1. Technical Field
The present disclosure relates to a vehicle lamp device, in particular, to a light distance-adjustable vehicle lamp device. The vehicle lamp is adapted to bicycle, motorcycle and automobile, etc.
2. Description of Related Art
Light-emitting modules of conventional vehicle headlamps may be classified into tungsten halogen lamps and High Intensity Discharge (HID) lamps, in which the tungsten halogen lamp has an arc length of 5.6 mm and the HID lamp has an arc length of 4.3 mm. In order to match with traditional illumination lamp sources, the light-collecting system the conventional vehicle headlamps generally employs a single optical axis and a single light-emitting module. At present, in order to simulate the arc lengths and sizes of a tungsten halogen lamp and an HID lamp, a light-emitting diode module disposed in the vehicle headlight adopts a continuous light-emitting diode package form. In the case under a single optical axis and a single focus, only a single light-emitting module can be used and hence, light-emitting diodes having a size of 1 mm×1 mm are most often serve as units for packaging. The continuous light-emitting diode package form means that a plurality of light-emitting diodes are packed on a silicon substrate through a eutectic process or other processes, so that the distance between the grains (chips) of the light-emitting diodes may be less than 0.2 mm and may even be as small as less than 0.05 mm. Due to the smaller distance between the light-emitting diodes, the combination of the light-emitting diodes may be regarded as a continuous light emitter. However, with the same brightness, the cost of the continuous light-emitting diode package is at least 10 times more than a common light-emitting diode manufactured through a common process. In other words, the conventional light emitting diode packages for lighting are discontinuous light emitters and are manufactured by directly packing a single grain (chip) of light emitting diode, or directly packing two or three grains of light emitting diode. The light emitting diode formed by discontinuous process means that the distance between each two grains of light emitting diode is larger than 0.2 mm or 0.5 mm, or the distance between each two grains of light emitting diode is up to 4 mm.
Generally, the light emitting module of front lights for an automobile in the prior art is for providing a light distance adjusting function to switch between high beam (far light) and low beam (near light) according to the requirements of driving vision. For example, Taiwan patent No. 1332910 discloses a “semiconductor solid-state light emitting automobile front light with adjustable light distance” which utilizes the combination of a semiconductor solid-state light source and a movable light-shielding plate to achieve adjustable light distance. Furthermore, Taiwan patent No. M353845 discloses a “vehicle lamp for lighting” which utilizes separate high beam and low beam module to achieve the switch between the near light and far light.
Furthermore, Taiwan patent No. M492846 discloses a “LED projecting lamp with adjustable light distance” which involves the arrangement of two LED lights positioned on the upper surface and the lower surface of a substrate respectively, in which the two LED lights correspond to two different reflecting mirrors with different curvature, thereby achieving the function of light distance adjustment.
However, the above patents involve the use of complicated structures to achieve the function of light distance adjustment. Therefore, there is a need for providing the function of light distance adjustment through a single lens.
In view of the above problem, the embodiment of the instant disclosure provides a light distance-adjustable vehicle lamp which utilizes a specific arrangement of a single lens and a light emitting diode to achieve the switch between the near light and the far light, and the light emitted from such a vehicle lamp would also be in compliance with laws and administrative regulations. Moreover, the vehicle lamp provided by the embodiment of the instant disclosure has reduced manufacturing cost.
