1. Field of the Invention
The present invention relates to a light emitter substrate which is applied to a face plate of an electron-beam displaying apparatus, and an image displaying apparatus which is constituted by using the light emitter substrate.
2. Description of the Related Art
An electron-beam displaying apparatus includes an electron source and a light emitter substrate which emits light in response to electrons from the electron source. In particular, it is hoped for a displaying apparatus which uses a combination of electron-emitting devices and phosphors to have an excellent characteristic as compared with conventional displaying apparatuses of other kinds. For example, since the displaying apparatus which uses the combination of the electron-emitting devices and the phosphors is a self-emitting type unlike recently popularized liquid crystal displaying apparatuses, any back light is unnecessary, a field angle is wider that that of the liquid crystal display, and a faster-moving video can be displayed as compared with the liquid crystal display. That is, the displaying apparatus which uses the combination of the electron-emitting devices and the phosphors is excellent in these points.
In the displaying apparatus like this in which the electron-emitting devices are used, an electron source substrate having the plural electron-emitting devices and a light emitter substrate having light-emitting members and a metal back are arranged opposite to each other. On such a premise, it is necessary to provide a means for preventing optical crosstalk (halation) that electrons which once entered the light-emitting devices are discharged from the light-emitting devices and then the discharged electrons enter the light-emitting members at other positions. As the means like this, Japanese Patent Application Laid-Open No. 2004-158232 discloses a constitution that ribs are provided on a light emitter substrate.
Moreover, Japanese Patent Application Laid-Open No. 2006-092878 discloses a constitution that damage due to a discharge is reduced by dividing a metal back into electrically small areas and the divided metal backs are wholly stabilized by providing a rib between the adjacent metal backs.
In the constitutions respectively disclosed in Japanese Patent Application Laid-Open Nos. 2004-158232 and 2006-092878, a problem of halation is solved because the ribs are provided. However, also a constitution capable of withdrawing a potential difference between the adjacent metal backs is needed in a case where potential of the metal back is increased or a case where resolution of a display is made further higher.
The present invention aims to provide a light emitter substrate which can suppress halation by forming a rib between adjacent light-emitting members of respectively different light emitting colors, and at the same time can withdraw a potential difference when a discharge occurs between adjacent metal backs, thereby achieving a desired discharging current suppressing capability. Moreover, the present invention aims to provide an image displaying apparatus which uses the light emitter substrate, thereby achieving a high contrast and high withstand discharge performance.
A first aspect of the present invention is characterized by a light emitter substrate which comprises: a substrate; plural light-emitting members positioned in matrix on the substrate; a rib positioned between the light-emitting members and protruding from the substrate as compared with the light-emitting member; plural conductors each covering at least one of the light-emitting members and mutually positioned in matrix at gaps; and a feeding resistor configured to electrically connect the plural conductors, wherein the feeding resistor is positioned on the rib, and a high-resistance cover member which covers the feeding resistor and of which resistance is higher than that of the feeding resistor is provided on the feeding resistor.
The first aspect of the present invention includes the following constitution as a preferred aspect.
The cover member wholly covers the feeding resistor.
A second aspect of the present invention is characterized by an image displaying apparatus wherein an electron source substrate which is equipped with plural electron-emitting devices and the light emitter substrate which is described as the above first aspect of the present invention are mutually positioned oppositely. The second aspect of the present invention includes as a preferred aspect the constitution that a spacer is positioned between the electron source substrate and the light emitter substrate, and resistance of the cover member of the light emitter substrate is lower than resistance of the spacer.
In the light emitter substrate according to the present invention, since the metal back are divided into the plural metal backs, the discharging current at the time of the discharge can be suppressed. Further, since the rib is provided, halation can be suppressed, whereby an image of which the color reproducibility is excellent can be displayed. Furthermore, since the feeding resistor on the rib is covered with the high-resistance cover member, a secondary discharge can be suppressed. Therefore, in the image displaying apparatus which uses the light emitter substrate according to the present invention, since the contrast is high and the withstand discharge performance is high, a high-quality image can stably be displayed.
Further features of the present invention will become apparent from the following description of the exemplary embodiments with reference to the attached drawings.
Hereinafter, the exemplary embodiments of the present invention will be described.
A light emitter substrate of the present invention can be applied to a face plate for an electron beam displaying apparatus, for example, a field emission display (FED) and a cathode ray tube (CRT). Especially, in the FED, a beam diameter can be easily narrowed down and color reproducibility is excellently improved by suppressing the halation. Additionally, in the FED, since a space between an anode and a cathode becomes a high-field state, even if the discharge phenomenon occurred, such withstand discharge performance of not deteriorating the image displaying capability is required. Therefore, the light emitter substrate of the present invention is preferably applied as a face plate.
