The disclosure relates generally to a keyboard assembly for an electronic device and, more particularly, to a light-emitting assembly positioned within a switch housing of a keyboard assembly for an electronic device.
Electronic devices typically include one or more input devices such as keyboards, touch pads, mice, touch screens, and the like to enable a user to interact with the device. These devices can be integrated into an electronic device or can stand alone. An input device can transmit signals to another device via a wired or wireless connection. For example, a keyboard can be integrated into the casing (e.g., housing) of a laptop computer. Touch pads and other input devices may likewise be integrated into associated electronic devices.
It may be useful to illuminate an input surface or structure when the associated electronic device is used in a dimly lit or dark environment. Specifically, conventional keyboards typically illuminate a perimeter and/or a glyph located on each keycap of the keyboard to aid in the visibility of the keyboard in low-light settings. However, in order to light the keyboard, conventional keyboards often include a variety of components including a group of lights, typically positioned on one or more light strips, a light guide panel for directing the light, and/or a reflective surface for redirecting stray light and enhancing the illumination of the lights.
The variety of components may require additional space within the enclosure housing the keyboard, which may be counter to a desire to decrease the size of the keyboard. Additionally, the light strip may be a fraction of the size of the entire keyboard and may include fewer lights than the total number of keycaps in the keyboard. As a result, the light strip may unevenly illuminate the keyboard. Finally, because of the number of components and/or the configuration of the components used to illuminate a conventional keyboard, an undesirable amount of heat may be generated within the keyboard and/or electronic device.
A light-emitting assembly for a keyboard assembly is disclosed herein. The light-emitting assembly comprises a phosphor structure, a transparent material positioned on opposing side surfaces of the phosphor structure, and an epoxy layer positioned over an entire back surface of the phosphor structure and the transparent material. The light-emitting assembly also comprises a mask layer positioned over an entire top surface of: the phosphor structure, the transparent material, and the epoxy layer. The light-emitting assembly further comprises a light source positioned within the phosphor structure for emitting a light.
A keyboard assembly may comprise a switch housing formed from a substantially transparent material. The switch housing comprises a switch opening and a light source recess positioned adjacent the switch opening. The keyboard assembly also comprises a keycap positioned above the switch housing and a light-emitting assembly positioned within the light source recess of the switch housing. Additionally, the light-emitting assembly comprises a phosphor structure, a transparent material positioned on opposing side surfaces of the phosphor structure, a mask layer positioned over an entire top surface of the phosphor structure, and the transparent material. The light-emitting assembly also comprises a light source positioned within the phosphor structure for emitting a light through the switch housing.
Embodiments may take the form of a keyboard assembly comprising a keycap, a light source operably connected to the keycap and configured to illuminate the keycap, and a light source housing at least partially surrounding the light source. The light source housing is operative to block light from emanating out of the light source housing in a first direction and a second direction. The light source housing is also operative to pass light emanating in a third direction opposite the first direction, and the second direction is toward the keycap, as measured from the light source.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.
The following disclosure relates generally to a keyboard assembly for an electronic device and, more particularly, to a light-emitting structure positioned within a switch housing of a keyboard assembly for an electronic device. The light-emitting structure may be a light-emitting assembly formed from a number of different elements.
In a particular embodiment, the light-emitting assembly may be formed from a light source positioned within a phosphor structure adjacent, touching, or at least partially surrounded by various layers or materials, including: sidewalls (which may be formed from a transparent material or opaque material); epoxy (which may form a sidewall and may be either opaque or transparent); a mask layer; and/or a heat dissipation layer. The light-emitting assembly generates and/or transmits light in certain directions, such as through one or more of the phosphor structure and layers. The various layers may restrict light to traveling through only three sides of the assembly, in certain embodiments.
Light exiting the light-emitting assembly generally has a common wavelength and thus common color. Where the wavelengths and colors of light traveling through all light-transmissible sides of the assembly are equal, that light may illuminate an input surface such as a keycap. Accordingly, the keycap is substantially uniformly illuminated and has reduced or no dim spots and/or color shifts. Additionally, because of the configuration of the various layers and materials forming the light-emitting assembly, the light-emitting assembly may be a parallelepiped and compact, thereby reducing the space occupied within the keyboard assembly. Finally, where each key of the keyboard assembly includes an individual light-emitting assembly, keys and/or keycaps may be illuminated individually or selectively.
These and other embodiments are discussed below with reference to
Electronic device 100 may include a top case 102. Top case 102 may take the form of an exterior, protective casing or shell for electronic device 100 and the various internal components (for example, low-travel keyboard assembly 200) of electronic device 100. Top case 102 may be formed as a single, integral component, or may have a group of distinct components that may be configured to be coupled to one another, as discussed herein. Additionally, top case 102 may be formed from any suitable material(s) that provides a protective casing or shell for electronic device 100 and the various components included in electronic device 100. In non-limiting examples, top case 102 may be made from metal, a ceramic, a rigid plastic or another polymer, a fiber-matrix composite, and so on.
Low-travel keyboard assembly 200 may be included within electronic device 100 to allow a user to interact with electronic device 100. As shown in
As discussed herein, keycap 300 of low-travel keyboard assembly 200 can be illuminated by a light-emitting assembly. The light-emitting assembly of low-travel keyboard assembly 200 is positioned in a switch housing surrounding a dome switch, where the switch housing and dome switch are positioned below keycap 300. That is, each individual keycap 300 includes an individual switch housing, which includes an individual light-emitting assembly positioned therein. As a result, a single light-emitting assembly illuminates each corresponding keycap 300. This can improve brightness and light uniformity for each keycap, and between keycaps.
