansson et al. Apr 2016 B2
9323396 Han et al. Apr 2016 B2
9366565 Uvnäs Jun 2016 B2
9377884 Christiansson et al. Jun 2016 B2
9389732 Craven-Bartle Jul 2016 B2
9411444 Christiansson et al. Aug 2016 B2
9411464 Wallander et al. Aug 2016 B2
9430079 Christiansson et al. Aug 2016 B2
9442574 Fåhraeus et al. Sep 2016 B2
9547393 Christiansson et al. Jan 2017 B2
9552103 Craven-Bartle et al. Jan 2017 B2
9557846 Baharav et al. Jan 2017 B2
9588619 Christiansson et al. Mar 2017 B2
9594467 Christiansson et al. Mar 2017 B2
9626018 Christiansson et al. Apr 2017 B2
9626040 Wallander et al. Apr 2017 B2
9639210 Wallander et al. May 2017 B2
9678602 Wallander Jun 2017 B2
9684414 Christiansson et al. Jun 2017 B2
9710101 Christiansson et al. Jul 2017 B2
20010002694 Nakazawa et al. Jun 2001 A1
20010005004 Shiratsuki et al. Jun 2001 A1
20010005308 Oishi et al. Jun 2001 A1
20010030642 Sullivan et al. Oct 2001 A1
20020067348 Masters et al. Jun 2002 A1
20020075243 Newton Jun 2002 A1
20020118177 Newton Aug 2002 A1
20020158823 Zavracky et al. Oct 2002 A1
20020158853 Sugawara et al. Oct 2002 A1
20020163505 Takekawa Nov 2002 A1
20030016450 Bluemel et al. Jan 2003 A1
20030034439 Reime et al. Feb 2003 A1
20030034935 Amanai et al. Feb 2003 A1
20030048257 Mattila Mar 2003 A1
20030052257 Sumriddetchkajorn Mar 2003 A1
20030095399 Grenda et al. May 2003 A1
20030107748 Lee Jun 2003 A1
20030137494 Tulbert Jul 2003 A1
20030156100 Gettemy Aug 2003 A1
20030160155 Liess Aug 2003 A1
20030210537 Engelmann Nov 2003 A1
20030214486 Roberts Nov 2003 A1
20040027339 Schulz Feb 2004 A1
20040032401 Nakazawa et al. Feb 2004 A1
20040090432 Takahashi et al. May 2004 A1
20040130338 Wang et al. Jul 2004 A1
20040174541 Freifeld Sep 2004 A1
20040201579 Graham Oct 2004 A1
20040212603 Cok Oct 2004 A1
20040238627 Silverbrook et al. Dec 2004 A1
20040239702 Kang et al. Dec 2004 A1
20040245438 Payne et al. Dec 2004 A1
20040252091 Ma et al. Dec 2004 A1
20040252867 Lan et al. Dec 2004 A1
20050012714 Russo et al. Jan 2005 A1
20050041013 Tanaka Feb 2005 A1
20050057903 Choi Mar 2005 A1
20050073508 Pittel et al. Apr 2005 A1
20050083293 Dixon Apr 2005 A1
20050128190 Ryynanen Jun 2005 A1
20050143923 Keers et al. Jun 2005 A1
20050156914 Lipman et al. Jul 2005 A1
20050162398 Eliasson et al. Jul 2005 A1
20050179977 Chui et al. Aug 2005 A1
20050200613 Kobayashi et al. Sep 2005 A1
20050212774 Ho et al. Sep 2005 A1
20050248540 Newton Nov 2005 A1
20050253834 Sakamaki et al. Nov 2005 A1
20050276053 Nortrup et al. Dec 2005 A1
20060001650 Robbins et al. Jan 2006 A1
20060001653 Smits Jan 2006 A1
20060007185 Kobayashi Jan 2006 A1
20060008164 Wu et al. Jan 2006 A1
20060017706 Cutherell et al. Jan 2006 A1
20060017709 Okano Jan 2006 A1
