The invention falls within the field of non-portable lighting devices, adapted specially for motor vehicles, and it relates to a projector system for headlights of motor vehicles that is designed to finish the required output characteristic of the light trace in specific zones in front of the driver on the carriageway.
A headlight, especially for motor vehicles, contains at least one optical system comprising a powerful light source and optical elements. The light source emits light rays and the optical elements represent a system of refractive and reflective surfaces, interfaces of optical environments and diaphragms that influence the direction of light rays within the creation of the output light trace.
In modern headlights, projector systems are frequently used comprising light units adapted to amplify light by stimulated emission of radiation, called laser units. A laser is used in headlights as an optical source of electromagnetic radiation in the form of light-emitting diodes. Diodes use the principle of electroluminescence, when after the introduction of electric voltage, electric energy is transformed into light in the place of P-N transition. This light is emitted from the laser diode as coherent and monochromatic. Light emitted by laser diodes most frequently has the blue color so to be used in car headlights, light rays pass through a converter, generally in the form of yellow phosphorus, e.g. Cr:YAG, which turns blue light to white light.
Thus, laser diodes may be used, unlike common LED's, in applications where a sharply directional light beam needs to be created. Light devices are known from the documents US20110280032A1, WO2015140001A1, US20150043233A1, and WO2014121315A1, wherein laser diodes make it possible to exactly focus light rays in a particular direction and to hit even a very distant point, which is used to ensure the high-beam light function in headlights of motor vehicles. In accordance with valid regulations, light may be emitted up to the distance of 600 m in front of the vehicle. Thanks to up to 80% higher efficiency of optical systems designed for laser sources, a higher performance of headlights can be achieved. Luminance of a laser source can be up to 100 times higher, while optical systems comprising a laser diode feature 50% lower energy consumption compared to conventional LED's. A disadvantage of most current laser optical concepts is the fact that the benefits of laser diodes are generally used for the high beam function where a high-intensity light trace needs to be provided, the above mentioned laser systems not being adapted for changes of the light characteristic of the output light beam depending on the conditions where the vehicle is found, e.g. no dazzling of the oncoming driver, width of the light beam based on the vehicle speed, the emission direction of the light beam based on the steering wheel position, etc.
Another disadvantage of laser as well as LED optical concepts is the fact that excessive light intensity may harm vision, and the headlights of vehicles must be fitted with safety elements to avoid exceeding of safety limits, especially in case of damage of converter substances or the entire laser diodes. Safety elements for laser beam emission are described e.g. in the documents WO2014072227A1, EP2821692A1, WO2015049048A1, WO2012076296A3, and U.S. Pat. No. 8,502,695B2.
A solution is known from the document EP2954256B1, wherein the light characteristic of the output light beam is ensured by at least two laser diodes when individual modulated laser rays are directed to a light converter by means of turning of a micro-mirror. A disadvantage of this solution is the fact that the projected light image consists of several segments, a laser diode being associated with each segment, which makes the optical concept relatively costly and optically inefficient.
From the prior art, diffraction dividers of the laser beam are known that consist of a binary grating that is designed in such a way to divide coherent light emitted from the laser diode to a particular number of light streams. From the documents US20140307457 and CZ20150890, lamps are known where the light emitted by one laser diode is divided by a divider to a higher number of partial rays. The divider works as a router of photons to direct photons to a pre-defined space. A disadvantage of the prior art is the fact that optical systems comprising a laser beam divider are intended for signal functions, and are not adapted to create the required output characteristics for lighting of the carriageway in front of the driver. Another disadvantage is the fact that the micro-mirror only turns around one axis, which means that the resulting image can only be influenced in one direction and thus only a light stripe can be produced by each laser diode.
A solution is known from the document U.S. Pat. No. 4,868,721 that contains an assembly of rotary/oscillating micro-mirrors that makes it possible to influence the resulting image in two directions. Between the laser diode and the mirror, a light modulator is situated making it possible to influence the light characteristics of the laser beams of rays, or to even entirely interrupt the laser beam of rays. A disadvantage of this design is the fact that the modulator influences the light beam before it hits the micro-mirror, which means that the light characteristic of the light beam after the reflection from the micro-mirror cannot be influenced.
The document US20130058114 discloses a design wherein light rays reflected by an array of micro-mirrors are directed through an optical assembly comprising diffraction elements in the form of lenses and prisms, which makes it possible to produce a light image consisting of a few segments of different shapes, while different light characteristics can be achieved in each segment. A disadvantage of this design is the fact that an asymmetrically composed light image cannot be created and the light characteristic of the output light trace cannot be dynamically influenced, e.g. an unlit part inside one segment of the resulting light image cannot be created.