Additionally, because each keycap 300 is illuminated by a single, corresponding light-emitting assembly, keycaps 300 of keyboard assembly 200 can be illuminated individually or selectively. In some embodiments, other illumination schemes may be used. For example, adjacent of keys can be lit by a single light-emitting assembly (e.g., one light-emitting assembly for each group of keys). In other embodiments, a row or column of keys may be illuminated by a single light-emitting assembly. In still other embodiments, light source assemblies may be located at different points under a keyboard so that a relatively small number of assemblies may illuminate an entire keyboard (or all keycaps of the keyboard). In any or all embodiments, light source assemblies may be located within or outside of switch housings, under keycaps, or under portions of the casing. Further, light source assemblies described herein may be used with other input devices, including mice, track pads, buttons, switches, touch-sensitive and/or force-sensitive surfaces, and so on.
The light source assemblies of low-travel keyboard assembly 200 are formed from a light source positioned within a phosphor structure surrounded by various layers or materials that may include one or more transparent materials, one or more epoxy layers and one or more mask layers. The various layers to allow light to be emitted from only three sides of the assembly. Further, the emitted light has identical wavelengths and color. Where the wavelengths and visible light color are identical on all sides of the assembly, keycap 300 of low-travel keyboard assembly 200 is illuminated by the light-emitting assembly with a consistent visible light color and does not have discrepancies in illuminating light color or intensity.
Additionally, and as discussed herein, because of the configuration of the various layers and materials forming the light-emitting assembly, the light-emitting assembly can be a parallelepiped. The parallelepiped shape of the light-emitting assembly of low-travel keyboard assembly may reduce the overall size of light-emitting assembly and/or makes light-emitting assembly substantially compact. With a reduced size, the required amount of space occupied by light-emitting assembly within keyboard assembly 200 may also be reduced. This ultimately allows for low-travel keyboard assembly 200 and/or electronic device 100 to have a reduced size as well. It should be appreciated that substantially any other geometric or non-geometric three-dimensional shape may also be used for a light-emitting assembly.
In the non-limiting example shown in
Light-emitting assembly may have a phosphor structure 202 and transparent material 204 positioned on opposing sides surfaces of phosphor structure 202. In some embodiments, the transparent material may be positioned on or otherwise abutting the phosphor material, either wholly or partially. The phosphor structure may be a phosphor-doped material and may overlay a light source 220. In some embodiments, the phosphor structure may alter a wavelength of a light emitted by the light source, thereby altering its color. Further, in some embodiments the phosphor structure may luminesce (e.g., emit light) when the light source is active. Thus, the phosphor structure may be a luminescent structure. As discussed herein, phosphor structure 202 and transparent material 204 may allow light from a light source of light-emitting assembly 201 to be emitted through the respective portions.
The transparent material 204 may permit light to travel therethrough. Any suitable material may be used as the transparent material, including various plastics, polymers, ceramics, glasses, and so on.
Light source 220 of light-emitting assembly 201 may be positioned within phosphor structure 202. As shown in the cross-sectional views of
A variety of different light sources 220 may be used in the light-emitting assembly 201. For example, the light source 220 may be a light-emitting diode, an organic light-emitting diode, a quantum dot, a cold cathode fluorescent lamp, and so on. Further, the light source may emit multiple colors of light in some embodiments. As an example, the light source may be a multicolor LED and the color emitted by the LED may change based on a user input, operating state, software or firmware command, and so on. Some embodiments may also employ multiple light sources 220 in a single light-emitting assembly 201.
Light-emitting assembly 201 may also have an epoxy layer 210 placed over an entire back surface 212 of phosphor structure 202 and transparent material 204. In one embodiment, epoxy layer 210 may be substantially larger in one or more dimension than phosphor structure 202 and transparent material 204, although this may vary between embodiments. More specifically, as shown in
Returning to
Light-emitting assembly 201 may also incorporate a mask layer 218. Mask layer 218 may be positioned over phosphor structure 202, transparent material 204 and/or epoxy layer 210 of light-emitting assembly 201. In a non-limiting example shown in
With continued reference to
Light-emitting assembly 201 may also have a heat dissipation layer 226 over mask layer 218. Heat dissipation layer 226 may be formed from a heat resistant material that may dissipate the heat generated by light source 220 and the light generated by light source 220. As light is emitted from light source 220, light may contact mask layer 218, but may not be emitted through opaque mask layer 218. However, the light and light source 220 may generate heat on or in mask layer 218. Heat dissipation layer 226 may be positioned on mask layer 218 to dissipate the heat exposed to mask layer 218, which in turn reduce or prevent chemical and/or physical changes to mask layer 218. In some embodiments, the mask layer and heat dissipation layer may be the same layer, or formed from the same material. For example, a thermally conductive mask layer may be used.
In some embodiments, the transparent material(s) 204, mask layer 218, heat dissipation layer 226, and/or epoxy layer 210 may be affixed to the phosphor structure 202. This may be accomplished by any or all of an additional element such as an adhesive or fastener, an inherent property of one or more parts of the light-emitting assembly 201, or the method of manufacture for the assembly. It should be appreciated that the various parts of the light-transmitting assembly 201 need not be affixed to one another. For example, they may be affixed to substrate 228 such as a printed circuit board 500 or to a switch housing 400 (see,
In one embodiment, light may be emitted through three sides of light-emitting assembly 201. In the non-limiting example shown in
Light (L1) emitted through the front face of light-emitting assembly 201 may have a wavelength substantially equal to a wavelength of light (L2) emitted through first transparent sidewall 230 and a wavelength of light (L3) emitted through second transparent sidewall 232. As a result of the wavelengths of light (L1-3) being equal, the visible light color of the light (L1-3) may also be identical or substantially the same. That is, the visible light color of the light (L1) emitted through the front face of light-emitting assembly 201 may be substantially identical to a visible light color of light (L2) emitted through first transparent sidewall 230 and a visible light color of light (L3) emitted through second transparent sidewall 232.