In order to achieve the above purposes, an exemplary embodiment of the present disclosure provides a light distance-adjustable vehicle lamp device comprising a lens unit, a light emitting group, a datum axis and a reference axis. The lens unit comprises a first focus, a second focus, a lens focus and an optical axis, in which the optical axis passes through the lens focus. The light emitting group is arranged corresponding to the lens unit, the light emitting group comprises a first light emitting unit and a second light emitting unit. The first light emitting unit has a first light source center, a first axis and a first light emitting surface, the first axis passes through the first light source center, the first light emitting surface has a plurality of first surrounding edges, two adjacent first surrounding edges cross at an end point, in which the first light emitting unit corresponds to the first focus of the lens unit. The second light emitting unit is arranged corresponding to the first light emitting unit, the second light emitting unit has a second light source center, a second axis, and a second light emitting surface, the second axis passes through the second light source center, the second light emitting surface has a plurality of second surrounding edges, in which the second light emitting unit corresponds to the second focus of the lens unit. The datum axis passes through the lens focus and the second light emitting unit. The reference axis passes through one of the plurality of first surrounding edges, and the reference axis passes through the end point, in which the reference axis and the datum axis have a predetermined angle therebetween, and the predetermined angle is between 0 and 90 degrees. The lens focus is positioned between the first axis and the second axis. The end point is positioned between the datum axis and the first light source center.
The advantage of the instant disclosure resides in that by utilizing the combination of a lens unit and a light emitting group comprising a first light emitting unit as the near light and a second light emitting unit as the far light, the light distance-adjustable vehicle lamp device provided by the embodiment of the instant disclosure may achieve the function of light distance adjustment by using a single lens unit. In addition, the first light emitting unit and the second light emitting unit are off-set from each other and one of the end points of the first light emitting unit is positioned between the datum axis and the first light source center, and hence, the light distance adjustable vehicle lamp device has a structure smaller than that of the prior art.
In order to further understand the techniques, means and effects of the instant disclosure, the following detailed descriptions and appended drawings are hereby referred to, such that, and through which, the purposes, features and aspects of the instant disclosure can be thoroughly and concretely appreciated; however, the appended drawings are merely provided for reference and illustration, without any intention to be used for limiting the instant disclosure.
The accompanying drawings are included to provide a further understanding of the instant disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the instant disclosure and, together with the description, serve to explain the principles of the present disclosure.
Reference will now be made in detail to the exemplary embodiments of the instant disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
First, please refer to
The light emitting group 2 is arranged corresponding to the lens unit 1. Taking the first embodiment of the instant disclosure as an example, the light emitting group 2 may comprise a first light emitting unit 21 and a second light emitting unit 22. For example, the first light emitting unit 21 and the second light emitting unit 22 provided by the embodiment of the instant disclosure may be light emitting diodes, and the size of the light emitting diodes may be 1.14 millimeter by 1.14 millimeter. However, the instant disclosure is not limited thereto. In the embodiments of the instant disclosure, the first light emitting unit 21 may serve as the low beam (near light) of the vehicle lamp device H, and the second light emitting unit 22 may serve as the high beam (far light) of the vehicle lamp device H. However, the instant disclosure is not limited thereto.
Next, please refer to
As mentioned above, the second light emitting unit 22 is arranged corresponding to the first light emitting unit 21, and hence, the first light emitting unit 21 and the second light emitting unit 22 are off-set from each other. The second light emitting unit 22 has a second light source center 221, a second axis L2 and a second light emitting surface 222, the second axis L2 passes through the second light source center 221, and the second axis L2 is parallel to the vertical axis 15 of the lens unit 1. The second light emitting surface 222 may have a plurality of second surrounding edges 223, and two adjacent second surrounding edges 223 cross at an end point 224. In addition, the second light source center 221 of the second light emitting unit 22 may be arranged corresponding to the second focus 12 of the lens unit 1. For example, the second light source center 221 of the second light emitting unit 22 may coincide with the second focus 12 of the lens unit 1. However, the instant disclosure is not limited thereto. In other embodiments, by adjusting the position of the second light emitting unit 22, the second light source center 221 could be positioned on a side of the second focus 12, thereby adjusting the light pattern generated by the vehicle lamp device H.
A datum axis DL is parallel to the horizontal axis 14 of the lens unit 1, and the datum axis DL may pass thru the lens focus 13 of the lens unit 1 and the second light emitting unit 22. For example, the datum axis may pass through the second light source center 221 of the second light emitting unit 22 and two end points 224 of the second light emitting unit 22. However, the instant disclosure is not limited thereto. In other words, in the other embodiments, the datum axis DL does not have to pass through two end points 224 of the second light emitting unit 22 and may pass through the second light source center 221 and two surrounding edges 223 of the second light emitting unit 22.