More laser optical systems are known from the documents DE19907943, EP2063170, DE102008022795, DE102011080559A1, and EP2990264, that are equipped with micro-mirrors or with opto-electro-mechanical systems called MOEMS. Opto-electro-mechanical elements generally consist of an array of small mirrors that nowadays enable, on the micrometer level, direct control, routing and shaping of light before the light falls onto the converter of the laser beam of rays. A disadvantage of existing laser concepts is the fact that rotation/oscillation of micro-mirrors is carried out in a resonance manner when the micro-mirror oscillates at the same frequency and amplitude, and if the shape of the output light image needs to be influenced, the laser source of light must be switched off. It is not possible to stop a micro-mirror in a certain position or offset/shift the rotation/oscillation axis either. The speed of the micro-mirror is variable because when the rotation direction is changed, the micro-mirror speed is reduced. This results in uneven distribution of the intensity of light. To achieve even distribution of the intensity of light, the laser ray or the beam of laser rays must be switched off, switched on or modulated at a certain time.
The documents US2004227984 and U.S. Pat. No. 7,428,353 disclose technical designs of MOEMS controlling the micro-mirror rotation/tilt angle, the micro-mirror oscillation range/angle, oscillation rate and frequency through electric or electromagnetic control signals, while micro-mirror oscillation can be implemented in two mutually independent directions.
The object of the present invention is to remedy the above-mentioned drawbacks of the prior art and to enable dynamic changing of the light characteristics of the output light beam of a light device, especially the projector system of a headlight for motor vehicles equipped with a laser diode, depending on the conditions where the vehicle is found. The output light trace must comprise at least one light pattern, while the light characteristics of individual patterns must be created from one laser diode in such a way that it is switched off to a minimal extent. The entire optical system must be optically efficient with low production demands.
The above mentioned objects of the invention are fulfilled by a light device, especially the projector system of a headlight for motor vehicles comprising a laser light source, a primary optical system with at least one diffractive optical element and/or with at least one reflective optical element to convert the monochromatic coherent light produced by the laser light source to a collimated beam of coherent light, a MOEMS comprising one or more micro-mirrors to route coherent light to a converter to convert it to white light, and a secondary optical system comprising at least one diffractive optical element and/or at least one reflective optical element to direct the white light further out of the light device and to create a light pattern on the display surface and/or in specific zones in front of the driver on the carriageway. The light device comprises an electromagnetic control system connected to the MOEMS and to the laser light source to control, through transmission or electric or electromagnetic signals, changes of the rotation angle, changes of the oscillation angle and changes of the oscillation rate and frequency of the free end of at least one of the micro-mirrors, and to control the activity of the laser light source, for controlled changing of the shape and/or position of the light pattern depending on the current conditions where the vehicle finds itself during its operation.
In one of the embodiments, the light device comprises just one laser light source.
In another one of the embodiments, the light device comprises a modulator situated between the laser light source and the secondary optical system along the route of the beam of light rays produced by the laser light source, and advancing from this source to the secondary optical system to influence the light characteristic of this beam or its part.
The modulator can be situated between the laser light source and the primary optical system to influence the light characteristic of the laser beam of coherent light or its part.
Another option of situating the modulator is its positioning between the primary optical system and the secondary optical system to influence the light characteristic of the collimated light beam or its part.
In another one of the embodiments, the primary optical system further comprises a divider to divide the collimated beam into more separate light streams. In such a case, the primary optical system can advantageously comprise a light stream modulator.
In another one of the embodiments, the modulator is configured to interrupt or deflect the beam of light rays or its part, especially the light stream, to produce one or more unlit areas in the light pattern.
The modulator can be connected to an electromagnetic control system that controls the operation of the modulator, especially with respect to the current conditions where the vehicle finds itself during its operation.
In one of the embodiments, the said at least one of the micro-mirrors is arranged in a movable way so that it can be rotated in a controlled manner around the first axis, which is identical with the axis around which the micro-mirror can be oscillated in a controlled way.
In addition, the said at least one of the micro-mirrors can be arranged in a movable way so that it can be rotated in a controlled manner around the second axis, around which the micro-mirror can be oscillated in a controlled manner as well.
In one of the embodiments, the second axis lies on a horizontal plane and is perpendicular to the first axis.
In one of the embodiments, the said at least one of the micro-mirrors is mounted in a movable first carrying frame with the possibility of controlled rotation and oscillation of the micro-mirror in this first frame around the first axis, this first frame being arranged in such a way that it can be rotated and oscillated around the second axis in a controlled way. The first carrying frame is preferably mounted in a movable way in the static second carrying frame.
