LIGHT-EMITTING DEVICE AND APPARATUS INCLUDING THE SAME

Abstract
A light-emitting device includes: a first electrode; a second electrode opposing the first electrode; and an interlayer between the first electrode and the second electrode, wherein the interlayer includes an emission layer, a first emission auxiliary layer, a second emission auxiliary layer, and a hole transport region, the hole transport region is disposed between the first electrode and the emission layer, the first emission auxiliary layer and the second emission auxiliary layer are disposed between the emission layer and the hole transport region, the first emission auxiliary layer includes a first compound, the second emission auxiliary layer includes a second compound, the hole transport region includes a hole transport compound, and the first compound and the hole transport compound satisfy the Equation 1, as defined herein.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from and the benefit of Korean Patent Application No. 10-2020-0037793, filed on Mar. 27, 2020, which is hereby incorporated by reference for all purposes as if fully set forth herein.


BACKGROUND
Field

Exemplary implementations of the invention relate generally to a light-emitting device and an apparatus including the same.


Discussion of the Background

Organic light-emitting devices are self-emission devices that produce full-color images, and also have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of brightness, driving voltage, and response speed, compared to devices in the art.


One example of an organic light-emitting device may include a first electrode disposed on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode, which are sequentially disposed on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. These excitons transit from an excited state to a ground state, thereby generating light.


The above information disclosed in this Background section is only for understanding of the background of the inventive concepts, and, therefore, it may contain information that does not constitute prior art.


SUMMARY

Light-emitting devices and apparatuses constructed according to the principles and exemplary implementations of the invention have low driving voltage, high efficiency, and long lifespan. For example, when light-emitting devices constructed according to some exemplary implementations satisfy Equation 1 disclosed herein, optical resonance distance is compensated for according to the wavelength of light emitted by the emission layer, such that light-emission efficiency is increased, which facilitates the efficient injection of holes from the hole transport region to the emission layer through an emission auxiliary layer. Accordingly, light-emitting devices construed according to some exemplary implementations have significant and unexpectedly improved characteristics in terms of efficiency and lifespan.


As another example, when light-emitting device constructed according to some exemplary implementation satisfy both Equation 1 and Equation 2 as disclosed herein such that the difference in a highest occupied molecular orbital (HOMO) energy levels between the hole transport region and the second emission auxiliary layer is small, the energy barrier between the first emission auxiliary layer and the second emission auxiliary layer is low. Accordingly, since the second emission auxiliary layer exists, holes moving from a hole transport region to a first emission auxiliary layer may efficiently flow to an emission layer, and efficiency and lifespan characteristics of a light-emitting device are significantly and unexpectedly improved.


Additional features of the inventive concepts will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the inventive concepts.


According to one aspect of the invention, a light-emitting device includes: a first electrode; a second electrode opposing the first electrode; and an interlayer between the first electrode and the second electrode, wherein the interlayer includes an emission layer, a first emission auxiliary layer, a second emission auxiliary layer, and a hole transport region, the hole transport region is disposed between the first electrode and the emission layer, the first emission auxiliary layer and the second emission auxiliary layer are disposed between the emission layer and the hole transport region, the first emission auxiliary layer includes a first compound, the second emission auxiliary layer includes a second compound, the hole transport region includes a hole transport compound, and the first compound and the hole transport compound satisfy the following Equation 1:





|E1AU,HOMO−EHT,HOMO|≤0.15 eV  <Equation 1>


wherein, in Equation 1,


E1AU,HOMO is a HOMO energy level of the first compound, and


EHT,HOMO is a HOMO energy level of the hole transport compound.


The hole transport region may include a hole transport layer, and the hole transport layer may include the hole transport compound.


The hole transport layer may be in direct contact with the first emission auxiliary layer.


The second compound and the hole transport compound may satisfy the Equation 2, as defined herein.


The second emission auxiliary layer may be in direct contact with the emission layer.


The first emission auxiliary layer may have a thickness of about 1 nm to about 40 nm.


The second emission auxiliary layer may have a thickness of about 1 nm to about 20 nm.


At least one of the first emission auxiliary layer and the second emission auxiliary layer may not include a p-dopant.


The first compound and the second compound may each, independently from one another, be a fluorene-containing compound, a carbazole-containing compound, a diarylamine compound, a triarylamine compound, a dibenzofuran-containing compound, a dibenzothiophene-containing compound, or a dibenzosilole-containing compound.


The first compound and the second compound may each, independently from one another, be a compound represented by Formula 1 or Formula 2, as defined herein.


The first compound and the second compound may each, independently from one another, be a compound represented by any one of Formula 1-1 and Formula 2-1, as defined herein.


The hole transport compound may be a compound represented by Formula 201-1 or Formula 202-1, as defined herein.


The first electrode may be an anode; the second electrode may be a cathode; the light-emitting device may further include an electron transport region disposed between the emission layer and the second electrode; the electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof; and the hole transport region may further include a hole injection layer, an electron blocking layer, or any combination thereof.


The hole transport region may include a charge-generating material.


The emission layer may include an amount of host and an amount of dopant, and the amount of host may be greater than the amount of dopant.


The host may include two or more different host compounds.


The emission layer may include one or more quantum dots.


The electron transport region may include a metal-containing material.


An apparatus may include the light-emitting device, as defined above.


The apparatus may further include a thin-film transistor, wherein the thin-film transistor may include a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected with the source electrode or the drain electrode.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.





BRIEF DESCRIPTION OF THE DRAWING

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the invention, and together with the description serve to explain the inventive concepts.


The FIG. 1s a schematic cross-sectional diagram of an exemplary embodiment of a light-emitting device constructed according to principles of the invention.





DETAILED DESCRIPTION

In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of various exemplary embodiments or implementations of the invention. As used herein “embodiments” and “implementations” are interchangeable words that are non-limiting examples of devices or methods employing one or more of the inventive concepts disclosed herein. It is apparent, however, that various exemplary embodiments may be practiced without these specific details or with one or more equivalent arrangements. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring various exemplary embodiments. Further, various exemplary embodiments may be different, but do not have to be exclusive. For example, specific shapes, configurations, and characteristics of an exemplary embodiment may be used or implemented in another exemplary embodiment without departing from the inventive concepts.