The reference axis RL passes through one of the plurality of first surrounding edges 213 of the first light emitting unit 21, and the reference axis RL passes through the end points 214 of the first light emitting unit 21. The reference axis RL and the datum axis DL may have a predetermined angle θ therebetween, and the predetermined angle θ is from 0 degrees to 90 degrees. For example, in the first embodiment of the instant disclosure, the predetermined angle θ may be 45 degrees. However, the instant disclosure is not limited thereto. By adjusting the predetermined angle θ, the width of the light generated by the vehicle lamp device H may be controlled.
In the first embodiment, the lens focus 13 of the lens unit 1 may be positioned between the first axis L1 and the second axis L2, and one end point 214 of the first light emitting unit 21 may be positioned between the datum axis DL and the first light source center 211. In other words, the lowest light emitting position of the first light emitting surface 211 of the first light emitting unit 21 is positioned between the datum axis DL and the first light source center 211. Furthermore, preferably, in the first embodiment, the lens focus 13 may be positioned at the center point between the first axis L1 and the second axis L2. Therefore, the distance between the lens focus 13 of the lens unit 1 and the first axis L1 is equal to the distance between the lens focus 13 of the lens unit 1 and the crossing point of the second axis L2 and the datum axis DL.
Next, in the first embodiment of the instant disclosure, the nearest distance between the first light emitting surface 212 of the first light emitting unit 21 and the second light emitting surface 222 of the second light emitting unit 22 may be a predetermined gap G and the predetermined gap G may be from 0 to 4 millimeter. Preferably, in a continuous light emitting diode, the predetermined gap G may be from 0 millimeter to 0.2 millimeter. More preferably, in a discontinuous light emitting diode, the predetermined gap G may be from 0.2 millimeter to 4 millimeter, or from 0.5 millimeter to 4 millimeter. Furthermore, as shown in
Next, please refer to
The light distance-adjustable vehicle lamp device H provided by the first embodiment of the instant disclosure includes the combination of a lens unit 1 with a light emitting group 2 having a first light emitting unit 21 as near light and the second light emitting unit 22 as far light, and hence, the function of light distance adjustment may be achieved by one lens unit 1. Furthermore, by arranging the first light emitting unit 21 and the second light emitting unit 22 off-set from each other and positioning one end point 214 of the first light emitting unit 21 between the datum axis DL and the first light source center 211, the light distance-adjustable vehicle lamp device H has smaller structure construction compared to the prior art.
First, please refer to
Next, the second lens unit 4 may be arranged between the two first lens units 3, and the horizontal axis 35 of the two first lens units 3 may be parallel to the horizontal axis 42 of the second lens unit 4. In addition, the second lens unit 4 may be a lens with a complex curvature. The second lens unit 4 may have a lens focus 41, a horizontal axis 42, a vertical axis 46 and an optical axis 43, and the optical axis 43 of the second lens unit 4 may pass through the lens focus 41 of the second lens unit 4. In addition, in the second embodiment, the second lens unit 4 has a first focus 44 and a second focus 45. The first focus 44 and the second focus 45 of the second lens unit are formed by two different curved surfaces on the second lens unit 4 respectively. The lens focus 41 of the second lens unit 4 may be positioned between the first focus 44 and the second focus 45 of the second lens unit 4.
As shown in
The first light emitting unit 51 may have a first light source center 511, a first axis L1′ and a first light emitting surface 512. The first axis L1′ passes through the first light source center 511, and the first axis L1′ is parallel to the vertical axis 36 of the first lens unit 3. The first light emitting surface 512 may have a plurality of surrounding edges 513, and two adjacent first surrounding edges 513 may cross at an end point 514. For example, the first light emitting unit 51 may have four first surrounding edges 513, and the four surrounding edges 513 may form four end points 514. In addition, the first light source center 511 of the first light emitting unit 51 may be arranged corresponding to the first focus 31 of the first lens unit 3. For example, the first light source center 511 of the first light emitting unit 51 may coincide with the first focus 31 of the first lens unit 3. However, the instant disclosure is not limited thereto. In other embodiments, by adjusting the position of the first light emitting unit 51, the first light source center 511 may be positioned at a side of the first focus 31, thereby adjusting the light pattern generated by the vehicle lamp device H′.