In one of the embodiments, the electromagnetic control system is connectable to the output of one or more information means in the form of signals, which data collected by the information means about the current conditions where the vehicle finds itself during its operation have been transformed into.
The information means can be the means used to establish the instantaneous angle, turning direction of the vehicle, its instantaneous speed, or to detect an oncoming vehicle.
In another, the converter comprises a self-contained converter layer and a filter that are in mutual direct contact.
The self-contained converter layer can comprise a monocrystal or ceramic body, especially containing Cr:YAG.
In the transmission arrangement, the filter can be located in such a way that coherent light that has been directed by one or more micro-mirrors enters the converter through it.
In the reflective arrangement, the filter can be situated between the cooler and the self-contained converter layer in such a way that coherent light that has been directed by one or more micro-mirrors enters the converter through it. The filter can be connected to the cooler by means of a bonding material, especially by melting.
The invention will be clarified in a more detailed way with the use of its embodiment examples with references to attached drawings, where:
According to
According to
According to
According to
As indicated in
As shown in
According to
MOEMS 3, the light source 1 and the modulator 109 are connected to the electromagnetic control system 11 for transmitting electric or electromagnetic signals to control the current position of the micro-mirror 31 and its movement in accordance with the current conditions where the vehicle finds itself. The light stream 103 exiting from the primary optical system 2 is influenced in such a way to enable changing of the position of the light pattern A on the display surface VH. E.g. if the vehicle is turning, the light pattern A is shifted in the horizontal direction based on the turning direction through changes of the rotation angle α of the micro-mirror 31. The height h and/or width d of the light pattern A changes depending on the vehicle's speed, namely through changes of the oscillation angle β of the micro-mirror 31. Light intensities in individual parts of the light pattern A are changed by influencing the rate and frequency of oscillation of the free end of the micro-mirror 31. When an oncoming vehicle is detected, an unlit area 10 can be created in the light pattern A by means of a not represented light control unit connected to the light source 1 and/or modulator 9 while the light control unit and the electromagnetic control system 11 mutually cooperate.
For the purposes of this invention, the term “self-contained” in the phrase “self-contained converter layer 71” expresses that the converter layer 71 is so firm that it does not need any carrying layer it would be connected to or supported by.
In the transmission as well as reflective arrangement (
As shown in
In the above mentioned transmission as well as reflective arrangement, the filter 72 can be e.g.: a spectral filter or a polarizing filter, or an optical layer that reflects a certain part of the spectrum and transmits another part or possibly absorbs some parts of the spectrum, an optical layer configured to transmit blue light from the side of the source and to reflect yellow light from the side of the converter, or a semi-permeable filter (e.g. partly metal-plated in some places).
Number | Date | Country | Kind |
---|---|---|---|
2017-36 | Jan 2017 | CZ | national |
Number | Name | Date | Kind |
---|---|---|---|
4868721 | Soardo | Sep 1989 | A |
7428353 | Milanovic et al. | Sep 2008 | B1 |
8502695 | Kishimoto | Aug 2013 | B2 |
20040227984 | Yamabana et al. | Nov 2004 | A1 |
20090046474 | Sato | Feb 2009 | A1 |
20110280032 | Kishimoto | Nov 2011 | A1 |
20130058114 | Reiners | Mar 2013 | A1 |
20130250381 | Toko | Sep 2013 | A1 |
20130271947 | Finsterbusch | Oct 2013 | A1 |
20140307457 | Chen | Oct 2014 | A1 |
20150029409 | Chen | Jan 2015 | A1 |
20150043233 | Bauer et al. | Feb 2015 | A1 |
20150369437 | Reinprecht et al. | Dec 2015 | A1 |
20150369440 | Reinprecht et al. | Dec 2015 | A1 |
20170167688 | Gloss et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
20150890 | Jun 2017 | CZ |
19907943 | Sep 2000 | DE |
102008022795 | Nov 2009 | DE |
102011080559 | Feb 2013 | DE |
2063170 | May 2009 | EP |
2581648 | Apr 2013 | EP |
2821692 | Jan 2015 | EP |
2990264 | Mar 2016 | EP |
2954256 | Jul 2016 | EP |
3086022 | Oct 2016 | EP |
3139082 | Mar 2017 | EP |
2012076296 | Jun 2012 | WO |
2014072227 | May 2014 | WO |
2014121315 | Aug 2014 | WO |
2015049048 | Apr 2015 | WO |
2015140001 | Sep 2015 | WO |
Entry |
---|
Search Report from corresponding CZ PV 2017-36 dated Oct. 23, 2017 (3 pages). |
Number | Date | Country | |
---|---|---|---|
20180209603 A1 | Jul 2018 | US |