Unless otherwise specified, the illustrated exemplary embodiments are to be understood as providing exemplary features of varying detail of some ways in which the inventive concepts may be implemented in practice. Therefore, unless otherwise specified, the features, components, modules, layers, films, panels, regions, and/or aspects, etc. (hereinafter individually or collectively referred to as “elements”), of the various embodiments may be otherwise combined, separated, interchanged, and/or rearranged without departing from the inventive concepts.


The use of cross-hatching and/or shading in the accompanying drawings is generally provided to clarify boundaries between adjacent elements. As such, neither the presence nor the absence of cross-hatching or shading conveys or indicates any preference or requirement for particular materials, material properties, dimensions, proportions, commonalities between illustrated elements, and/or any other characteristic, attribute, property, etc., of the elements, unless specified. Further, in the accompanying drawings, the size and relative sizes of elements may be exaggerated for clarity and/or descriptive purposes. When an exemplary embodiment may be implemented differently, a specific process order may be performed differently from the described order. For example, two consecutively described processes may be performed substantially at the same time or performed in an order opposite to the described order. Also, like reference numerals denote like elements, and thus redundant description thereof will be omitted.


When an element, such as a layer, is referred to as being “on,” “connected to,” or “coupled to” another element or layer, it may be directly on, connected to, or coupled to the other element or layer or intervening elements or layers may be present. When, however, an element or layer is referred to as being “directly on,” “directly connected to,” or “directly coupled to” another element or layer, there are no intervening elements or layers present. To this end, the term “connected” may refer to physical, electrical, and/or fluid connection, with or without intervening elements. Further, the D1-axis, the D2-axis, and the D3-axis are not limited to three axes of a rectangular coordinate system, such as the x, y, and z-axes, and may be interpreted in a broader sense. For example, the D1-axis, the D2-axis, and the D3-axis may be perpendicular to one another, or may represent different directions that are not perpendicular to one another. For the purposes of this disclosure, “at least one of X, Y, and Z” and “at least one selected from the group consisting of X, Y, and Z” may be construed as X only, Y only, Z only, or any combination of two or more of X, Y, and Z, such as, for instance, XYZ, XYY, YZ, and ZZ. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Although the terms “first,” “second,” etc. may be used herein to describe various types of elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another element. Thus, a first element discussed below could be termed a second element without departing from the teachings of the disclosure.


Spatially relative terms, such as “beneath,” “below,” “under,” “lower,” “above,” “upper,” “over,” “higher,” “side” (e.g., as in “sidewall”), and the like, may be used herein for descriptive purposes, and, thereby, to describe one elements relationship to another element(s) as illustrated in the drawings. Spatially relative terms are intended to encompass different orientations of an apparatus in use, operation, and/or manufacture in addition to the orientation depicted in the drawings. For example, if the apparatus in the drawings is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. Furthermore, the apparatus may be otherwise oriented (e.g., rotated 90 degrees or at other orientations), and, as such, the spatially relative descriptors used herein interpreted accordingly.


The terminology used herein is for the purpose of describing particular embodiments and is not intended to be limiting. As used herein, the singular forms, “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Moreover, the terms “comprises,” “comprising,” “includes,” and/or “including,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, components, and/or groups thereof, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It is also noted that, as used herein, the terms “substantially,” “about,” and other similar terms, are used as terms of approximation and not as terms of degree, and, as such, are utilized to account for inherent deviations in measured, calculated, and/or provided values that would be recognized by one of ordinary skill in the art.


Various exemplary embodiments are described herein with reference to sectional and/or exploded illustrations that are schematic illustrations of idealized exemplary embodiments and/or intermediate structures. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, exemplary embodiments disclosed herein should not necessarily be construed as limited to the particular illustrated shapes of regions, but are to include deviations in shapes that result from, for instance, manufacturing. In this manner, regions illustrated in the drawings may be schematic in nature and the shapes of these regions may not reflect actual shapes of regions of a device and, as such, are not necessarily intended to be limiting.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure is a part. Terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an idealized or overly formal sense, unless expressly so defined herein.


According to some exemplary embodiments, the host may include two or more different host compounds, the emission layer may further include a dopant, and the dopant may include a phosphorescent dopant or a fluorescent dopant, the emission layer may further include a dopant, and the dopant may be a phosphorescent dopant, or the hole transport region may include at least one selected from a hole injection layer and an electron blocking layer.


According to some exemplary embodiments, the first electrode is an anode, the second electrode is a cathode, the light-emitting device further includes an electron transport region between the emission layer and the second electrode, the electron transport region may include at least one selected from a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, and an electron injection layer, the electron transport region may include a metal-containing material, or provided is an apparatus including the light-emitting device.


The term “interlayer” as used herein refers to a single layer and/or all layers between the first electrode and the second electrode of the light-emitting device. A material included in the “interlayer” is not limited to an organic material.


The FIG. 1s a schematic cross-sectional diagram of an exemplary embodiment of a light-emitting device constructed according to principles of the invention. The light-emitting device 10 includes a first electrode 110, an interlayer 150, and a second electrode 190. Hereinafter, a structure of the light-emitting device 10 according to an exemplary embodiment and a method of manufacturing the light-emitting device 10 will be described in connection with FIGURE.


First Electrode 110

In the FIGURE, a substrate may be additionally disposed under the first electrode 110 or above the second electrode 190. The substrate may be a glass substrate or a plastic substrate.


The first electrode 110 may be formed by depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a high work function material that can easily inject holes may be used as a material for forming the first electrode 110.


The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. When the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may be an indium tin oxide (ITO), an indium zinc oxide (IZO), a tin oxide (SnO2), a zinc oxide (ZnO), or any combination thereof, but the exemplary embodiments are not limited thereto. In one or more exemplary embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, a material for forming the first electrode 110 may be magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof, but the exemplary embodiments are not limited thereto.


The first electrode 110 may have a single-layered structure consisting of a single layer or a multi-layered structure including a plurality of layers. In one or more exemplary embodiments, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO, but the structure of the first electrode 110 is not limited thereto.


Interlayer 150

The interlayer 150 is disposed on the first electrode 110.


The interlayer 150 includes an emission layer 153, a first emission auxiliary layer 152-1, a second emission auxiliary layer 152-2, and a hole transport region 151.