20060033725 Marggraff et al. Feb 2006 A1
20060038698 Chen Feb 2006 A1
20060061861 Munro et al. Mar 2006 A1
20060114237 Crockett et al. Jun 2006 A1
20060132454 Chen et al. Jun 2006 A1
20060139340 Geaghan Jun 2006 A1
20060158437 Blythe et al. Jul 2006 A1
20060170658 Nakamura et al. Aug 2006 A1
20060202974 Thielman Sep 2006 A1
20060227120 Eikman Oct 2006 A1
20060255248 Eliasson Nov 2006 A1
20060256092 Lee Nov 2006 A1
20060279558 Van Delden et al. Dec 2006 A1
20060281543 Sutton et al. Dec 2006 A1
20060290684 Giraldo et al. Dec 2006 A1
20070014486 Schiwietz et al. Jan 2007 A1
20070024598 Miller et al. Feb 2007 A1
20070034783 Eliasson et al. Feb 2007 A1
20070038691 Candes et al. Feb 2007 A1
20070052684 Gruhlke et al. Mar 2007 A1
20070070056 Sato et al. Mar 2007 A1
20070075648 Blythe et al. Apr 2007 A1
20070120833 Yamaguchi et al. May 2007 A1
20070125937 Eliasson et al. Jun 2007 A1
20070152985 Ostergaard et al. Jul 2007 A1
20070201042 Eliasson et al. Aug 2007 A1
20070296688 Nakamura et al. Dec 2007 A1
20080006766 Oon et al. Jan 2008 A1
20080007540 Ostergaard Jan 2008 A1
20080007541 Eliasson et al. Jan 2008 A1
20080007542 Eliasson et al. Jan 2008 A1
20080011944 Chua et al. Jan 2008 A1
20080029691 Han Feb 2008 A1
20080036743 Westerman et al. Feb 2008 A1
20080062150 Lee Mar 2008 A1
20080068691 Miyatake Mar 2008 A1
20080074401 Chung et al. Mar 2008 A1
20080088603 Eliasson et al. Apr 2008 A1
20080121442 Boer et al. May 2008 A1
20080122792 Izadi et al. May 2008 A1
20080122803 Izadi et al. May 2008 A1
20080130979 Run et al. Jun 2008 A1
20080150846 Chung et al. Jun 2008 A1
20080150848 Chung et al. Jun 2008 A1
20080151126 Yu Jun 2008 A1
20080158176 Land et al. Jul 2008 A1
20080189046 Eliasson et al. Aug 2008 A1
20080192025 Jaeger et al. Aug 2008 A1
20080238433 Joutsenoja et al. Oct 2008 A1
20080246388 Cheon et al. Oct 2008 A1
20080252619 Crockett et al. Oct 2008 A1
20080266266 Kent et al. Oct 2008 A1
20080278460 Arnett et al. Nov 2008 A1
20080284925 Han Nov 2008 A1
20080291668 Aylward et al. Nov 2008 A1
20080297482 Weiss Dec 2008 A1
20090002340 Van Genechten Jan 2009 A1
20090006292 Block Jan 2009 A1
20090040786 Mori Feb 2009 A1
20090066647 Kerr et al. Mar 2009 A1
20090067178 Huang et al. Mar 2009 A1
20090073142 Yamashita et al. Mar 2009 A1
20090077501 Partridge et al. Mar 2009 A1
20090085894 Gandhi et al. Apr 2009 A1
20090091554 Keam Apr 2009 A1
20090115919 Tanaka et al. May 2009 A1
20090122020 Eliasson et al. May 2009 A1
20090128508 Sohn et al. May 2009 A1
20090135162 Van De Wijdeven et al. May 2009 A1
20090143141 Wells et al. Jun 2009 A1
20090153519 Suarez Rovere Jun 2009 A1
20090161026 Wu et al. Jun 2009 A1
20090168459 Holman et al. Jul 2009 A1