Regarding the embodiments of the present invention, especially, an image displaying apparatus of using surface conduction electron-emitting devices is exemplified among FEDs, and the description will be specifically given by using the drawings.
In
The black member 3 has aperture portions to be formed in a lattice shape (black matrix). The phosphors 4 are formed in the aperture portions and color-coded in R, G and B in case of a color display. A color coding pattern can be arbitrarily determined in accordance with display characteristics and is not especially limited.
In the present invention, the plural ribs 6, which protrude from a surface of the substrate 2, are arranged in parallel at least in the one direction to suppress the halation. In the present embodiment, the ribs 6 extending in the Y direction are formed on the black member 3, and the height of the ribs 6 is arbitrarily selected according to a pixel size or the anode voltage. The phosphors 4 are arranged in matrix between the adjacent ribs.
The metal back 5 serving as a conductor improves the luminance by specularly reflecting the light, which is emitted to an inner face side among the light emitted from the phosphor 4, to a side of the substrate 2 and actions as an anode electrode used for applying the electron beam acceleration voltage. In the present invention, the metal back 5 serving as a conductor is divided into plural sections in the direction parallel to the ribs 6 to be arranged on the phosphors 4 in order to suppress a discharge current when the discharge phenomenon occurred. In the present embodiment, the respective sections are formed in matrix on the phosphors 4 so as to cover the aperture portions provided in the black member 3. Hereinafter, the metal back 5 serving as a conductor is simply expressed as the metal back 5, and the description will be given.
A feeding resistor 7 used for supplying the anode potential is formed on the rib 6, and a connecting conductor 8 for electrically connecting the metal back 5, which is arranged along the rib 6 on which the feeding resistor 7 is formed, with the feeding resistor 7 is arranged on the side surface of the rib 6. Incidentally, if the metal back 5 is prolonged up to the side surface of the rib 6, it is possible to substitute the metal back for the connecting conductor 8. Further, if the high-resistance rib 6 is used, it is possible to omit providing the connecting conductor 8 itself.
Additionally, in the present invention, a cover member 9 is formed so as to cover at least an area along the metal back 5 on the feeding resistor. In the present embodiment, since the connecting conductor 8 covers the area on the feeding resistor 7, the cover member 9 is formed so as to cover the connecting conductor 8, and additionally, the cover members 9 are sequentially formed on also the feeding resistors 7 between areas adjacent to each other in the Y direction.
The cover member 9 is formed by the material of which the resistance is higher than that of the feeding resistor 7. When the discharge phenomenon occurred, potential difference is generated between the adjacent feeding resistors 7, and in a case that the anode potential is increased or the display resolution is set to become a more high-definition display, the field intensity between the adjacent feeding resistors 7 becomes a high intensity, and there is possibility of occurring secondary discharge. The secondary discharge can be suppressed by covering the feeding resistor 7 by such the cover member 9, and a desired discharge current suppressing function can be obtained. As an effect of suppressing the discharge, although it is allowed that at least an area along the metal back 5 adjacent to the feeding resistor 7 is covered on the feeding resistor, preferably, a whole of the feeding resistor 7 should be covered also including a matter of convenience on a manufacturing process.
Note that the ribs 6 can be formed by the known processing method such as a method of laminating the pattern printings, a method of blasting a thick film or a slit coating method. Among these methods, a blasting process is preferable from a viewpoint of productivity, accuracy or a matter of coping with a large screen. It is preferable that volume resistance of the rib 6 is equal to or larger than 100 Ω·m.
Also, the feeding resistors 7 or the cover members 9 can be formed by the known method such as a pattern printing method or a dispenser method. Among these methods, the pattern printing method is preferable from a viewpoint of accuracy or productivity. As the feeding resistors 7, it is preferable that volume resistance thereof is in a range from 0.01 Ω·m to 10 Ω·m. As the cover members 9, it is preferable that volume resistance thereof is equal to or larger than 100 Ω·m.
The ribs 6, the feeding resistors 7 and the cover members 9 can be respectively formed by printing the commercially-produced paste material and performing the patterning in accordance with necessity and then performing the baking.
Additionally, the metal back 5 or the connecting conductor 8 can be patterned by performing the masking or the etching in the known deposition method. Among these processes, a mask vapor deposition method is preferable. The metal back 5 and the connecting conductor 8 may be simultaneously formed or separately formed. As the material, aluminum, titanium or chrome is used.
In an example illustrated in
In an example illustrated in
In the present invention, the plural metal backs 5 may form the anode area electrically connected by the connecting conductors 8 formed stepping over the ribs 6, in the X direction. In this case, the feeding resistors 7 may be arranged such that at least one line feeding resistor is electrically connected to one anode area. That is, if at least the one line feeding resistor 7 is connected within the one anode area, the feeding resistors 7 are not required to be formed on all the ribs 6 positioned within the anode area, and the number of the feeding resistors 7 can be thinned out.