As shown in
As a result of its geometry, light-emitting assembly 201 may require less space in low-travel keyboard assembly 200, as discussed herein with respect to
Additionally, because of the geometric shape of light-emitting assembly 201 and the inclusion of transparent material 204 positioned on opposite sides of phosphor structure 202, the wavelength and, ultimately, the visible light color of the light emitted by light source 220 may be substantially identical on all sides of light-emitting assembly 201. That is, the greater the thickness of phosphor structure 202 in which light from light source 220 must travel through, the more the wavelength of the light will change. However, a wavelength of light from light-emitting assembly 201 may be tuned by adding or removing more transparent material 204. This may ensure that the wavelength of light (L1) emitted through the front face, including front surface of phosphor structure 202, is equal to the wavelengths of the light (L2, L3) emitted through first sidewall and second sidewall including transparent material 204. And, as discussed herein, wherein the wavelengths of light emitted through light-emitting assembly 201 are equal, the visible light color of light emitted through light-emitting assembly 201 may also be identical or substantially the same, creating a uniform illumination color for keycap 300 of keyboard assembly 200 (see,
As shown in
Low-travel keyboard assembly 200 may be made from a number of layers or components positioned adjacent to and/or coupled to one another. The components positioned in layers may be positioned adjacent to and/or coupled to one another, and may be sandwiched between top case 102 and a bottom case (not shown) of electronic device 100.
The keycaps 300 of low-travel keyboard assembly 200 may be positioned at least partially within keyholes 104 of top case 102. Each of the keycaps 300 may include a glyph 302 positioned on a top or exposed surface of the keycap 300. Each glyph 302 of keycap 300 may be substantially transparent to allow a light to be emitted through and/or illuminate keycap 300. In the non-limiting example shown in
As shown in
The keycaps 300 may be positioned above corresponding switch housings 400 of low-travel keyboard assembly 200, and may interact with a corresponding switch housing 400. Each switch housing 400 of low-travel keyboard assembly 200 may include a switch opening 402 extending completely through switch housing 400, and a light source recess 404 formed within each switch housing 400. Some switch housings 400 may define multiple light source recesses 404, each of which may house its own light-emitting assembly 201 or multiple assemblies. Further, the light source recess 404 may be sized such that one or more of its interior walls engage the exterior of the light-emitting assembly 201, or gaps may exist between the interior walls of the light source recess and any or all parts of the light-emitting assembly's exterior.
As shown in
As also shown in
Body portion 410 and top panel 412 of switch housing 400 may be formed from distinct materials. That is, body portion 410 may be formed from a first material having substantially rigid properties for supporting keycap 300 during operation of low-travel keyboard assembly 200 and/or protecting the various components (e.g., dome switch 406, light-emitting assembly 201) included within switch housing 400. The first material forming body portion 410 of switch housing 400 may also be transparent and/or reflective to direct light out of the switch housing and toward the keycap 300. In a non-limiting example, light source 220 of light-emitting assembly 201 may emit light through transparent switch housing 400, and switch housing 400 may substantially reflect and/or allow light to be transmitted through the transparent material of switch housing 400 to illuminate glyph 302 on keycap 300 and/or the perimeter of keycap 300.
The top panel 412 may act as a light guide to direct light emitted from light-emitting assembly 201 to keycap 300. The top panel 412 may include structures configured to focus light on specific areas of the keycap or about the keycap, as well as reflective structures configured to direct light toward the keycap. For example, lenses, apertures, and the like may emit light from the top panel, while an upper surface of the top panel may reflect light incident on the panel.
Top panel 412 of switch housing 400 may be formed integrally with body portion 410. As one example, as shown in
Top panel 412 may be positioned over switch opening 402 not only to redirect light toward keycap 300 but also to substantially protect dome switch 406 from wear. That is, when a force is applied to keycap 300 to depress keycap 300, keycap 300 may contact top panel 412 of switch housing 400, which may subsequently deform and collapse dome switch 406 to form an electrical connection. By acting as a barrier between keycap 300 and dome switch 406, top panel 412 may reduce the wear on dome switch 406 over the operational life of low-travel keyboard assembly 200.
Top panel 412 may also include a first contact protrusion 418 positioned on a first surface 420 of the top panel 412. First contact protrusion 418 may be positioned directly adjacent a second contact protrusion 340 on underside 312 of keycap 300. The first contact protrusion 418 of top panel 412 and the second contact protrusion 340 of keycap 300 may contact one another when keycap 300 is depressed and may more evenly distribute the force applied to top panel 412 and, subsequently, dome switch 406 when keycap 300 is depressed. By distributing the force through top panel 412, the wear on dome switch 406 may be further reduced over the operational life of low-travel keyboard assembly 200.
Switch housing 400 may also include a roof portion 426 over light source recess 404. More specifically, body portion 410 of switch housing 400 may include a roof portion 426 positioned over light source recess 404 and light-emitting assembly positioned within light source recess 404. As shown in
Low-travel keyboard assembly 200 may also include a printed circuit board (PCB) 500 positioned below the group of switch housings 400. PCB 500 may be similar to substrate 228 discussed herein with respect to
PCB 500 may also include one or more apertures 504 extending through each of the recesses 502. That is, aperture 504 may pass completely through PCB 500 in recess 502. As shown in
As shown in
Low-travel keyboard assembly 200, as shown in
As shown in
Operation of a sample embodiment will now be described with respect to
In operation 804, light may exit the light-emitting assembly and enter an associated switch housing. A body of the switch housing may redirect the light upward, for example toward a top panel of the switch housing. In some embodiments, the body (or portions thereof) may be reflective to facilitate redirection of light. In other embodiments, light may not be substantially redirected or may be moderately or minimally redirected. Further, the top panel may act as a light guide to redirect light from the switch housing toward a key cap or other input surface
In operation 806, light may exit the top panel and emanate toward an underside of the key cap or other input surface. In operation 808, the light may illuminate a glyph on the key cap and/or may illuminate a perimeter of the key cap.