The hole transport region 151 may be disposed between the first electrode 110 and the emission layer 153, and the first emission auxiliary layer 152-1 and the second emission auxiliary layer 152-2 are disposed between the emission layer 153 and the hole transport region 151.


According to some exemplary embodiments, the hole transport region 151, the first emission auxiliary layer 152-1, the second emission auxiliary layer 152-2, and the emission layer 153 may be sequentially stacked.


The first emission auxiliary layer 152-1 includes a first compound, the second emission auxiliary layer 152-2 includes a second compound, and the hole transport region 151 includes a hole transport compound.


The first compound and the hole transport compound satisfy the following Equation 1:





|E1AU,HOMO−EHT,HOMO|≤0.15 eV  <Equation 1>


In Equation 1,


E1AU,HOMO is a highest occupied molecular orbital (HOMO) energy level of the first compound, and


EHT,HOMO is a HOMO energy level of the hole transport compound.


In other words, the first emission auxiliary layer 152-1 including the first compound and the hole transport region 151 including the hole transport compound have similar HOMO energy levels. Thus, an energy barrier that disturbs the movement of holes is minimized.


The light-emitting device according to some exemplary embodiments satisfies Equation 1, and thus compensates for an optical resonance distance according to the wavelength of light emitted by an emission layer, such that light-emission efficiency is increased, and facilitates the efficient injection of holes from a hole transport region to an emission layer through an emission auxiliary layer. Accordingly, the light-emitting device according to some exemplary embodiments may have significant and unexpectedly improved characteristics in terms of efficiency and lifespan.


According to some exemplary embodiments, the hole transport region 151 may include a hole transport layer, and the hole transport layer may include the hole transport compound.


According to some exemplary embodiments, the hole transport layer may be in direct contact with the first emission auxiliary layer 152-1.


According to some exemplary embodiments, the second compound and the hole transport compound may satisfy the following Equation 2:





|E2AU,HOMO−EHT,HOMO|≤0.25 eV  <Equation 2>


In Equation 2,


E2AU,HOMO is a HOMO energy level of the second compound, and


EHT,HOMO is a HOMO energy level of the hole transport compound.


In addition, according to some exemplary embodiments, the second emission auxiliary layer 152-2 may be in direct contact with the emission layer 153.


The light-emitting device according to some exemplary embodiments also satisfies Equation 2 such that the difference in HOMO energy levels between the hole transport region 151 and the second emission auxiliary layer 152-2 is small. Thus, an energy barrier between the first emission auxiliary layer 152-1 and the second emission auxiliary layer 152-2 is low. Accordingly, because a second emission auxiliary layer exists, holes moving from a hole transport region to a first emission auxiliary layer may efficiently flow to an emission layer, and efficiency and lifespan characteristics of a light-emitting device may be improved.


According to some exemplary embodiments, the thickness of the first emission auxiliary layer 152-1 may be from about 1 nm to about 40 nm, for example, from about 2 nm to about 35 nm, from about 3 nm to about 30 nm, or from about 5 nm to about 25 nm. According to some exemplary embodiments, the thickness of the second emission auxiliary layer 152-2 may be from about 1 nm to about 20 nm, for example, from about 2 nm to about 19 nm or from about nm to about 15 nm.


When thicknesses of the first emission auxiliary layer 152-1 and/or the second emission auxiliary layer 152-2 are within the ranges described above, hole injection and transport characteristics of the light-emitting device 10 may be significantly and unexpectedly improved, and an increase in driving voltage may be avoided.


According to some exemplary embodiments, the first emission auxiliary layer 152-1 and the second emission auxiliary layer 152-2 may not respectively include a p-dopant.


In other words, the light-emitting device according to some exemplary embodiments may improve conductivity of the light-emitting device and may improve efficiency of injection and transport of holes without using a p-dopant in a region adjacent to an emission layer. Accordingly, in a case of the light-emitting device according to some exemplary embodiments, manufacturing costs may be reduced unlike a case of using a p-dopant, and a problem of an increase in capacitance may be resolved.


According to some exemplary embodiments, the first compound and the second compound may each independently be selected from a fluorene-containing compound, a carbazole-containing compound, a diarylamine compound, a triarylamine compound, a dibenzofuran-containing compound, a dibenzothiophene-containing compound, and a dibenzosilole-containing compound.


According to some exemplary embodiments, the first compound and the second compound may each independently be a compound represented by any one of Formula 1 and Formula 2:




embedded image


In Formula 1 and Formula 2,


L1 to L4 may each independently be a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


L5 may be a substituted or unsubstituted C1-C20 alkylene group, a substituted or unsubstituted C2-C20 alkenylene group, a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C10 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


a1 to a4 may each independently be 0, 1, 2, or 3,


a5 may be an integer from 1 to 10, and


Ar1 to Ar4 may each independently be a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.


According to some exemplary embodiments, the first compound and the second compound may each independently be represented by any one of Formula 1-1 and Formula 2-1:




embedded image


In Formula 1-1 and Formula 2-1,


L1 to L5, a1 to a5, and Ar2 to Ar4 are respectively the same as described in the exemplary embodiments,


X1 may be O, S, N(R11), C(R11)(R12), or Si(R11)(R12),


R1 to R3 and R11 and R12 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C10 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), and


R11 and R12 may optionally be linked together to form a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group. The variables Q1 to Q3 are defined below.


According to some exemplary embodiments, L1 to L5 may each independently be a group represented by any one of Formulae 3-1 to 3-26:




embedded image


embedded image


embedded image


embedded image


In Formulae 3-1 to 3-26,


Z11 to Z14 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a triazinyl group, a benzimidazolyl group, a phenanthrolinyl group, and —Si(Q31)(Q32)(Q33),


Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group,


d3 may be an integer from 0 to 3,


d4 may be an integer from 0 to 4,


d5 may be an integer from 0 to 5,


d6 may be an integer from 0 to 6,


d8 may be an integer from 0 to 8, and


* and *′ each indicate a binding site to a neighboring atom.