20090187842 Collins et al. Jul 2009 A1
20090189857 Benko et al. Jul 2009 A1
20090189874 Chene et al. Jul 2009 A1
20090189878 Goertz et al. Jul 2009 A1
20090219256 Newton Sep 2009 A1
20090229892 Fisher et al. Sep 2009 A1
20090251439 Westerman et al. Oct 2009 A1
20090256817 Perlin et al. Oct 2009 A1
20090259967 Davidson et al. Oct 2009 A1
20090267919 Chao et al. Oct 2009 A1
20090273794 Østergaard et al. Nov 2009 A1
20090278816 Colson Nov 2009 A1
20090297009 Xu et al. Dec 2009 A1
20100033444 Kobayashi Feb 2010 A1
20100045629 Newton Feb 2010 A1
20100060896 Van De Wijdeven et al. Mar 2010 A1
20100066016 Van De Wijdeven et al. Mar 2010 A1
20100066704 Kasai Mar 2010 A1
20100073318 Hu et al. Mar 2010 A1
20100078545 Leong et al. Apr 2010 A1
20100079407 Suggs et al. Apr 2010 A1
20100079408 Leong et al. Apr 2010 A1
20100097345 Jang et al. Apr 2010 A1
20100097348 Park et al. Apr 2010 A1
20100097353 Newton Apr 2010 A1
20100125438 Audet May 2010 A1
20100127975 Jensen May 2010 A1
20100134435 Kimura et al. Jun 2010 A1
20100142823 Wang et al. Jun 2010 A1
20100187422 Kothari et al. Jul 2010 A1
20100193259 Wassvik Aug 2010 A1
20100229091 Homma et al. Sep 2010 A1
20100238139 Goertz et al. Sep 2010 A1
20100245292 Wu Sep 2010 A1
20100265170 Norieda Oct 2010 A1
20100277436 Feng et al. Nov 2010 A1
20100283785 Satulovsky Nov 2010 A1
20100284596 Miao et al. Nov 2010 A1
20100289754 Sleeman et al. Nov 2010 A1
20100295821 Chang et al. Nov 2010 A1
20100302196 Han et al. Dec 2010 A1
20100302209 Large Dec 2010 A1
20100302210 Han et al. Dec 2010 A1
20100302240 Lettvin Dec 2010 A1
20100315379 Allard et al. Dec 2010 A1
20100321328 Chang et al. Dec 2010 A1
20100322550 Trott Dec 2010 A1
20110043490 Powell et al. Feb 2011 A1
20110049388 Delaney et al. Mar 2011 A1
20110050649 Newton et al. Mar 2011 A1
20110051394 Bailey Mar 2011 A1
20110068256 Hong et al. Mar 2011 A1
20110069039 Lee et al. Mar 2011 A1
20110069807 Dennerlein et al. Mar 2011 A1
20110074725 Westerman et al. Mar 2011 A1
20110074734 Wassvik et al. Mar 2011 A1
20110074735 Wassvik et al. Mar 2011 A1
20110090176 Christiansson et al. Apr 2011 A1
20110102374 Wassvik et al. May 2011 A1
20110115748 Xu May 2011 A1
20110121323 Wu et al. May 2011 A1
20110122075 Seo et al. May 2011 A1
20110122091 King et al. May 2011 A1
20110122094 Tsang et al. May 2011 A1
20110134079 Stark Jun 2011 A1
20110147569 Drumm Jun 2011 A1
20110157095 Drumm Jun 2011 A1
20110157096 Drumm Jun 2011 A1
20110163996 Wassvik et al. Jul 2011 A1
20110163997 Kim Jul 2011 A1
20110163998 Goertz et al. Jul 2011 A1
20110169780 Goertz et al. Jul 2011 A1
20110175852 Goertz et al. Jul 2011 A1
20110205186 Newton et al. Aug 2011 A1
20110216042 Wassvik et al. Sep 2011 A1