Although discussed herein as a keyboard assembly, it is understood that the disclosed embodiments may be used in a variety of input devices used in various electronic devices. That is, low-travel keyboard assembly 200 and the components of the assembly discussed herein may be utilized or implemented in a variety of input devices for an electronic device including, but not limited to, buttons, switches, toggles, wheels, and touch screens.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
This application is a continuation of U.S. patent application Ser. No. 14/867,746, filed Sep. 28, 2015, and titled “Light-Emitting Assembly for Keyboard”, which is a non-provisional of and claims the benefit to U.S. Provisional Patent Application No. 62/058,081, filed Sep. 30, 2014, and titled “Keyboard Assembly,” U.S. Provisional Patent Application No. 62/129,843, filed Mar. 7, 2015, and titled “Light Assembly for Keyboard Assembly,” U.S. Provisional Patent Application No. 62/058,074, filed Sep. 30, 2014, and titled “Keyboard Assembly,” U.S. Provisional Patent Application No. 62/129,841, filed Mar. 7, 2015, and titled “Key for Keyboard Assembly,” U.S. Provisional Patent Application No. 62/058,067, filed Sep. 30, 2014 and titled “Keyboard Assembly,” U.S. Provisional Patent Application No. 62/129,840, filed Mar. 7, 2015, and titled “Dome Switch for Keyboard Assembly,” U.S. Provisional Patent Application No. 62/058,087, filed Sep. 30, 2014, and titled “Keyboard Assembly,” and U.S. Provisional Patent Application No. 62/129,842, filed Mar. 7, 2015, and titled “Venting System for Keyboard Assembly,” the disclosures of which are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3657492 | Arndt et al. | Apr 1972 | A |
3818153 | Arvai | Jun 1974 | A |
3917917 | Murata | Nov 1975 | A |
3978297 | Lynn et al. | Aug 1976 | A |
4095066 | Harris | Jun 1978 | A |
4319099 | Asher | Mar 1982 | A |
4349712 | Michalski | Sep 1982 | A |
4484042 | Matsui | Nov 1984 | A |
4596905 | Fowler | Jun 1986 | A |
4598181 | Selby | Jul 1986 | A |
4670084 | Durand et al. | Jun 1987 | A |
4755645 | Naoki et al. | Jul 1988 | A |
4937408 | Hattori et al. | Jun 1990 | A |
4987275 | Miller et al. | Jan 1991 | A |
5021638 | Nopper et al. | Jun 1991 | A |
5092459 | Uljanic et al. | Mar 1992 | A |
5136131 | Komaki | Aug 1992 | A |
5278372 | Takagi et al. | Jan 1994 | A |
5280146 | Lnagaki et al. | Jan 1994 | A |
5340955 | Calvillo et al. | Aug 1994 | A |
5382762 | Mochizuki | Jan 1995 | A |
5397867 | Demeo | Mar 1995 | A |
5408060 | Muurinen | Apr 1995 | A |
5421659 | Liang | Jun 1995 | A |
5422447 | Spence | Jun 1995 | A |
5457297 | Chen | Oct 1995 | A |
5477430 | LaRose et al. | Dec 1995 | A |
5481074 | English | Jan 1996 | A |
5504283 | Kako et al. | Apr 1996 | A |
5512719 | Okada et al. | Apr 1996 | A |
5625532 | Sellers | Apr 1997 | A |
5769210 | Tsai | Jun 1998 | A |
5804780 | Bartha | Sep 1998 | A |
5828015 | Coulon | Oct 1998 | A |
5847337 | Chen | Dec 1998 | A |
5874700 | Hochgesang | Feb 1999 | A |
5875013 | Takahara | Feb 1999 | A |
5876106 | Kordecki et al. | Mar 1999 | A |
5878872 | Tsai | Mar 1999 | A |
5881866 | Miyajima et al. | Mar 1999 | A |
5898147 | Domzalsi et al. | Apr 1999 | A |
5924555 | Sadamori et al. | Jul 1999 | A |
5935691 | Tsai | Aug 1999 | A |
5960942 | Thornton | Oct 1999 | A |
5986227 | Hon | Nov 1999 | A |
6020565 | Pan | Feb 2000 | A |
6068416 | Kumamoto et al. | May 2000 | A |
6215420 | Harrison et al. | Apr 2001 | B1 |
6257782 | Maruyama et al. | Jul 2001 | B1 |
6259046 | Iwama et al. | Jul 2001 | B1 |
6377385 | Saito | Apr 2002 | B1 |
6388219 | Hsu et al. | May 2002 | B2 |
6423918 | King et al. | Jul 2002 | B1 |
6482032 | Szu et al. | Nov 2002 | B1 |
6530283 | Okada et al. | Mar 2003 | B2 |
6538801 | Jacobson et al. | Mar 2003 | B2 |