According to some exemplary embodiments, Ar1 to Ar4 may each independently be selected from groups represented by any one selected from Formulae 5-1 to 5-41:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 5-1 to 5-41,


Y31 and Y32 may each independently be O, S, C(Z34)(Z35), N(Z34), or Si(Z34)(Z35),


Y33 to Y35 may each independently be a single bond, O, S, C(Z36)(Z37), N(Z36), or Si(Z36)(Z37),


Z31 to Z37 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkenyl group, a C1-C20 alkynyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyridinyl group, a pyrimidinyl group, a carbazolyl group, and a triazinyl group,


e2 may be 1 or 2,


e3 may be an integer from 1 to 3,


e4 may be an integer from 1 to 4,


e5 may be an integer from 1 to 5,


e6 may be an integer from 1 to 6,


e7 may be an integer from 1 to 7,


e9 may be an integer from 1 to 9, and


* indicates a binding site to a neighboring atom.


According to some exemplary embodiments, R1 to R3, R11, and R12 may each independently be: hydrogen, deuterium, —F, —Cl, —Br, —I, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an ethenyl group, a prophenyl group, a butenyl group, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, an isobutoxy group, or tert-butoxy group; or


a group represented by any one of Formulae 5-1 to 5-41.


In one or more exemplary embodiments, the first compound and the second compound may be selected from Compound 1 and Compound 2:




embedded image


The hole transport compound may be understood by referring to the description of a material for a hole transport region which will be described later.


Hole Transport Region in Interlayer 150

The hole transport region may have: i) a single-layered structure consisting of a single layer consisting of a single material, ii) a single-layered structure consisting of a single layer including a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.


The hole transport region may include a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), or any combination thereof.


In one or more exemplary embodiments, the hole transport region may have a multi-layered structure of a hole injection layer/hole transport layer structure, a hole transport layer, or a hole injection layer/hole transport layer/electron blocking layer structure, but the exemplary embodiments are not limited thereto.


The hole transport region includes a hole transport compound, for example, a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof:




embedded image


In Formula 201 and Formula 202,


L201 to L204 may each independently be a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


L205 may be *—O—*′, *—S—*′, *—N(Q201)-*′, a substituted or unsubstituted C1-C20 alkylene group, a substituted or unsubstituted C2-C20 alkenylene group, a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C10 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


xa1 to xa4 may each independently be 0, 1, 2, or 3,


xa5 may be an integer from 1 to 10, and


R201 to R204 and Q201 may each independently be a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C1o heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.


In one or more exemplary embodiments, in Formula 202, R201 and R202 may optionally be linked together via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group, and R203 and R204 may optionally be linked together via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group.


In one or more exemplary embodiments, i) at least one of R201 to R203 in Formula 201 and ii) at least one of R201 to R204 in Formula 202 may each independently be a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indeno phenanthrenyl group, a pyridinyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, an isoindolyl group, a benzoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, or a dibenzofuranyl group, each unsubstituted or substituted with at least one of deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a naphthyl group, a phenanthrenyl group, an indenyl group, a fluorenyl group, a dimethylfluorenyl group, a diphenyl fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dimethyl benzofluorenyl group, a diphenyl benzofluorenyl group, an indeno phenanthrenyl group, a dimethylindeno phenanthrenyl group, a diphenylindeno phenanthrenyl group, a pyridinyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a phenyl indolyl group, a benzoindolyl group, a phenylbenzoindolyl group, an isoindolyl group, a phenyl isoindolyl group, a benzoisoindolyl group, a phenylbenzoisoindolyl group, a benzosilolyl group, a dimethylbenzosilolyl group, a diphenylbenzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a phenylcarbazolyl group, a diphenylcarbazolyl group, a dibenzosilolyl group, a dimethyl dibenzosilolyl group, a diphenyl dibenzosilolyl group, a dibenzothiophenyl group, and a dibenzofuranyl group, but the exemplary embodiments are not limited thereto.


In one or more exemplary embodiments, the compound represented by Formula 201 or 202 may include at least one carbazole group.


In one or more exemplary embodiments, the compound represented by Formula 201 may not include a carbazole group.


According to some exemplary embodiments, the hole transport compound may be represented by Formula 201-1 or Formula 202-1:




embedded image


In Formula 201-1 and Formula 202-1,


L201 to L204, xa1 to xa5, and R202 to R204 are the same as described above,


X211 may be O, S, N(R211), C(R211)(R212), or Si(R211)(R212),


R211 to R215 may each independently be a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and


R211 and R212 may optionally be linked together to form a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group.


In one or more exemplary embodiments, the hole transport compound may be represented by Formula 201A-1:




embedded image


In Formula 201A-1, L203, xa3, and R203 are the same as described above, and R211 to R216 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a naphthyl group, a phenanthrenyl group, an indenyl group, a fluorenyl group, a dimethylfluorenyl group, a diphenyl fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dimethylbenzofluorenyl group, a diphenylbenzofluorenyl group, an indeno phenanthrenyl group, a dimethylindeno phenanthrenyl group, a diphenylindeno phenanthrenyl group, a pyridinyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a phenylindolyl group, a benzoindolyl group, a phenylbenzoindolyl group, an isoindolyl group, a phenylisoindolyl group, a benzoisoindolyl group, a phenylbenzoisoindolyl group, a benzosilolyl group, a dimethylbenzosilolyl group, a diphenylbenzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a phenylcarbazolyl group, a biphenylcarbazolyl group, a dibenzosilolyl group, a dimethyl dibenzosilolyl group, a diphenyl dibenzosilolyl group, a dibenzothiophenyl group, or a dibenzofuranyl group.


The hole transport region may include one of Compounds HT1 to HT44, 4,4′,4″-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA), 1-N,1-N-bis[4-(diphenylamino)phenyl]-4-N,4-N-diphenylbenzene-1,4-diamine (TDATA), 4,4′,4″-tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA), N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB or NPD), N4,N4′-di(naphthalen-2-yl)-N4,N4′-diphenyl-[1,1′-biphenyl]-4,4′-diamine (β-NPB), N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD), N,N′-bis(3-methylphenyl)-N,N′-diphenyl-9,9-spirobifluorene-2,7-diamine (Spiro-TPD), N2,N7-di-(1-naphthalenyl)-N2,N7-diphenyl-9,9′-spirobi[9H-fluorene]-2,7-diamine (Spiro-NPB), N,N′-di(1-naphthyl)-N,N′-diphenyl-2,2′-dimethyl-(1,1′-biphenyl)-4,4′-diamine (methylated-NPB), 4,4′-cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC), N,N,N′,N′-tetrakis(3-methylphenyl)-3,3′-dimethylbenzidine (HMTPD), 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), or any combination thereof, but the exemplary embodiments are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The thickness of the hole transport region 151 may be in a range of about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å. When the hole transport region 151 includes at least one of a hole injection layer and a hole transport layer, the thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, for example, about 100 Å to about 1,000 Å, and the thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region 151, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.