For example, in case of forming an anode area by electrically connecting the three metal backs 5 in the X direction, the number of ribs 6 passing through the anode area becomes two, and if the feeding resistor 7 is formed on the one rib 6, the feeding resistors 7 may be formed or not formed on the other ribs 6. However, it is preferable that the cover members 9 are formed on also the ribs 6 on which the feeding resistors 7 are not formed. That is, in case of arranging a spacer, if only the cover members on the feeding resistors protrude, there is the possibility of occurring the breaking of the respective members due to the concentration of stress in some cases. However, this situation can be prevented.
Although the feeding resistor 7 is not required to be formed on the rib 6 positioned between adjacent anode areas, shapes of the feeding resistors are sometimes varied, therefore it is preferable that the cover members 9 are formed on the ribs 6 in order to hide an unpredictable electrical field concentration part.
For example, as illustrated in
In such the constitution, since the distance between the adjacent feeding resistors 7 is extended as compared with the constitution illustrated in
In the constitution illustrated in
Next, an image displaying apparatus of using a light emitter substrate of the present invention will be described.
In
In
In a case that a size of the image displaying apparatus becomes a large size, a spacer 20 used as a withstand atmospheric pressure may be arranged within the panel as illustrated in
The light emitter substrate illustrated in
A lattice form, which has aperture portions on only desired areas within a light-emitting area, was screen printed on a surface of a cleaned glass substrate 2 by using a black paste (NP-7803D manufactured by Noritake Co., Ltd.), and that glass substrate was baked at 550° C. after drying it at 120° C., and a black member 3, of which thickness is 5 μm, was formed. Pitches of aperture portions 3a were set to become 450 μm in the Y direction and 150 μm in the X direction, which were same as those in device pitches on a rear plate, and the size of the aperture portions 3a was set to become 220 μm in the Y direction and 90 μm in the X direction.
Next, the ribs 6 and the feeding resistors 7 will be formed. First, an insulation paste of bismuth oxide series (NP7753 manufactured by Noritake Co., Ltd.) was applied by using a slit coater such that a film thickness after the baking becomes 200 μm and then it was dried at 120° C. for ten minutes.
A high-resistance paste, in which a ruthenium oxide was contained, was formed by a screen printing method such that a film thickness after the baking becomes 10 μm so as to be laminated on this insulation paste and then it was dried at 120° C. for ten minutes. In the present example, although a high-resistance paste layer was printed on a whole surface of an image display area, it is allowed to use a method that the shapes of parts only remained as a final configuration after the sandblasting to be described later are previously pattern printed. When a resistance value was measured after applying the material used in this high-resistance paste layer in test patterns, the volume resistance was about 10−1 Ω·m.
Next, a dry film resist (DFR) is pasted by using a laminator apparatus and the DFR was pattern exposed after aligning a chrome mask for exposure to a predetermined position. The alignment was performed by using a mark for alignment (not illustrated) provided at an external of an image formation area. A pattern to be exposed was set as a stripe shape, of which the width is 50 μm (that is, aperture portion width is 100 μm), in parallel with long sides (extended in the Y direction) of the aperture portions 3a of the black member 3 so as to be overlapped with the black member 3. Furthermore, a mask for the sandblasting having apertures on desired positions was formed by executing a showering process for the liquid developer and the rinse liquid of the DFR and executing a drying process. For this constitution, the unnecessary high-resistance paste and insulation paste were eliminated by fitting with the apertures of the DFR by a sand blasting method, where SUS grains were treated as grinding grains, and the DFR was stripped off by the remover liquid shower and a cleaning process was executed, then the ribs 6 and the feeding resistors 7 were formed by performing the baking at 530° C. (
Next, the phosphors 4 were dropped in the light-emitting areas and printed by a screen printing method by fitting with the structure of the ribs 6 having the apertures by using a paste, in which phosphors P22 used in a technical field of CRT are dispersed. In the present embodiment, the phosphors 4 of three colors R, G and B are color-coded so as to become a color display. The film thickness of each of the phosphors 4 was set to become 15 μm. The phosphors 4 of three colors R, G and B were dried at 120° C. after the printing. The drying may be performed every color or may be collectively performed for the three colors. Additionally, the water solution containing silicate alkali so called a liquid glass acting as a binding agent later was spray applied.