20110221705 Yi et al. Sep 2011 A1
20110221997 Kim et al. Sep 2011 A1
20110227036 Vaufrey Sep 2011 A1
20110227874 Fåhraeus et al. Sep 2011 A1
20110234537 Kim et al. Sep 2011 A1
20110254864 Tsuchikawa et al. Oct 2011 A1
20110261020 Song et al. Oct 2011 A1
20110267296 Noguchi et al. Nov 2011 A1
20110291989 Lee Dec 2011 A1
20110298743 Machida et al. Dec 2011 A1
20110309325 Park et al. Dec 2011 A1
20110310045 Toda et al. Dec 2011 A1
20120019448 Pitkanen et al. Jan 2012 A1
20120026408 Lee et al. Feb 2012 A1
20120038593 Rönkä et al. Feb 2012 A1
20120062474 Weishaupt et al. Mar 2012 A1
20120068973 Christiansson et al. Mar 2012 A1
20120086673 Chien et al. Apr 2012 A1
20120089348 Perlin et al. Apr 2012 A1
20120110447 Chen May 2012 A1
20120131490 Lin et al. May 2012 A1
20120141001 Zhang et al. Jun 2012 A1
20120146930 Lee Jun 2012 A1
20120153134 Bergström et al. Jun 2012 A1
20120154338 Bergström et al. Jun 2012 A1
20120162142 Christiansson et al. Jun 2012 A1
20120162144 Fåhraeus et al. Jun 2012 A1
20120169672 Christiansson Jul 2012 A1
20120181419 Momtahan Jul 2012 A1
20120182266 Han Jul 2012 A1
20120188206 Sparf et al. Jul 2012 A1
20120191993 Drader et al. Jul 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120200538 Christiansson et al. Aug 2012 A1
20120212441 Christiansson et al. Aug 2012 A1
20120217882 Wong et al. Aug 2012 A1
20120249478 Chang et al. Oct 2012 A1
20120256882 Christiansson et al. Oct 2012 A1
20120268403 Christiansson Oct 2012 A1
20120268427 Slobodin Oct 2012 A1
20120274559 Mathai et al. Nov 2012 A1
20120305755 Hong et al. Dec 2012 A1
20130021300 Wassvik Jan 2013 A1
20130021302 Drumm Jan 2013 A1
20130027404 Sarnoff Jan 2013 A1
20130044073 Christiansson et al. Feb 2013 A1
20130055080 Komer et al. Feb 2013 A1
20130076697 Goertz et al. Mar 2013 A1
20130082980 Gruhlke et al. Apr 2013 A1
20130107569 Suganuma May 2013 A1
20130113715 Grant et al. May 2013 A1
20130120320 Liu et al. May 2013 A1
20130125016 Pallakoff et al. May 2013 A1
20130127790 Wassvik May 2013 A1
20130135258 King et al. May 2013 A1
20130135259 King et al. May 2013 A1
20130141388 Ludwig et al. Jun 2013 A1
20130154983 Christiansson et al. Jun 2013 A1
20130155027 Holmgren et al. Jun 2013 A1
20130181896 Gruhlke et al. Jul 2013 A1
20130187891 Eriksson et al. Jul 2013 A1
20130201142 Suarez Rovere Aug 2013 A1
20130222346 Chen et al. Aug 2013 A1
20130241887 Sharma Sep 2013 A1
20130249833 Christiansson et al. Sep 2013 A1
20130269867 Trott Oct 2013 A1
20130275082 Follmer et al. Oct 2013 A1
20130285920 Colley Oct 2013 A1
20130285968 Christiansson et al. Oct 2013 A1
20130300716 Craven-Bartle et al. Nov 2013 A1
20130307795 Suarez Rovere Nov 2013 A1
20130342490 Wallander et al. Dec 2013 A1