The electron blocking layer prevents injection of electrons from an electron transport region. The electron blocking layer may include the materials as described above.


p-Dopant


The hole transport region 151 may include, in addition to these materials, a charge-generating material for the improvement of conductive properties. The charge-generating material may be homogeneously or non-homogeneously dispersed in the hole transport region 151.


The charge-generating material may be, for example, a p-dopant. In one or more exemplary embodiments, a lowest unoccupied molecular orbital (LUMO) energy level of the p-dopant may be about −3.5 eV or less. The p-dopant may include a quinone derivative, a metal oxide, a cyano group-containing compound, or any combination thereof, but the exemplary embodiments are not limited thereto.


In one or more exemplary embodiments, the p-dopant may include: a metal-halogen compound, such as CuI; a quinone derivative, such as TCNQ or F4-TCNQ; a metal oxide, such as tungsten oxide or molybdenum oxide; a cyano group-containing compound, such as 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (HAT-CN); a compound represented by Formula 221; or any combination thereof.


However, the exemplary embodiments are not limited thereto:




embedded image


In Formula 221,


R221 to R223 may each independently be a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C1-C10 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and at least one of R221 to R223 may each independently be a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, each unsubstituted or substituted with: a cyano group; —F; —Cl; —Br; —I; a C1-C20 alkyl group substituted with at least one cyano group; a C1-C20 alkyl group substituted with at least one —F; a C1-C20 alkyl group substituted with at least one —C1; a C1-C20 alkyl group substituted with at least one —Br; a C1-C20 alkyl group substituted with at least one —I; or any combination thereof.


The interlayer 150 may further include an electron transport region between the emission layer 153 and the second electrode 190.


The interlayer 150 may further include metal-containing compounds such as organometallic compounds, inorganic materials such as quantum dots, or the like, in addition to various organic materials.


Emission Layer 153 in Interlayer 150

When the light-emitting device 10 is a full-color light-emitting device, the emission layer 153 may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a representative sub-pixel. In one or more exemplary embodiments, the emission layer 153 may have a stacked structure of two or more layers from among a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other. In one or more exemplary embodiments, the emission layer 153 may include two or more materials from among a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed with each other in a single layer to emit white light.


The emission layer 153 may include a host and a dopant. The dopant may include a phosphorescent dopant, a fluorescent dopant, or any combination thereof. The amount of the dopant in the emission layer 153 may be from about 0.01 to about 15 parts by weight based on 100 parts by weight of the host. However, the exemplary embodiments are not limited thereto.


In one or more exemplary embodiments, the emission layer 153 may include quantum dots. The thickness of the emission layer 153 may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer 153 is within this range, excellent luminescence characteristics may be obtained without a substantial increase in driving voltage.


Host in Emission Layer 153

In one or more exemplary embodiments, the host may include a compound represented by Formula 301 below:





[Ar301]xb11-[(L301)xb1-R301]xb21  <Formula 301>


In Formula 301,


Ar301 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,


xb11 may be 1, 2, or 3,


L301 may be a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


xb1 may be 0, 1, 2, 3, 4, or 5,


R301 may be deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), or —P(═O)(Q301)(Q302),


xb21 may be 1, 2, 3, 4, or 5, and


Q301 to Q303 are the same as described in connection with Q1 below.


In one or more exemplary embodiments, when xb11 in Formula 301 is 2 or more, two or more of Ar301(s) may be linked to each other via a single bond.


In one or more exemplary embodiments, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or any combination:




embedded image


In Formula 301-1 and Formula 301-2,


ring A301 to ring A304 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group,


X301 may be O, S, N[(L304)xb4-R304], C(R304)(R305), or Si(R304)(R305),


xb22 and xb23 may each independently be 0, 1, or 2,


L301, xb1, and R301 are the same as described above,


L302 to L304 are each independently the same as described in connection with L301,


xb2 to xb4 are each independently the same as described in connection with xb1, and


R302 to R305 and R311 to R314 are the same as described in connection with R301.


In one or more exemplary embodiments, the host may include an alkaline earth metal complex. In one or more exemplary embodiments, the host may be a Be complex (for example, Compound H55), a Mg complex, a Zn complex, or any combination thereof.


In one or more exemplary embodiments, the host may include one of Compounds H1 to H120, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di(carbazol-9-yl)benzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or any combination thereof, but the exemplary embodiments are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


According to some exemplary embodiments, the host may include two or more different host compounds. In one or more exemplary embodiments, the host may include a first host compound and a second host compound.


The first host compound may be a hole transport compound that does not include an electron transport moiety, and the second host compound may be an electron transport compound including an electron transport moiety or a bipolar compound including an electron transport moiety.


According to some exemplary embodiments, the electron transport moiety may include at least one selected from a cyano group, a phosphine oxide group, a sulfone oxide group, a sulfonate group, and a π-electron-deficient nitrogen-containing ring.


In one or more exemplary embodiments, the electron transport moiety may include at least one selected from a pyridine group, a pyrimidine group, a triazine group, a quinoline group, an isoquinoline group, and a quinazoline group.