The second light emitting unit 52 and the first light emitting unit 51 are arranged corresponding to each other, so that the first light emitting unit 51 and the second light emitting unit 52 are off-set from each other. The second light emitting unit 52 has a second light source center 521, a second axis L2′ and a second light emitting surface 522, the second axis L2′ passes through the second light source center 521, and the second axis L2′ is parallel to the vertical axis 36 of the first lens unit 3. The second light emitting surface 522 has a plurality of second surrounding edges 523, and two adjacent second surrounding edges 523 may cross at an end point 524. In addition, the second light source center 521 of the second light emitting unit 52 and the second focus 32 of the first lens unit 3 may be arranged corresponding to each other. For example, the second light source center 521 of the second light emitting unit 52 may coincide with the second focus 32 of the first lens unit 3. However, the instant disclosure is not limited thereto. In other embodiments, by adjusting the position of the second light emitting unit 52, the second light source center 521 may be positioned beside of the second focus 32 of the first lens unit 3, thereby adjusting the light pattern generated by the vehicle lamp device H′. In addition, in the second embodiment, the lens focus 34 of the first lens unit 3 may coincide with the second light source 521 of the second light emitting unit 52.
The third light emitting unit 53 is arranged corresponding to the second light emitting unit 52, so that the third light emitting unit 53 and the second light emitting unit 52 are off-set from each other. The third light emitting unit 53 may have a third light source center 531, a third axis L3′ and a third light emitting surface 532. The third axis L3′ is parallel to the vertical axis 36 of the lens unit 3, the third light emitting surface 532 has a plurality of surrounding edges 533, and two adjacent surrounding edges 533 cross at an end point 534. In addition, the third light source center 531 of the third light emitting unit 53 may be arranged corresponding to the third focus 33 of the first lens unit 3. For example, the third light source center 531 of the third light emitting unit 53 may coincide with the third focus 33 of the first lens unit 3. However, the instant disclosure is not limited thereto. In other embodiments, by adjusting the position of the third light emitting unit 53, the third light source center 531 may be positioned beside the third focus 33 of the first lens unit 3, thereby adjusting the light pattern generated by the vehicle lamp device H′.
Next, please refer to
The datum axis DL may pass through the lens focus 34 of the two first lens units 3, the lens focus 41 of the second lens unit 4 and the second light emitting unit 52 of the first light emitting group 5. In addition, the datum axis DL may pass through the first focus 44 and the second focus 45 of the second lens unit 4. In the second embodiment, the datum axis DL may be parallel to the vertical axis 35 of the first lens unit 3, and the datum axis DL is also parallel to the horizontal axis 42 of the second lens unit 4. For example, the datum axis DL may pass through the second light source center 521 of the second light emitting unit 52 of the first light emitting group 5, and the light source centers of the first light emitting unit 62 and the second light emitting unit 63 of the second light emitting group 6. Moreover, the first light emitting unit 62 and the second light emitting unit 63 may be in continuous form or discontinuous form as described in the previous embodiment, i.e., the first light emitting unit 62 and the second light emitting unit 63 may be packed from a plurality of light emitting diode chips, or may be packed from a single light emitting diode chip.
For example, as shown in
The first reference axis RL1 may pass through one of the plurality of first surrounding edges 513 of the first light emitting unit 51 of the first light emitting group 5, and the first reference axis RL1 passes through the end point 514 where two adjacent first surrounding edges 513 cross. Therefore, the first reference axis RL1 and the datum axis DL may have a first predetermined angle θ1 therebetween, the first predetermined angle θ1 may be from 0 to 90 degrees. Preferably, the first predetermined angle θ1 is 0 degree. However, the instant disclosure is not limited thereto.