20140002400 Christiansson et al. Jan 2014 A1
20140028575 Parivar et al. Jan 2014 A1
20140028604 Morinaga et al. Jan 2014 A1
20140028629 Drumm et al. Jan 2014 A1
20140036203 Guillou et al. Feb 2014 A1
20140055421 Christiansson et al. Feb 2014 A1
20140063853 Nichol et al. Mar 2014 A1
20140071653 Thompson et al. Mar 2014 A1
20140085241 Christiansson et al. Mar 2014 A1
20140092052 Grunthaner et al. Apr 2014 A1
20140098032 Ng et al. Apr 2014 A1
20140098058 Baharav et al. Apr 2014 A1
20140109219 Rohrweck et al. Apr 2014 A1
20140125633 Fåhraeus et al. May 2014 A1
20140139467 Ghosh May 2014 A1
20140160762 Dudik et al. Jun 2014 A1
20140192023 Hoffman Jul 2014 A1
20140232669 Ohlsson et al. Aug 2014 A1
20140237401 Krus et al. Aug 2014 A1
20140237408 Ohlsson et al. Aug 2014 A1
20140237422 Ohlsson et al. Aug 2014 A1
20140253831 Craven-Bartle Sep 2014 A1
20140267124 Christiansson et al. Sep 2014 A1
20140292701 Christiansson et al. Oct 2014 A1
20140300572 Ohlsson et al. Oct 2014 A1
20140320460 Johansson et al. Oct 2014 A1
20140347325 Wallander et al. Nov 2014 A1
20140362046 Yoshida Dec 2014 A1
20140368471 Christiansson et al. Dec 2014 A1
20140375607 Christiansson et al. Dec 2014 A1
20150002386 Mankowski et al. Jan 2015 A1
20150015497 Leigh Jan 2015 A1
20150035774 Christiansson et al. Feb 2015 A1
20150035803 Wassvik et al. Feb 2015 A1
20150053850 Uvnäs Feb 2015 A1
20150054759 Christiansson et al. Feb 2015 A1
20150083891 Wallander Mar 2015 A1
20150103013 Huang Apr 2015 A9
20150130769 Björklund May 2015 A1
20150138105 Christiansson et al. May 2015 A1
20150138158 Wallander et al. May 2015 A1
20150138161 Wassvik May 2015 A1
20150205441 Bergström et al. Jul 2015 A1
20150215450 Seo et al. Jul 2015 A1
20150242055 Wallander Aug 2015 A1
20150317036 Johansson et al. Nov 2015 A1
20150324028 Wassvik et al. Nov 2015 A1
20150331544 Bergström et al. Nov 2015 A1
20150331545 Wassvik et al. Nov 2015 A1
20150331546 Craven-Bartle et al. Nov 2015 A1
20150331547 Wassvik et al. Nov 2015 A1
20150332655 Krus et al. Nov 2015 A1
20150346856 Wassvik Dec 2015 A1
20150346911 Christiansson Dec 2015 A1
20150363042 Krus et al. Dec 2015 A1
20160026337 Wassvik et al. Jan 2016 A1
20160034099 Christiansson et al. Feb 2016 A1
20160050746 Wassvik et al. Feb 2016 A1
20160070415 Christiansson et al. Mar 2016 A1
20160070416 Wassvik Mar 2016 A1
20160124546 Chen et al. May 2016 A1
20160124551 Christiansson et al. May 2016 A1
20160154531 Wall Jun 2016 A1
20160154532 Campbell Jun 2016 A1
20160202841 Christiansson et al. Jul 2016 A1
20160216844 Bergström Jul 2016 A1
20160224144 Klinghult et al. Aug 2016 A1
20160299593 Christiansson et al. Oct 2016 A1
20160328090 Klinghult Nov 2016 A1