According to some exemplary embodiments, the first host compound may be a compound represented by any one selected from Formulae 311-1 to 311-5:




embedded image


In Formulae 311-1 to 311-5,


A301 to A304 may each independently be selected from a benzene group, a naphthalene group, a phenanthrene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, an indole group, a carbazole group, a benzocarbazole group, a dibenzocarbazole group, a furan group, a benzofuran group, a dibenzofuran group, a naphthofuran group, a benzonaphthofuran group, a dinaphthofuran group, a thiophene group, a benzothiophene group, a dibenzothiophene group, a naphthothiophene group, a benzonaphthothiophene group, and a dinaphthothiophene group,


X301 may be O, S, N[(L305)xb5-R305], C[(L305)xb5-R305][(L306)xb6-R306], or Si[(L305)xb5-R305][(L306)xb6-R306],


X302, Y301, and Y302 may each independently be a single bond, O, S, N[(L305)xb5-R305], C[(L305)xb5-R305][(L306)xb6-R306], Si[(L305)xb5-R305][(L306)xb6-R306], or S(═O)2,


Ar301 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,


xb11 may be 1, 2, or 3,


xb21 to xb24 may each independently be 0, 1, or 2,


L301 to L307 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


xb1 to xb6 may be an integer from 0 to 5,


xb7 may be an integer from 1 to 5,


R301 to R306 may each independently be selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), and —P(═O)(Q301)(Q302),


R311 to R314 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), and —P(═O)(Q301)(Q302), and


Q301 to Q303 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.


According to some exemplary embodiments, the first host compound may be selected from a fluorene-containing compound, a carbazole-containing compound, a diarylamine compound, a triarylamine compound, a dibenzofuran-containing compound, a dibenzothiophene-containing compound, and a dibenzosilole-containing compound.


According to some exemplary embodiments, in Formulae 311-1 to 311-5, A301 to A304 may each independently be selected from a benzene group, an indene group, a naphthalene group, an anthracene group, a fluorene group, a phenanthrene group, and a carbazole group.


According to some exemplary embodiments, in Formulae 311-1 to 311-5, A301 to A304 may each independently be selected from a benzene group, a naphthalene group, and a phenanthrene group.


According to some exemplary embodiments, in Formulae 311-1 to 311-5, A301 to A304 may be a benzene group or a naphthalene group.


According to some exemplary embodiments, in Formulae 311-1 to 311-5, L301 to L307 may each independently be selected from:


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32).


According to some exemplary embodiments, in Formulae 311-1 to 311-5, R301 to R306 may each independently be selected from:


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, and a dibenzosilolyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, and a dibenzosilolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32).


According to some exemplary embodiments, Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


According to some exemplary embodiments, the second host compound may be an electron transport compound including an electron transport moiety.


According to some exemplary embodiments, the second host compound may be a compound represented by any one selected from Formula 312-1 and Formula 312-2:




embedded image


In Formula 312-1 and Formula 312-2,


X321 to X323 and X325 to X328 may each independently be N or C[(L324)xb14-R324],


xb11 to xb14 may each independently be an integer from 0 to 5, L321 to L324 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


R321 to R324 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q321)(Q322)(Q323), —N(Q321)(Q322), —B(Q321)(Q322), —C(═O)(Q321), —S(═O)2(Q321), and —P(═O)(Q321)(Q322),


two or more neighboring substituents among R321 to R324 may optionally be linked together to form a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group, and


Q321 to Q323 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C0 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.


According to some exemplary embodiments, the second host compound may be a triazine-containing compound, a triazole-containing compound, an imidazole-containing compound, or an oxazine-containing compound.


According to some exemplary embodiments, the second host compound may be a bipolar compound including an electron transport moiety.


According to some exemplary embodiments, the second host compound may be a compound represented by Formula 313:




embedded image


In Formula 313 and Formula 313A,


A31, A32, and A34 may each independently be selected from a C5-C60 carbocyclic group and a C1-C30 heterocyclic group,


A33 may be a group represented by Formula 313A,


X31 may be selected from N[(L335)xb35-(R335)], O, S, Se, C[(L335)xb35-(R335)][(L336)xb36-(R336)], and Si[(L335)xb35-(R335)][(L336)xb36-(R336)],


xb31 to xb36 may each independently be an integer from 0 to 5,


L331 to L336 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


R331 to R336 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q331)(Q332)(Q333), —N(Q331)(Q332), —B(Q331)(Q332), —C(═O)(Q331), —S(═O)2(Q331), and —P(═O)(Q331)(Q332),


xb42 to xb44 may each independently be an integer from 0 to 10, and


Q331 to Q333 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C0 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.


According to some exemplary embodiments, the second host compound may be a compound represented by any one selected from Formulae 313-1 to 313-6:




embedded image


embedded image


In Formulae 313-1 to 313-6,


A31, A34, X31, xb31 to xb34, L331 to L334, R331 to R334, xb42, and xb44 are the same as described above, and


xb43 may be 0, 1, or 2.


According to some exemplary embodiments, in Formula 313, A31, A32, and A34 may each independently be selected from a benzene group, an indene group, a naphthalene group, an anthracene group, a fluorene group, a phenanthrene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, and a carbazole group.


According to some exemplary embodiments, in Formula 313, A31, A32, and A34 may each independently be selected from a benzene group, a naphthalene group, a phenanthrene group, a pyridine group, a pyrimidine group, a pyrazine group, and a pyridazine group.


According to some exemplary embodiments, in Formula 313, A31, A32, and A34 may be a benzene group, a naphthalene group, or a phenanthrene group.


According to some exemplary embodiments, in Formula 313, A31, A32, and A34 may be a benzene group or a naphthalene group.


According to some exemplary embodiments, in Formulae 312-1, 312-2, and 313, L321 to L324 and L331 to L336 may each independently be selected from: a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32).


According to some exemplary embodiments, in Formulae 312-1, 312-2, and 313, R321 to R324 and R331 to R336 may each independently be selected from:


a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, —Si(Q31)(Q32)(Q33), and —N(Q31)(Q32).


According to some exemplary embodiments, Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


According to some exemplary embodiments, Q301 to Q303, Q321 to Q323, and Q331 to Q333 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group.


Phosphorescent Dopant Included in Emission Layer 153 in Interlayer 150

The phosphorescent dopant may include at least one transition metal as a central metal.


The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or any combination thereof.


The phosphorescent dopant may be electrically neutral.