Next, an acrylic emulsion was applied by a spray coating method and dried, and gaps in phosphor powders were infilled by the acrylic resin, and an aluminum film, which becomes to serve as the metal back 5, was vapor deposited. In this case, a metal mask having aperture portions on only the area reaches to the aperture portions 3a of the black member 3 and the feeding resistors 7 on the one side of ribs 6 adjacent to the apertures 3a is used, and the metal backs 5 and the connecting conductors 8 were simultaneously formed (
Additionally, the paste, of which the volume resistance after the baking is 104 Ω·m, was formed on the feeding resistor 7 by a transfer method as the cover member 9. The cover members 9 were made to cover the whole of the feeding resistors 7 after the baking. And, the connecting conductors 8 are laminated on the area adjacent to the metal backs 5 on the feeding resistors 7, and the cover members 9 were laminated on the connecting conductors 8 in this area.
Finally, the resin contained in the paste was decomposed and eliminated by heating the paste at 500° C. and then baked to be hardened (
A high-voltage introduction terminal which passes through the substrate 2 through a through hole is provided on the substrate 2, and the high-voltage introduction terminal is connected at edge portions of the feeding resistor 7 and an image formation area (not illustrated).
The image displaying apparatus illustrated in
In the image displaying apparatus constituted as mentioned above, when an image is displayed by applying the voltage of 10 kV to the metal backs 5 through the feeding resistors 7, an excellent image having very little color mixture due to the halation can be displayed.
Also, even if the discharge between the electron-emitting devices and the face plate is induced by compelling to occur the device destruction by applying the excessive voltage to specific electron-emitting devices, the secondary discharge between the adjacent feeding resistors 7 is not observed and the discharge current is sufficiently restricted, and any abnormity was not produced in peripheral devices other than the devices purposely destructed.
In the present example, the light emitter substrate exemplified in
The present example is different from the example 1 in a point that the ribs 6 were formed into a lattice shape of also extending in the X direction. Also, as to the ribs 6 extending in the X direction, the width was set to become 50 μm and the height was set to become 150 μm so as to form to overlap with the black member 3. The high-resistance paste, in which the ruthenium oxide is contained, was previously used for the feeding resistors 7, and a stripe pattern was formed by a screen printing method. Excepting the above-mentioned constitution, the light emitter substrate was similarly manufactured to a case in the example 1.
When an image was displayed by applying the voltage of 10 kV to the metal backs 5 through the feeding resistors 7 by similarly constituting the image displaying apparatus to a case in the example 1 by using the light emitter substrate in the present example as the face plate, an excellent image having very little color mixture due to the halation can be displayed. Furthermore, since the halation in the Y direction can be also suppressed, lines in the X direction can be clearly displayed without the blur as compared with a case in the example 1.
Also, even if the discharge between the electron-emitting devices and the face plate is induced by compelling to occur the device destruction by applying the excessive voltage to specific electron-emitting devices, the secondary discharge between the adjacent feeding resistors 7 is not observed and the discharge current is sufficiently restricted, and any abnormity was not produced in peripheral devices other than the devices purposely destructed.
In the present example, the light emitter substrate exemplified in
The present example is different from the example 1 in a point that adjacent two sub-pixels were formed as one anode area. Therefore, the feeding resistor 7 is positioned on the rib 6 existing between sub-pixels within the one anode area, and the metal back 5 within the one anode area was connected by the connecting conductor 8 stepping over the rib 6. A stripe shaped pattern was formed by a screen printing method by using the paste for a high-resistance electrode in which indium tin oxide fine particles were dispersed as the material of the feeding resistors 7. The connecting conductor 8 was formed in a manner that aluminum films were obliquely vapor deposited every the one direction sequentially from the opposite two directions. At this time, a mask, to which the Y-directional stripe serving as a canopy was added, was used such that an aluminum film is not formed on a side surface of the rib 6 on which the feeding resistor 7 is not arranged. Additionally, the cover member 9 was formed by using a transfer method same as that in the example 1, and the cover member 9 was formed also on the rib 6 on which the feeding resistor 7 is not arranged. The film thickness of the cover members 9 was set to become 5 μm on a portion where the feeding resistor 7 is arranged and 10 μm on a portion where the feeding resistor is not arranged.
When an image was displayed by applying the voltage of 10 kV to the metal backs 5 through the feeding resistors 7 by similarly constituting the image displaying apparatus to a case in the example 1 by using the light emitter substrate in the present example as the face plate, an excellent image having very little color mixture due to the halation can be displayed.
Also, even if the discharge between the electron-emitting devices and the face plate is induced by compelling to occur the device destruction by applying the excessive voltage to specific electron-emitting devices, the secondary discharge between the adjacent feeding resistors is not observed and the discharge current is sufficiently restricted, and any abnormity is not produced in peripheral devices other than the devices purposely destructed.
While the present invention has been described with reference to the exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. Any modification or variation within the scope of the invention should be possible.
This application claims the benefit of Japanese Patent Application Nos. 2008-206568, filed Aug. 11, 2008, and 2009-164467, filed Jul. 13, 2009, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2008-206568 | Aug 2008 | JP | national |
2009-164467 | Jul 2009 | JP | national |