20160328091 Wassvik et al. Nov 2016 A1
20160334942 Wassvik Nov 2016 A1
20160342282 Wassvik Nov 2016 A1
20160357348 Wallander Dec 2016 A1
20170010688 Fahraeus et al. Jan 2017 A1
20170090090 Craven-Bartle et al. Mar 2017 A1
20170102827 Christiansson et al. Apr 2017 A1
20170115235 Ohlsson et al. Apr 2017 A1
20170139541 Christiansson et al. May 2017 A1
20170177163 Wallander et al. Jun 2017 A1
20170185230 Wallander et al. Jun 2017 A1
Foreign Referenced Citations (116)
Number Date Country
201233592 May 2009 CN
101644854 Feb 2010 CN
201437963 Apr 2010 CN
101019071 Jun 2012 CN
101206550 Jun 2012 CN
101075168 Apr 2014 CN
3511330 May 1988 DE
68902419 Mar 1993 DE
69000920 Jun 1993 DE
19809934 Sep 1999 DE
10026201 Dec 2000 DE
102010000473 Aug 2010 DE
0845812 Jun 1998 EP
0600576 Oct 1998 EP
1798630 Jun 2007 EP
0897161 Oct 2007 EP
2088501 Aug 2009 EP
1512989 Sep 2009 EP
2077490 Jan 2010 EP
1126236 Dec 2010 EP
2314203 Apr 2011 EP
2339437 Oct 2011 EP
2442180 Apr 2012 EP
2466429 Jun 2012 EP
2479642 Jul 2012 EP
1457870 Aug 2012 EP
2172828 Oct 1973 FR
2617619 Jan 1990 FR
2614711 Mar 1992 FR
2617620 Sep 1992 FR
2676275 Nov 1992 FR
1380144 Jan 1975 GB
2131544 Mar 1986 GB
2204126 Nov 1988 GB
2000506655 May 2000 JP
2000172438 Jun 2000 JP
2000259334 Sep 2000 JP
2000293311 Oct 2000 JP
2003330603 Nov 2003 JP
2005004278 Jan 2005 JP
2008506173 Feb 2008 JP
2011530124 Dec 2011 JP
100359400 Jul 2001 KR
100940435 Feb 2010 KR
WO 1984003186 Aug 1984 WO
WO 1999046602 Sep 1999 WO
WO 01127867 Apr 2001 WO
WO 0184251 Nov 2001 WO
WO 0235460 May 2002 WO
WO 02077915 Oct 2002 WO
WO 02095668 Nov 2002 WO
WO 03076870 Sep 2003 WO
WO 2004081502 Sep 2004 WO
WO 2004081956 Sep 2004 WO
WO 2005026938 Mar 2005 WO
WO 2005029172 Mar 2005 WO
WO 2005029395 Mar 2005 WO
WO 2005125011 Dec 2005 WO
WO 2006095320 Sep 2006 WO
WO 2006124551 Nov 2006 WO
WO 2007003196 Jan 2007 WO
WO 2007058924 May 2007 WO
WO 2007112742 Oct 2007 WO
WO 2008004103 Jan 2008 WO
WO 2008007276 Jan 2008 WO
WO 2008017077 Feb 2008 WO
WO 2008039006 Apr 2008 WO
WO 2008068607 Jun 2008 WO
WO 2006124551 Jul 2008 WO
WO 2008017077 Feb 2009 WO
WO 2009048365 Apr 2009 WO
WO 2009077962 Jun 2009 WO
WO 2009102681 Aug 2009 WO
WO 2009137355 Nov 2009 WO
WO 2010006883 Jan 2010 WO
WO 2010006883 Jan 2010 WO
WO 2010006884 Jan 2010 WO
WO 2010006885 Jan 2010 WO
WO 2010006886 Jan 2010 WO
WO 2010015408 Feb 2010 WO
WO 2010046539 Apr 2010 WO
WO 2010056177 May 2010 WO
WO 2010064983 Jun 2010 WO
WO 2010081702 Jul 2010 WO
WO 2010112404 Oct 2010 WO
WO 2010123809 Oct 2010 WO
WO 2010134865 Nov 2010 WO
WO 2011028169 Mar 2011 WO
WO 2011028170 Mar 2011 WO
WO 2011049511 Apr 2011 WO
WO 2011049512 Apr 2011 WO
WO 2011049513 Apr 2011 WO
WO 2011057572 May 2011 WO