In one or more exemplary embodiments, the phosphorescent dopant may include an organometallic compound represented by Formula 401:




embedded image


In Formula 401 and Formula 402,


M may be a transition metal (for example, iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), gold (Au), hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), rhenium (Re), or thulium (Tm)),


L401 may be a ligand represented by Formula 402, and xc1 may be 1, 2, or 3, wherein, when xc1 is 2 or more, two or more of L401(s) may be identical to or different from each other,


L402 may be an organic ligand, xc2 may be 0, 1, 2, 3, or 4, and when xc2 is 2 or more, two or more of L402(s) may be identical to or different from each other,


X401 and X402 may each independently be nitrogen or carbon,


ring A401 and ring A402 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group,


T401 may be a single bond, *—O—*′, *—S—*′, *—C(═O)—*′, *—N(Q411)-*′, *—C(Q411)(Q412)-*′, *—C(Q411)═C(Q412)-*′, *—C(Q411)=*′, or *═C=*′,


X403 and X404 may each independently be a chemical bond (for example, a covalent bond or a coordinate bond), O, S, N(Q413), B(Q413), P(Q413), C(Q413)(Q414), or Si(Q413)(Q414),


Q411 to Q414 are the same as described in connection with Q1 below,


R401 and R402 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C1-C20 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), or —P(═O)(Q401)(Q402),


Q401 to Q403 are the same as described in connection with Q1 below,


xc11 and xc12 may each independently be an integer from 0 to 10, and


* and *′ in Formula 402 each indicate a binding site to M in Formula 401.


In one or more exemplary embodiments, in Formula 402, i) X401 may be nitrogen, and X402 may be carbon, or ii) both X401 and X402 may be nitrogen.


In one or more exemplary embodiments, when xc1 in Formula 401 is 2 or more, two ring A401(s) in two or more L401(s) may optionally be linked together via T402, which is a linking group, or two ring A402(s) in two or more L401(s) may optionally be linked together via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 are the same as described in connection with T401.


L402 in Formula 401 may be an organic ligand. For example, L402 may be a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, picolinate group), —C(═O), an isonitril group, a —CN group, a phosphorus group (for example, a phosphine group or a phosphite group), or any combination thereof, but the exemplary embodiments are not limited thereto.


The phosphorescent dopant may include, for example, one of the following Compounds PD1 to PD25 or any combination thereof, but the exemplary embodiments are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Fluorescent Dopant in Emission Layer 153

The fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or any combination thereof.


In one or more exemplary embodiments, the fluorescent dopant may include a compound represented by Formula 501:




embedded image


In Formula 501,


Ar501 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,


L501 to L503 may each independently be a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


xd1 to xd3 may each independently be 0, 1, 2, or 3,


R501 and R502 may each independently be a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and


xd4 may be 1, 2, 3, 4, 5, or 6.


In one or more exemplary embodiments, Ar501 in Formula 501 may be a condensed cyclic ring (for example, an anthracene group, a chrysene group, a pyrene group, etc.) in which three or more monocyclic groups are condensed.


In one or more exemplary embodiments, xd4 in Formula 501 may be 2, but the exemplary embodiments are not limited thereto.


In one or more exemplary embodiments, the fluorescent dopant may include: one of Compounds FD1 to FD36; DPVBi; DPAVBi; or any combination thereof.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Quantum Dots in Emission Layer 153

The emission layer 153 may include quantum dots.


In the exemplary embodiments, a quantum dot refers to a crystal of a semiconductor compound and may include any material emitting emission wavelengths of different lengths according to the size of the crystal. Accordingly, a material for the quantum dot is not particularly limited. The diameter of the quantum dot is not particularly limited, but may be, for example, in a range of about 1 nm to about 10 nm.


Quantum dots arranged in the quantum dot emission layer may be synthesized by a wet chemical process, an organometallic chemical vapor deposition process, a molecular beam epitaxy process, or a similar process.


According to the wet chemical process, a precursor material is added to an organic solvent to grow a crystal of a quantum dot particle. When the crystal grows, the organic solvent serves as a dispersant naturally coordinated to the surface of the quantum dot crystal and controls the growth of the crystal. In this regard, the wet chemical process may be easily performed compared to a vapor deposition process, such as a metal organic chemical vapor deposition (MOCVD) and a molecular beam epitaxy (MBE), and through a low-cost process, the growth of the quantum dot particle may be controlled. In detail, the quantum dot may include: a semiconductor compound of Groups III-VI; a semiconductor compound of at least one of Groups I, III, and VI; a semiconductor compound of Groups II-VI; a semiconductor compound Groups III-V; a semiconductor compound of Groups IV-VI; an element or a compound of Group IV; or any combination thereof.


In one or more exemplary embodiments, the semiconductor compound of Groups III-VI may include: a binary compound, such as In2S3; the semiconductor compound of at least one of Groups I, III, and VI may include: a ternary compound, such as AgInS, AgInS2, CuInS, or CuInS2; or any combination thereof.


In one or more exemplary embodiments, the semiconductor compound of Groups II-VI may include: a binary compound, such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, or MgS; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, or MgZnS; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, or HgZnSTe; or any combination thereof.


In one or more exemplary embodiments, the semiconductor compound of Groups III-V may include: a binary compound, such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, or InSb; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InNAs, InNSb, InPAs, or InPSb; a quaternary compound, such as GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, or GaAlNP; or any combination thereof.


In one or more exemplary embodiments, the semiconductor compound of Groups IV-VI may include: a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, or PbTe; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, or SnPbTe; a quaternary compound, such as SnPbSSe, SnPbSeTe, or SnPbSTe; or any combination thereof.


In one or more exemplary embodiments, the element or compound of Group IV may include: a single-element compound, such as Si or Ge; a binary compound, such as SiC or SiGe; or any combination thereof.


Each element included in the binary compound, the ternary compound, or the quaternary compound may exist in particles at uniform concentration or may exist in the same particle in a state in which a concentration distribution is partially different.


The quantum dot may have a single structure in which a concentration of each element included in the corresponding quantum dot is uniform or a core-shell dual structure. In one or more exemplary embodiments, a material included in the core and a material included in the shell may be different from each other.


The shell of the quantum dot may serve as a protective layer for maintaining semiconductor characteristics by preventing chemical degeneration of the core and/or may serve as a charging layer for imparting electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multilayer. An interface between the core and the shell may have a concentration gradient in which the concentration of elements existing in the shell decreases toward the center.


Examples of the shell of the quantum dot may include an oxide of a metal or a non-metal, a semiconductor compound, or any combination thereof. In one or more exemplary embodiments, the oxide of a metal or a non-metal may include a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, or NiO, or a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, or CoMn2O4, but the exemplary embodiments are not limited thereto. In addition, the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, and the like, but the exemplary embodiments are not limited thereto.