6542355 | Huang | Apr 2003 | B1 |
6552287 | Janniere | Apr 2003 | B2 |
6556112 | Van Zeeland et al. | Apr 2003 | B1 |
6559399 | Hsu et al. | May 2003 | B2 |
6560612 | Yamada et al. | May 2003 | B1 |
6572289 | Lo et al. | Jun 2003 | B2 |
6573463 | Ono | Jun 2003 | B2 |
6585435 | Fang | Jul 2003 | B2 |
6624369 | Ito et al. | Sep 2003 | B2 |
6706986 | Hsu | Mar 2004 | B2 |
6738050 | Comiskey et al. | May 2004 | B2 |
6750414 | Sullivan | Jun 2004 | B2 |
6759614 | Yoneyama | Jul 2004 | B2 |
6762381 | Kunthady et al. | Jul 2004 | B2 |
6765503 | Chan et al. | Jul 2004 | B1 |
6788450 | Kawai et al. | Sep 2004 | B2 |
6797906 | Ohashi | Sep 2004 | B2 |
6850227 | Takahashi et al. | Feb 2005 | B2 |
6860660 | Hochgesang et al. | Mar 2005 | B2 |
6911608 | Levy | Jun 2005 | B2 |
6926418 | Oestergaard et al. | Aug 2005 | B2 |
6940030 | Takeda et al. | Sep 2005 | B2 |
6977352 | Oosawa | Dec 2005 | B2 |
6979792 | Lai | Dec 2005 | B1 |
6987466 | Welch et al. | Jan 2006 | B1 |
6987503 | Inoue | Jan 2006 | B2 |
7012206 | Oikawa | Mar 2006 | B2 |
7030330 | Suda | Apr 2006 | B2 |
7038832 | Kanbe | May 2006 | B2 |
7129930 | Cathey et al. | Oct 2006 | B1 |
7134205 | Bruennel | Nov 2006 | B2 |
7146701 | Mahoney et al. | Dec 2006 | B2 |
7151236 | Ducruet et al. | Dec 2006 | B2 |
7151237 | Mahoney et al. | Dec 2006 | B2 |
7154059 | Chou | Dec 2006 | B2 |
7166813 | Soma | Jan 2007 | B2 |
7172303 | Shipman et al. | Feb 2007 | B2 |
7189932 | Kim | Mar 2007 | B2 |
7256766 | Albert et al. | Aug 2007 | B2 |
7283119 | Kishi | Oct 2007 | B2 |
7301113 | Nishimura et al. | Nov 2007 | B2 |
7312790 | Sato et al. | Dec 2007 | B2 |
7378607 | Koyano et al. | May 2008 | B2 |
7385806 | Liao | Jun 2008 | B2 |
7391555 | Albert et al. | Jun 2008 | B2 |
7414213 | Hwang | Aug 2008 | B2 |
7429707 | Yanai et al. | Sep 2008 | B2 |
7432460 | Clegg | Oct 2008 | B2 |
7510342 | Lane et al. | Mar 2009 | B2 |
7531764 | Lev et al. | May 2009 | B1 |
7541554 | Hou | Jun 2009 | B2 |
7589292 | Jung et al. | Sep 2009 | B2 |
7639187 | Caballero et al. | Dec 2009 | B2 |
7639571 | Ishii et al. | Dec 2009 | B2 |
7651231 | Chou et al. | Jan 2010 | B2 |
7679010 | Wingett | Mar 2010 | B2 |
7724415 | Yamaguchi | May 2010 | B2 |
7781690 | Ishii | Aug 2010 | B2 |
7813774 | Perez-Noguera | Oct 2010 | B2 |
7842895 | Lee | Nov 2010 | B2 |
7847204 | Tsai | Dec 2010 | B2 |
7851819 | Shi | Dec 2010 | B2 |
7866866 | Wahlstrom | Jan 2011 | B2 |
7893376 | Chen | Feb 2011 | B2 |
7923653 | Ohsumi | Apr 2011 | B2 |
7947915 | Lee et al. | May 2011 | B2 |
7999748 | Ligtenberg et al. | Aug 2011 | B2 |
8063325 | Sung et al. | Nov 2011 | B2 |
8077096 | Chiang et al. | Dec 2011 | B2 |
8080744 | Yeh et al. | Dec 2011 | B2 |
8098228 | Shimodaira et al. | Jan 2012 | B2 |
8109650 | Chang et al. | Feb 2012 | B2 |
8119945 | Lin | Feb 2012 | B2 |
8124903 | Tatehata et al. | Feb 2012 | B2 |
8134094 | Tsao et al. | Mar 2012 | B2 |
8143982 | Lauder et al. | Mar 2012 | B1 |
8156172 | Muehl et al. | Apr 2012 | B2 |
8178808 | Strittmatter | May 2012 | B2 |
8184021 | Chou | May 2012 | B2 |
8212160 | Tsao | Jul 2012 | B2 |
8212162 | Zhou | Jul 2012 | B2 |
8218301 | Lee | Jul 2012 | B2 |
8232958 | Tolbert | Jul 2012 | B2 |
8246228 | Ko et al. | Aug 2012 | B2 |
8253048 | Ozias et al. | Aug 2012 | B2 |
8253052 | Chen | Aug 2012 | B2 |
8263887 | Chen et al. | Sep 2012 | B2 |
8289280 | Travis | Oct 2012 | B2 |
8299382 | Takemae et al. | Oct 2012 | B2 |
8317384 | Chung et al. | Nov 2012 | B2 |
8319129 | Nishino | Nov 2012 | B2 |
8319298 | Hsu | Nov 2012 | B2 |
8325141 | Marsden | Dec 2012 | B2 |
8330725 | Mahowald et al. | Dec 2012 | B2 |
8354629 | Lin | Jan 2013 | B2 |
8378857 | Pance | Feb 2013 | B2 |
8383972 | Liu | Feb 2013 | B2 |
8384566 | Bocirnea | Feb 2013 | B2 |
8404990 | Lutgring et al. | Mar 2013 | B2 |
8431849 | Chen | Apr 2013 | B2 |