The second reference axis RL2 may pass through one of the plurality of third surrounding edges 533 of the third light emitting unit 53 of the first light emitting group 5, and the second reference axis RL2 also passes through the end point 534 where two adjacent surrounding edges cross. Therefore, the second reference axis RL2 and the datum axis DL may have a second predetermined angle θ2 therebetween, the second predetermined θ2 angle may be from 0 to 90 degrees. In the second embodiment, preferably, the second predetermined angle θ2 is 0. However, the instant disclosure is not limited thereto.
Specifically, as shown in
In the second embodiment of the instant disclosure, the first light emitting surface 512 of the first light emitting unit 51 and the second light emitting surface 522 of the second light emitting unit 52 in the first light emitting group 5 may have a first predetermined gap G1 which is the shortest distance therebetween, and the first predetermined gap G1 may be from 0 to 4 millimeter. Preferably, in a continuous light emitting diode, the first predetermined gap G1 may be from 0 to 0.2 millimeter. In a discontinuous light emitting diode, the first predetermined gap G1 may be from 0.2 millimeter to 4 millimeter or from 0.5 millimeter to 4 millimeter. The third light emitting surface 532 of the third light emitting unit 53 and the second light emitting surface 522 of the second light emitting unit 52 in the first light emitting group 5 may have a second predetermined gap G2 which is the shortest distance therebetween, and the second predetermined gap G2 may be from 0 to 4 millimeter. Preferably, in a continuous light emitting diode, the second predetermined gap G2 may be from 0 to 0.2 millimeter. In a discontinuous light emitting diode, the second predetermined gap G2 may be from 0.2 millimeter to 4 millimeter or from 0.5 millimeter to 4 millimeter. In other words, in a discontinuous form, the first light emitting unit 51, the second light emitting unit 52 and the third light emitting unit 53 may be light emitting diode chips packed in a same package, and the first predetermined gap G1 and the second predetermined gap G2 between the first light emitting unit 51, the second light emitting unit 52 and the third light emitting unit 53 may be from 0.2 millimeter to 4 millimeter or from 0.5 millimeter to 4 millimeter. However, in other embodiments, the first light emitting unit 51, the second light emitting unit 52 and the third light emitting unit 53 may be light emitting diodes that are individually packed, and the first predetermined gap G1 and the second predetermined gap G2 between the first light emitting unit 51, the second light emitting unit 52 and the third light emitting unit 53 may be from 0.2 millimeter to 4 millimeter or from 0.5 millimeter to 4 millimeter. In addition, in the continuous form, the first light emitting unit 51, the second light emitting unit 52 and the third light emitting unit 53 may comprise a plurality of light emitting diode chips, and the distances between each light emitting diode chip are from 0 millimeter to 0.2 millimeter.
In addition, for example, one of the plurality of first surrounding edges 513 of the first light emitting unit 51 of the first light emitting group 5 may be parallel to one of the plurality of second surrounding edges 523 of the second light emitting unit 52 of the first light emitting group 5. One of the plurality of third surrounding edges 533 of the third light emitting unit 53 of the first light emitting group 5 may be parallel to one of the plurality of second surrounding edges 523 of the second light emitting unit 52 of the first light emitting group 5. In other words, by adjusting the angle between both of the first reference axis RL1 and the second reference axis RL2 and the datum axis DL, the desired light pattern may be formed. In addition, the desired light pattern may also be achieved by adjusting the relative position between each end point 524 of the second light emitting unit 52 of the first light emitting group 5 and the datum axis DL. It is worthwhile to mention that the relationship between the first lens unit 3 and the first light emitting group 5 provided in the second embodiment is similar to the previous embodiment, and will not be described in detail herein.