WO 2011078769 Jun 2011 WO
WO 2011082477 Jul 2011 WO
WO 2011139213 Nov 2011 WO
WO 2012002894 Jan 2012 WO
WO 2012010078 Jan 2012 WO
WO 2012050510 Apr 2012 WO
WO 2012082055 Jun 2012 WO
WO 2012105893 Aug 2012 WO
WO 2012121652 Sep 2012 WO
WO 2012158105 Nov 2012 WO
WO 2012172302 Dec 2012 WO
WO 2012176801 Dec 2012 WO
WO 2013036192 Mar 2013 WO
WO 2013048312 Apr 2013 WO
WO 2013055282 Apr 2013 WO
WO 2013062471 May 2013 WO
WO 2013089622 Jun 2013 WO
WO 2013133756 Sep 2013 WO
WO 2013133757 Sep 2013 WO
WO 2013176613 Nov 2013 WO
WO 2013176614 Nov 2013 WO
WO 2013176615 Nov 2013 WO
WO 2014055809 Apr 2014 WO
Non-Patent Literature Citations (13)
Entry
Ahn, Y., et al., “A slim and wide multi-touch tabletop interface and its applications,” BigComp2014, IEEE, 2014, in 6 pages.
Chou, N., et al., “Generalized pseudo-polar Fourier grids and applications in regfersting optical coherence tomography images,” 43rd Asilomar Conference on Signals, Systems and Computers, Nov. 2009, in 5 pages.
Fihn, M., “Touch Panel—Special Edition,” Veritas et Visus, Nov. 2011, in 1 page.
Fourmont, K., “Non-Equispaced Fast Fourier Transforms with Applications to Tomography,” Journal of Fourier Analysis and Applications, vol. 9, Issue 5, 2003, in 20 pages.
Iizuka, K., “Boundaries, Near-Field Optics, and Near-Field Imaging,” Elements of Photonics, vol. 1: In Free Space and Special Media, Wiley & Sons, 2002, in 57 pages.
Johnson, M., “Enhanced Optical Touch Input Panel”, IBM Technical Discolusre Bulletin, 1985, in 3 pages.
Kak, et al., “Principles of Computerized Tomographic Imaging”, Institute of Electrical Engineers, Inc., 1999, in 333 pages.
The Laser Wall, MIT, 1997, http://web.media.mit.edu/˜joep/SpectrumWeb/captions/Laser.html.
Liu, J., et al. “Multiple touch points identifying method, involves starting touch screen, driving specific emission tube, and computing and transmitting coordinate of touch points to computer system by direct lines through interface of touch screen,” 2007, in 25 pages.
Natterer, F., “The Mathematics of Computerized Tomography”, Society for Industrial and Applied Mathematics, 2001, in 240 pages.
Natterer, F., et al. “Fourier Reconstruction,” Mathematical Methods in Image Reconstruction, Society for Industrial and Applied Mathematics, 2001, in 12 pages.
Paradiso, J.A., “Several Sensor Approaches that Retrofit Large Surfaces for Interactivity,” ACM Ubicomp 2002 Workshop on Collaboration with Interactive Walls and Tables, 2002, in 8 pages.
Tedaldi, M., et al. “Refractive index mapping of layered samples using optical coherence refractometry,” Proceedings of SPIE, vol. 7171, 2009, in 8 pages.
Related Publications (1)
Number Date Country
20160328091 A1 Nov 2016 US