8436265 | Koike et al. | May 2013 | B2 |
8451146 | Mahowald et al. | May 2013 | B2 |
8462514 | Myers et al. | Jun 2013 | B2 |
8500348 | Dumont et al. | Aug 2013 | B2 |
8502094 | Chen | Aug 2013 | B2 |
8542194 | Akens et al. | Sep 2013 | B2 |
8548528 | Kim et al. | Oct 2013 | B2 |
8564544 | Jobs et al. | Oct 2013 | B2 |
8569639 | Strittmatter | Oct 2013 | B2 |
8575632 | Kuramoto et al. | Nov 2013 | B2 |
8581127 | Jhuang et al. | Nov 2013 | B2 |
8592699 | Kessler et al. | Nov 2013 | B2 |
8592702 | Tsai | Nov 2013 | B2 |
8592703 | Johnson et al. | Nov 2013 | B2 |
8604370 | Chao | Dec 2013 | B2 |
8629362 | Knighton et al. | Jan 2014 | B1 |
8642904 | Chiba et al. | Feb 2014 | B2 |
8651720 | Sherman et al. | Feb 2014 | B2 |
8659882 | Liang et al. | Feb 2014 | B2 |
8731618 | Jarvis et al. | May 2014 | B2 |
8748767 | Ozias et al. | Jun 2014 | B2 |
8759705 | Funakoshi et al. | Jun 2014 | B2 |
8760405 | Nam | Jun 2014 | B2 |
8786548 | Oh et al. | Jul 2014 | B2 |
8791378 | Lan | Jul 2014 | B2 |
8835784 | Hirota | Sep 2014 | B2 |
8847090 | Ozaki | Sep 2014 | B2 |
8847711 | Yang et al. | Sep 2014 | B2 |
8853580 | Chen | Oct 2014 | B2 |
8854312 | Meierling | Oct 2014 | B2 |
8870477 | Merminod et al. | Oct 2014 | B2 |
8884174 | Chou et al. | Nov 2014 | B2 |
8921473 | Hyman | Dec 2014 | B1 |
8922476 | Stewart et al. | Dec 2014 | B2 |
8943427 | Heo et al. | Jan 2015 | B2 |
8976117 | Krahenbuhl et al. | Mar 2015 | B2 |
8994641 | Stewart et al. | Mar 2015 | B2 |
9007297 | Stewart et al. | Apr 2015 | B2 |
9012795 | Niu et al. | Apr 2015 | B2 |
9029723 | Pegg | May 2015 | B2 |
9063627 | Yairi et al. | Jun 2015 | B2 |
9064642 | Welch et al. | Jun 2015 | B2 |
9086733 | Pance | Jul 2015 | B2 |
9087663 | Los | Jul 2015 | B2 |
9093229 | Leong et al. | Jul 2015 | B2 |
9213416 | Chen | Dec 2015 | B2 |
9223352 | Smith et al. | Dec 2015 | B2 |
9234486 | Das et al. | Jan 2016 | B2 |
9235236 | Nam | Jan 2016 | B2 |
9274654 | Slobodin et al. | Mar 2016 | B2 |
9275810 | Pance et al. | Mar 2016 | B2 |
9300033 | Han et al. | Mar 2016 | B2 |
9305496 | Kimura | Apr 2016 | B2 |
9443672 | Martisauskas | Sep 2016 | B2 |
9448628 | Tan et al. | Sep 2016 | B2 |
9471185 | Guard | Oct 2016 | B2 |
9477382 | Hicks et al. | Oct 2016 | B2 |
9612674 | Degner et al. | Apr 2017 | B2 |
9734965 | Verdú Martínez et al. | Aug 2017 | B2 |
9793066 | Brock et al. | Oct 2017 | B1 |
10192696 | Zercoe | Jan 2019 | B2 |
20020079211 | Katayama et al. | Jun 2002 | A1 |
20020093436 | Lien | Jul 2002 | A1 |
20020113770 | Jacobson et al. | Aug 2002 | A1 |
20020149835 | Kanbe | Oct 2002 | A1 |
20030169232 | Ito | Sep 2003 | A1 |
20040004559 | Rast | Jan 2004 | A1 |
20040225965 | Garside et al. | Nov 2004 | A1 |
20040257247 | Lin et al. | Dec 2004 | A1 |
20050035950 | Daniels | Feb 2005 | A1 |
20050253801 | Kobayashi | Nov 2005 | A1 |
20060011458 | Purcocks | Jan 2006 | A1 |
20060020469 | Rast | Jan 2006 | A1 |
20060120790 | Chang | Jun 2006 | A1 |
20060181511 | Woolley | Aug 2006 | A1 |
20060243987 | Lai | Nov 2006 | A1 |
20070200823 | Bytheway et al. | Aug 2007 | A1 |
20070285393 | Ishakov | Dec 2007 | A1 |
20080131184 | Brown et al. | Jun 2008 | A1 |
20080136782 | Mundt et al. | Jun 2008 | A1 |
20080202824 | Philipp et al. | Aug 2008 | A1 |
20080251370 | Aoki | Oct 2008 | A1 |
20090046053 | Shigehiro et al. | Feb 2009 | A1 |
20090103964 | Takagi et al. | Apr 2009 | A1 |
20090128496 | Huang | May 2009 | A1 |
20090262085 | Wassingbo et al. | Oct 2009 | A1 |
20090267892 | Faubert | Oct 2009 | A1 |
20100045705 | Vertegaal et al. | Feb 2010 | A1 |
20100066568 | Lee | Mar 2010 | A1 |
20100109921 | Annerfors | May 2010 | A1 |
20100128427 | Iso | May 2010 | A1 |
20100156796 | Kim et al. | Jun 2010 | A1 |
20100253630 | Homma et al. | Oct 2010 | A1 |
20110032127 | Roush | Feb 2011 | A1 |