The second embodiment of the instant disclosure provides a light distance-adjustable vehicle lamp device H′. By arranging the first light emitting unit 51, the second light emitting unit 52 and the third light emitting unit 53 off-set from each other, the light distance adjustable vehicle lamp device H′ may generate a light pattern having larger width and higher brightness compared to the prior art, and also reduce the manufacturing cost. In addition, the light pattern may meet the regulation for high beam and low beam of ECE R113 Class D.
First, please refer to
The second lens unit 4 is closely arranged on one side of the first lens unit 3, and the second lens unit 4 has a lens focus 41, a horizontal axis 42, an optical axis 43 and a vertical axis 46. The optical axis 43 passes through the lens focus 41 of the second lens unit 4, and the optical axis 43 of the second lens unit 4 may be orthogonal to the vertical axis 46 of the horizontal axis 42.
As mentioned above, the first light emitting group 5 is arranged corresponding to the first lens unit 3, and the second light emitting group 6 is arranged corresponding to the second lens unit 4. The first light emitting unit 5 comprises a first light emitting unit 51, a second light emitting unit 52 and a third light emitting unit 53. The first light emitting unit 51 has a first light source center 511, a first axis L1′, and a first light emitting surface 512. The first axis L1′ passes through the first light source center 511 and is parallel to the vertical axis 36 of the first lens unit 3. The first light emitting surface 512 has a plurality of surrounding edges 513, two adjacent surrounding edges 513 cross at an end point 514. The second light emitting unit 52 has a second light source center 521, a second axis L2′ and a second light emitting surface 522. The second axis L2′ passes through the second light source center 521, the second axis L2′ is parallel to the vertical axis 36 of the first lens unit 3. The second light emitting surface 522 has a plurality of second surrounding edges 523. The third light emitting unit 53 has a third light source center 531, a third axis L3′, and a third light emitting surface 532. The third axis L3′ passes through the third light source center 531. The third axis L3′ is parallel to the vertical axis 36 of the first lens unit 3. The third light emitting surface 532 has a plurality of third surrounding edges 533, two adjacent third surrounding edges 533 cross at an end point 534. The second light emitting unit 52 may be arranged between the first light emitting unit 51 and the third light emitting unit 53. It is worthwhile to mention that the first light source center 511 of the first light emitting unit 51 of the first light emitting group 5 and the first focus 31 of the first lens unit 3 may be arranged corresponding to each other. The second light source center 521 of the second light emitting unit 52 of the first light emitting group 5 and the second focus 32 of the first lens unit 3 may be arranged corresponding to each other. The third light source center 531 of the third light emitting unit 53 of the first light emitting group 5 and the third focus 33 of the first lens unit 3 may be arranged corresponding to each other. The first light emitting group 5 provided by the third embodiment is similar to that of the previous embodiment, and will not be described in detail herein.
The second light emitting group 6 may comprise at least one light emitting unit 61 arranged corresponding to the lens focus 41 of the second lens unit 4. For example, in the third embodiment, the light emitting unit 61 of the second light emitting group 6 may be arranged on the lens focus 41 of the second lens unit 4. Furthermore, the center of the light emitting unit 61 of the second light emitting group 6 may coincide with the lens focus 41 of the second lens unit 4. However, the instant embodiment is not limited thereto. In other embodiments, by adjusting the relative position between the light emitting unit 61 and the lens unit 41, the required light pattern may be formed. For example, the center of the light emitting unit 51 may be arranged on a side of the lens focus 41.
The datum axis DL may pass through the lens focus 34 of the first lens unit 3, the lens focus 41 of the second lens unit 4, and the second light emitting unit 52 of the first light emitting group 5. For example, the datum axis DL may pass through the second light source center 521 of the second light emitting unit 52 of the first light emitting group 5. The datum axis DL provided by the third embodiment is similar to that of the previous embodiments, and will not be described in detail herein.
