The accompanying drawings, together with the specification, illustrate exemplary embodiments of the present invention, and, together with the description, serve to explain the principles of the present invention.
In the following detailed description, only certain exemplary embodiments of the present invention are shown and described, by way of illustration. As those skilled in the art would recognize, the invention may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Also, in the context of the present application, when an element is referred to as being “on” another element, it can be directly on the another element or be indirectly on the another element with one or more intervening elements interposed therebetween. Like reference numerals designate like elements throughout the specification.
In exemplary embodiments of the present invention, a light emission device includes any suitable devices that can emit light externally so that the emitted light can be externally recognized. Therefore, any suitable display devices that can provide information by displaying symbols, characters, numbers, and other images can be a light emission device. In addition, a light emission device can be used as a light source for emitting light to a non-self-emissive display panel.
Referring to
Each of the first and second substrates 12 and 14 is divided into an active area substantially for emitting visible light and an inactive area surrounding the active area. An electron emission unit 18 for emitting electrons is provided on the active area of the first substrate 12 and a light emission unit 20 for emitting the visible light is provided on the active area of the second substrate 14.
The electron emission unit 18 may be a field emission array (FEA) type, a surface-conduction emitter (SCE) type, a metal-insulator-metal (MIM) type, or a metal-insulator-semiconductor (MIS) type. Regardless of the type, the electron emission unit 18 includes electron emission regions and driving electrodes.
The electron emission unit 18 includes cathode electrodes 22, gate electrodes 26 formed above the cathode electrodes 22 and extending along a direction crossing the cathode electrodes 22 with a first insulating layer 24 interposed between the cathode electrodes 22 and the gate electrodes 26, and electron emission regions 28 formed on the cathode electrodes 22. Openings 241 and openings 261, which correspond to the respective electron emission regions 28, are respectively formed in the first insulating layer 24 and the gate electrodes 26.
In one embodiment, one of the gate electrodes 26 extending along a row direction of the light emission device 100 functions as a scan electrode by receiving a scan driving voltage, and one of the cathode electrodes 22 extending along a column direction of the light emission device 100 functions as a data electrode by receiving a data driving voltage (or vice versa).
The electron emission regions 28 are formed of a material for emitting electrons when an electric field is applied thereto under a vacuum atmosphere, such as a carbon-based material or a nanometer-sized material. For example, the electron emission regions 28 may include a material selected from the group consisting of carbon nanotubes, graphite, graphite nanofibers, diamonds, diamond-like carbon, fullerene (C60), silicon nanowires, and combinations thereof.
The electron emission unit 18 may further include a second insulating layer 30 formed on the first insulating layer 24 while covering the gate electrodes 26 and a focusing electrode 32 formed on the second insulating layer 30. Openings 321 and openings 301 are respectively formed in the focusing electrode 32 and the second insulating layer 30. The openings 321 and 301 may be formed to correspond to the respective electron emission regions 28 or to respective crossed regions of the cathode and gate electrodes 22 and 26. In
The light emission unit 20 includes a phosphor layer 34 and an anode electrode 36 formed on a surface of the phosphor layer 34. The phosphor layer 34 may be formed on the entire active region of the second substrate 14. Alternatively, the phosphor layer 34 may be patterned to have a plurality of sections spaced part from each other. In this case, a black layer 38 may be formed between the sections of the phosphor layers 34.
Particularly, the sections of the phosphor layers 34 may be red, green, and blue phosphor layers 34R, 34G, and 34B. The black layer 38 may be disposed in a matrix pattern between the red, green and blue phosphor layers 34R, 34G, and 34B. The light emission device having the above-described light emission unit 20 can display a full-color image. In the context of the present application, the light emission device can be referred to as an electron emission display. In
The anode electrode 36 may be formed of a metal layer such as an aluminum (Al) layer covering the phosphor layer 34. The anode electrode 36 is an acceleration electrode that receives a high voltage to maintain the phosphor layer 34 at a high electric potential state. In one embodiment, the anode electrode 36 also functions to enhance the luminance by reflecting the visible light, which is emitted from the phosphor layer 34 to the first substrate 12 back toward the second substrate 14.
Alternatively, the anode electrode may be a transparent conductive layer formed of, for example, indium tin oxide (ITO). In this case, the anode electrode is formed on a surface of the phosphor layer 34 facing the second substrate 14. Alternatively, the anode electrode may include both of a transparent conductive layer and a metal layer.
Referring to
When the light emission unit 20 includes the black layer 38, the heat wires 40 may be disposed above the black layer 38. In addition, the heat wires 40 may be arranged above the black layer 38 in a line pattern extending along a direction of the second substrate 14. Alternatively, the heat wires 40 may be arranged in a matrix pattern extending along both a first direction and a second direction to cross each other.
For example, the heat wires 40 include first heat wires 401 extending along a first direction (the x-axis of
In
Each heat wire 40 may have a black surface. In this case, since the heat wires 40 absorb external light incident onto the second substrate 14, the external light reflection can be reduced.
Disposed between the first and second substrates 12 and 14 are spacers 42 adapted to withstand a compression force applied to the vacuum vessel 16 and to uniformly maintain a gap between the first and second substrates 12 and 14. The spacers 42 are disposed to correspond to the black layer 38 so as not to interfere with the light emission of the phosphor layer 34. In
The above-described light emission device 100 is driven by applying driving voltages to the cathode electrodes 22, gate electrodes 26, focusing electrode 32, and anode electrode 36.
For example, one of the cathode electrodes 22 is applied with a scan driving voltage, and one of the gate electrodes 26 is applied with a data driving voltage (or vice versa). The focusing electrode 32 is applied with a voltage, e.g., 0V or several through tens volts of a negative direct current (DC) voltage, to focus (or converge) the electron beams. The anode electrode 36 is applied with a voltage, e.g., several hundreds through thousands volts of a positive direct current (DC) voltage, to accelerate the electron beams.
Then, electric fields are formed around the electron emission regions 28 at the pixels (that may be defined at crossed regions of the cathode and gate electrodes 22 and 26) where the voltage difference between the cathode and gate electrodes 22 and 26 is equal to or greater than the threshold value, and thus electrons are emitted from the electron emission regions 28. The emitted electrons pass through the opening 321 of the focusing electrode 32, and are centrally focused (or converged) into a bundle of electron beams. The bundle of electron beams are attracted by the high voltage applied to the anode electrode 36, and collide with the phosphor layer 34 of the relevant pixels, thereby exciting the phosphor layer 34 to emit light.
When the above-described driving process is being operated for a relatively long period of time, the driving electrodes, i.e., the cathode and gate electrodes 22 and 26, generates heat. Due to this heat, there may be a temperature difference between the first and second substrates 12 and 14. Here, the heat wires 40 connected to an external power source generate heat to increase the temperature of the second substrate 14, thereby reducing (or minimizing) the temperature difference between the first and second substrates 12 and 14.
As a result, the temperature difference does not occur or is reduced (or minimized) in each of the spacers 42 along a height direction (the z-axis of
According to the above-described light emission device 100 of the present embodiment, the light emission uniformity can be improved and a problem where the spacers 42 can be viewed on the light emission surface can be reduced or eliminated. In addition, when the light emission device 100 is an electron emission display, the external light reflection is reduced as the heat wires 40 having the black surface absorb the external light, thereby enhancing the contrast of a screen of the electron emission display.
Referring to
Referring to
While the invention has been described in connection with certain exemplary embodiments, it will be appreciated by those skilled in the art that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications included within the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0044632 | May 2006 | KR | national |