20110043384 | Cheng | Feb 2011 | A1 |
20110056817 | Wu | Mar 2011 | A1 |
20110056836 | Tatebe et al. | Mar 2011 | A1 |
20110205179 | Braun | Aug 2011 | A1 |
20110261031 | Muto | Oct 2011 | A1 |
20110267272 | Meyer et al. | Nov 2011 | A1 |
20110284355 | Yang | Nov 2011 | A1 |
20110303521 | Niu et al. | Dec 2011 | A1 |
20120012446 | Hwa | Jan 2012 | A1 |
20120032972 | Hwang | Feb 2012 | A1 |
20120090973 | Liu | Apr 2012 | A1 |
20120098751 | Liu | Apr 2012 | A1 |
20120186965 | Zieder | Jul 2012 | A1 |
20120286701 | Yang et al. | Nov 2012 | A1 |
20120298496 | Zhang | Nov 2012 | A1 |
20120313856 | Hsieh | Dec 2012 | A1 |
20130043115 | Yang et al. | Feb 2013 | A1 |
20130093500 | Bruwer | Apr 2013 | A1 |
20130093733 | Yoshida | Apr 2013 | A1 |
20130100030 | Los et al. | Apr 2013 | A1 |
20130120265 | Horii et al. | May 2013 | A1 |
20130161170 | Fan et al. | Jun 2013 | A1 |
20130215079 | Johnson et al. | Aug 2013 | A1 |
20130242601 | Broer et al. | Sep 2013 | A1 |
20130270090 | Lee | Oct 2013 | A1 |
20130306455 | Wang | Nov 2013 | A1 |
20140015777 | Park et al. | Jan 2014 | A1 |
20140027259 | Kawana et al. | Jan 2014 | A1 |
20140055289 | Chou | Feb 2014 | A1 |
20140071654 | Chien | Mar 2014 | A1 |
20140082490 | Jung et al. | Mar 2014 | A1 |
20140090967 | Inagaki | Apr 2014 | A1 |
20140098042 | Kuo et al. | Apr 2014 | A1 |
20140116865 | Leong et al. | May 2014 | A1 |
20140118264 | Leong et al. | May 2014 | A1 |
20140151211 | Zhang | Jun 2014 | A1 |
20140174899 | Hwa | Jun 2014 | A1 |
20140184496 | Gribetz et al. | Jul 2014 | A1 |
20140191973 | Zellers et al. | Jul 2014 | A1 |
20140218851 | Klein et al. | Aug 2014 | A1 |
20140252881 | Dinh et al. | Sep 2014 | A1 |
20140291133 | Fu et al. | Oct 2014 | A1 |
20140320436 | Modarres et al. | Oct 2014 | A1 |
20140346025 | Hendren et al. | Nov 2014 | A1 |
20140375141 | Nakajima | Dec 2014 | A1 |
20150016038 | Niu et al. | Jan 2015 | A1 |
20150083561 | Han et al. | Mar 2015 | A1 |
20150090570 | Kwan et al. | Apr 2015 | A1 |
20150090571 | Leong et al. | Apr 2015 | A1 |
20150227207 | Winter et al. | Aug 2015 | A1 |
20150243457 | Niu et al. | Aug 2015 | A1 |
20150270073 | Yarak, III et al. | Sep 2015 | A1 |
20150277559 | Vescovi et al. | Oct 2015 | A1 |
20150287553 | Welch et al. | Oct 2015 | A1 |
20150309538 | Zhang | Oct 2015 | A1 |
20150332874 | Brock et al. | Nov 2015 | A1 |
20150348726 | Hendren | Dec 2015 | A1 |
20150378391 | Huitema et al. | Dec 2015 | A1 |
20160049266 | Stringer et al. | Feb 2016 | A1 |
20160172129 | Zercoe et al. | Jun 2016 | A1 |
20160189890 | Leong et al. | Jun 2016 | A1 |
20160189891 | Zercoe et al. | Jun 2016 | A1 |
20160259375 | Andre et al. | Sep 2016 | A1 |
20160329166 | Hou et al. | Nov 2016 | A1 |
20160336124 | Leong et al. | Nov 2016 | A1 |
20160336127 | Leong et al. | Nov 2016 | A1 |
20160336128 | Leong et al. | Nov 2016 | A1 |
20160343523 | Hendren et al. | Nov 2016 | A1 |
20160351360 | Knopf et al. | Dec 2016 | A1 |
20160365204 | Cao et al. | Dec 2016 | A1 |
20160378234 | Ligtenberg et al. | Dec 2016 | A1 |
20160379775 | Leong et al. | Dec 2016 | A1 |
20170004937 | Leong et al. | Jan 2017 | A1 |
20170004939 | Kwan et al. | Jan 2017 | A1 |
20170011869 | Knopf et al. | Jan 2017 | A1 |
20170090106 | Cao et al. | Mar 2017 | A1 |
20170301487 | Leong et al. | Oct 2017 | A1 |
20170315624 | Leong et al. | Nov 2017 | A1 |
20180029339 | Niu et al. | Feb 2018 | A1 |
20180040441 | Wu et al. | Feb 2018 | A1 |
20180074694 | Lehmann et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2155620 | Feb 1994 | CN |
2394309 | Aug 2000 | CN |
1533128 | Sep 2004 | CN |
1542497 | Nov 2004 | CN |
1624842 | Jun 2005 | CN |
1838036 | Sep 2006 | CN |
101051569 | Oct 2007 | CN |
200961844 | Oct 2007 | CN |
200986871 | Dec 2007 | CN |
101146137 | Mar 2008 | CN |