The first reference axis RL1 may pass through one of the plurality of first surrounding edges 513, and the first reference axis RL1 may pass through the end point 514 where two adjacent first surrounding edges 513 cross. The first reference axis RL1 and the datum axis DL1 may have a first predetermined angle θ1 positioned therebetween, and the first predetermined angle θ1 is from 0 to 90 degrees. Preferable, in the third embodiment, the first predetermined angle θ1 is 0 degree. Next, the second reference axis RL2 may pass through one of the plurality of third surrounding edges 533, and the second reference axis RL2 passes through the end point 534 where two third surrounding edges 533 cross. The second reference axis RL2 and the datum axis DL2 may have a second predetermined angle θ2 therebetween, and the second predetermined angle θ2 may be from 0 to 90 degrees. Preferably, in the third embodiment, the second predetermined angle θ2 is 0 degree. However, the instant disclosure is not limited thereto. The first reference axis RL1 and the second reference axis RL2 provided by the third embodiment are similar to that of the previous embodiment, and will not be described in detail herein.
In the third embodiment, the end points 514 where two first surrounding edge 513 cross may be positioned between the datum axis DL and the first light source center 511 of the first light emitting unit 51 of the first light emitting group 5. The end point 534 where two third surrounding edges 533 cross may be positioned between the datum axis DL and the third light source center 531 of the third light emitting unit 53 of the first light emitting group 5.
By arranging the first light emitting unit 51 and the second light emitting unit 52 off-set from each other, the light distance-adjustable vehicle lamp device H″ provided by the instant disclosure may generate light patterns with larger width compared to the prior art and has lower manufacturing cost. In addition, the light pattern may meet the regulation for high beam and low beam of ECE R113 Class C.
Please refer to
Please refer to
In sum, the advantages provided by the instant disclosure is that by utilizing the combination of one lens unit 1 and at least two light emitting units, and off-setting two light emitting units from each other, it is able to achieve the light distance adjustment under the use of one lens.
In addition, the light distance-adjustable vehicle lamp device (H, H″, H′″) provided by the embodiment of the instant disclosure may employ continuous form emitters by comprising only one package in which the distance between each light emitting diode in the package are from 0 millimeter to 0.2 millimeter or form 0 millimeter to 0.5 millimeter. The light distance-adjustable vehicle lamp device (H, H″, H′″) provided by the embodiment of the instant disclosure may also employ discontinuous form emitters by comprising one or more packages in which the distance between each light emitting diode in the package are from 0.2 millimeter to 4 millimeter or from 0.5 millimeter to 4 millimeter.
Moreover, based on the combination of multiple axis (the first axis L1, L1′, the second axis L2, L2′ and the third axis L3′) and the multiple focuses of the lens, the light distance-adjustable vehicle lamp device (H, H″, H′″) provided by the embodiment of the instant disclosure may employ discontinuous light emitting diode packages to reduce the cost of the entire vehicle lamp device (H, H′, H″).
The above-mentioned descriptions represent merely the exemplary embodiments of the instant disclosure, without any intention to limit the scope of the instant disclosure thereto. Various equivalent changes, alterations or modifications based on the claims of present disclosure are all consequently viewed as being embraced by the scope of the instant disclosure.
Number | Date | Country | Kind |
---|---|---|---|
104105557 A | Feb 2015 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7168832 | Komatsu | Jan 2007 | B2 |
20010008486 | Futami | Jul 2001 | A1 |
20050105301 | Takeda | May 2005 | A1 |
20100002460 | Rosenhahn | Jan 2010 | A1 |
20100202152 | Nakada | Aug 2010 | A1 |
20130343076 | Nakada | Dec 2013 | A1 |
20140043842 | Mochizuki | Feb 2014 | A1 |
20140233253 | Owada | Aug 2014 | A1 |
20150043240 | Wiersdorff | Feb 2015 | A1 |
20150252975 | Nakada | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
202452347 | Sep 2012 | CN |
102834662 | Dec 2012 | CN |
203823633 | Sep 2014 | CN |
M463226 | Oct 2013 | TW |
M485162 | Sep 2014 | TW |
M485842 | Sep 2014 | TW |
M504737 | Jul 2015 | TW |
Number | Date | Country | |
---|---|---|---|
20160238208 A1 | Aug 2016 | US |