201084602 | Jul 2008 | CN |
201123174 | Sep 2008 | CN |
201149829 | Nov 2008 | CN |
201210457 | Mar 2009 | CN |
101438228 | May 2009 | CN |
101465226 | Jun 2009 | CN |
101494130 | Jul 2009 | CN |
101502082 | Aug 2009 | CN |
201298481 | Aug 2009 | CN |
101546667 | Sep 2009 | CN |
101572195 | Nov 2009 | CN |
101800281 | Aug 2010 | CN |
101807482 | Aug 2010 | CN |
101868773 | Oct 2010 | CN |
201655616 | Nov 2010 | CN |
102110542 | Jun 2011 | CN |
102119430 | Jul 2011 | CN |
201904256 | Jul 2011 | CN |
102163084 | Aug 2011 | CN |
201927524 | Aug 2011 | CN |
201945951 | Aug 2011 | CN |
201945952 | Aug 2011 | CN |
201956238 | Aug 2011 | CN |
202008941 | Oct 2011 | CN |
202040690 | Nov 2011 | CN |
102375550 | Mar 2012 | CN |
102496509 | Jun 2012 | CN |
102622089 | Aug 2012 | CN |
102629527 | Aug 2012 | CN |
202372927 | Aug 2012 | CN |
102679239 | Sep 2012 | CN |
102683072 | Sep 2012 | CN |
102955573 | Mar 2013 | CN |
102956386 | Mar 2013 | CN |
103000417 | Mar 2013 | CN |
103165327 | Jun 2013 | CN |
103180979 | Jun 2013 | CN |
103377841 | Oct 2013 | CN |
103489986 | Jan 2014 | CN |
203414880 | Jan 2014 | CN |
103699181 | Apr 2014 | CN |
203520312 | Apr 2014 | CN |
203588895 | May 2014 | CN |
103839715 | Jun 2014 | CN |
103839722 | Jun 2014 | CN |
103903891 | Jul 2014 | CN |
204102769 | Jan 2015 | CN |
2530176 | Jan 1977 | DE |
3002772 | Jul 1981 | DE |
29704100 | Apr 1997 | DE |
202008001970 | May 2008 | DE |
0441993 | Aug 1991 | EP |
1835272 | Sep 2007 | EP |
1928008 | Jun 2008 | EP |
2022606 | Feb 2009 | EP |
2426688 | Mar 2012 | EP |
2463798 | Jun 2012 | EP |
2664979 | Nov 2013 | EP |
2147420 | Mar 1973 | FR |
2911000 | Jul 2008 | FR |
2950193 | Mar 2011 | FR |
1361459 | Jul 1974 | GB |
S50115562 | Sep 1975 | JP |
S60055477 | Mar 1985 | JP |
S62072429 | Apr 1987 | JP |
H0422024 | Feb 1992 | JP |
H0520963 | Mar 1993 | JP |
H09204148 | Aug 1997 | JP |
H11194882 | Jul 1999 | JP |
2000057871 | Feb 2000 | JP |
2001100889 | Apr 2001 | JP |
2002298689 | Oct 2002 | JP |
2003114751 | Apr 2003 | JP |
2003522998 | Jul 2003 | JP |
2006164929 | Jun 2006 | JP |
2006185906 | Jul 2006 | JP |
2006277013 | Oct 2006 | JP |
2006344609 | Dec 2006 | JP |
2007514247 | May 2007 | JP |
2008021428 | Jan 2008 | JP |
2008100129 | May 2008 | JP |
2008533559 | Aug 2008 | JP |
2008293922 | Dec 2008 | JP |
2009181894 | Aug 2009 | JP |
2010061956 | Mar 2010 | JP |
2010244088 | Oct 2010 | JP |
2010244302 | Oct 2010 | JP |
2011018484 | Jan 2011 | JP |
2011065126 | Mar 2011 | JP |
2011150804 | Aug 2011 | JP |
2011187297 | Sep 2011 | JP |
2012022473 | Feb 2012 | JP |
2012043705 | Mar 2012 | JP |
2012063630 | Mar 2012 | JP |
2012186067 | Sep 2012 | JP |
2012230256 | Nov 2012 | JP |
2014017179 | Jan 2014 | JP |
2014026807 | Feb 2014 | JP |
2014216190 | Nov 2014 | JP |
2014220039 | Nov 2014 | JP |
2016053778 | Apr 2016 | JP |
20150024201 | Mar 2015 | KR |
200703396 | Jan 2007 | TW |
M334397 | Jun 2008 | TW |
201108284 | Mar 2011 | TW |
201108286 | Mar 2011 | TW |
M407429 | Jul 2011 | TW |
201246251 | Nov 2012 | TW |
9744946 | Nov 1997 | WO |
2005057320 | Jun 2005 | WO |
2008045833 | Apr 2008 | WO |
2009005026 | Jan 2009 | WO |
2012027978 | Mar 2012 | WO |
2014175446 | Oct 2014 | WO |
Entry |
---|
ELEKSON, “Reliable and Tested Wearable Electronics Embedment Solutions”, http://www.wearable.technology/our-technologies, at least as early as Jan. 6, 2016, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20190122836 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
62058081 | Sep 2014 | US | |
62129843 | Mar 2015 | US | |
62058067 | Sep 2014 | US | |
62129840 | Mar 2015 | US | |
62058074 | Sep 2014 | US | |
62129841 | Mar 2015 | US | |
62058087 | Sep 2014 | US | |
62129842 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14867746 | Sep 2015 | US |
Child | 16220506 | US |