A full width at half maximum (FWHM) of an emission wavelength spectrum of the quantum dot may be about 45 nm or less, for example, about 40 nm or less, for example, about 30 nm or less. When the FWHM of the emission wavelength spectrum of the quantum dot is within this range, color purity or color reproduction may be improved. In addition, light emitted through such quantum dot is irradiated in omnidirection, thereby improving a wide viewing angle.


In addition, the quantum dot may be specifically, a generally spherical, a generally pyramidal, a generally multi-armed dot, or a generally cubic-shaped nanoparticle, a generally nanotube-shaped particle, a generally nanowire-shaped, nanofiber, or a generally nanoplate-shaped particle, but the exemplary embodiments are not limited thereto.


By adjusting the size of the quantum dot, the energy band gap may also be adjusted, thereby obtaining light of various wavelengths in the quantum dot emission layer. Therefore, by using quantum dots having different sizes, a light-emitting device that emits light of various wavelengths may be embodied. In detail, the size of the quantum dot may be selected to emit red, green, and/or blue light. In addition, the size of the quantum dot may be configured by combining light of various colors, so as to emit white light.


Electron Transport Region in Interlayer 150

The electron transport region may have: i) a single-layered structure consisting of a single layer consisting of a single material, ii) a single-layered structure consisting of a single layer consisting of a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.


The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof, but the exemplary embodiments are not limited thereto.


In one or more exemplary embodiments, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein for each structure, constituting layers are sequentially stacked from an emission layer. However, the exemplary embodiments of the structure of the electron transport region are not limited thereto.


The electron transport region (for example, the buffer layer, the hole blocking layer, the electron control layer, or the electron transport layer in the electron transport region) may include a metal-free compound including at least one π-electron-deficient nitrogen-containing cyclic group, which may easily accept electrons.


The “π-electron-deficient nitrogen-containing cyclic group” may be a C1-C60 heterocyclic group which has, as a ring-forming moiety, at least one *—N=*′ moiety.


In one or more exemplary embodiments, the “π-electron-deficient nitrogen-containing cyclic group” may be i) a first ring, ii) a condensed cyclic group in which two or more first rings are condensed to each other, or iii) a condensed cyclic group in which at least one first ring and at least one second ring are condensed, wherein the first ring is a heteromonocyclic group (for example, an imidazole group, a pyridine group, a triazine group, etc.) which includes, as a ring-forming moiety, at least one *—N=*′ moiety, and the second ring is a cyclic group (for example, a benzene group, a dibenzofuran group, a carbazole group, etc.) which does not include, as a ring-forming moiety, *—N=*′ moiety.


Examples of the π-electron-deficient nitrogen-containing cyclic group are a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, a benzoquinoline group, an isoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a cinnoline group, a phenanthroline group, a phthalazine group, a naphthyridine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, a pyrazole group, an imidazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, and an imidazopyridazine group, but the exemplary embodiments are not limited thereto.


In one or more exemplary embodiments, the electron transport region may include a compound represented by Formula 601 and including at least one π-electron-deficient nitrogen-containing cyclic group.





[Ar601]xe11-[(L601)xe1-R601]xe21  <Formula 601>


In Formula 601,


Ar601 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,


xe11 may be 1, 2, or 3,


L601 may be a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


xe1 may be 0, 1, 2, 3, 4, or 5,


R601 may be a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Q601), or —P(═O)(Q601)(Q602),


Q601 to Q603 are the same as described in connection with Q1 below, and


xe21 may be 1, 2, 3, 4, or 5.


In one or more exemplary embodiments, at least one of Ar601, L601, and R601 of Formula 601 may each independently include at least one π-electron-deficient nitrogen-containing ring.


In one or more exemplary embodiments, when xe11 in Formula 601 is 2 or more, two or more of Ar601 (s) may be linked to each other via a single bond.


In one or more exemplary embodiments, Ar601 in Formula 601 may be a substituted or unsubstituted anthracene group.


In one or more exemplary embodiments, the electron transport region may include a compound represented by Formula 601-1:




embedded image


In Formula 601-1,


X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one of X614 to X616 may be N,


L611 to L613 may be understood by referring to the description presented in connection with L601,


xe611 to xe613 may be understood by referring to the description presented in connection with xe1,


R611 to R613 may be understood by referring to the description presented in connection with R601, and


R614 to R616 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group.


In one or more exemplary embodiments, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.


The electron transport region may include one of Compounds ET1 to ET36, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), tris-(8-hydroxyquinoline)aluminum (Alq3), bis(2-methyl-8-quinolinolato-N1,O8)-(1,1′-biphenyl-4-olato)aluminum (BAlq), 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ), 4-(naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole (NTAZ), or any combination thereof, but the exemplary embodiments are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Thicknesses of the buffer layer, the hole blocking layer, and the electron control layer may each independently be in a range of about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å. When the thicknesses of the buffer layer, the hole blocking layer, and the electron control layer are within these ranges, excellent hole blocking characteristics or excellent electron control characteristics may be obtained without a substantial increase in driving voltage.


The thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. When the thickness of the electron transport layer is within the range described above, the electron transport layer may have satisfactory electron transport characteristics without a substantial increase in driving voltage.


The electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include an alkali metal complex, an alkaline earth-metal complex, or any combination thereof. A metal ion of the alkali metal complex may be a L1 ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and a metal ion of the alkaline earth-metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may be a hydroxy quinoline, a hydroxy isoquinoline, a hydroxy benzoquinoline, a hydroxy acridine, a hydroxy phenanthridine, a hydroxy phenyloxazole, a hydroxy phenylthiazole, a hydroxy diphenyloxadiazole, a hydroxy diphenylthiadiazole, a hydroxy phenylpyridine, a hydroxy phenylbenzimidazole, a hydroxy phenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof, but the exemplary embodiments are not limited thereto.


In one or more exemplary embodiments, the metal-containing material may include a L1 complex. The L1 complex may include, for example, Compound ET-D1 (LiQ) or ET-D2.




embedded image


The electron transport region may include an electron injection layer that facilitates electron injection from the second electrode 190. The electron injection layer may be in direct contact with the second electrode 190.


The electron injection layer may have: i) a single-layered structure consisting of a single layer consisting of a single material, ii) a single-layered structure consisting of a single layer consisting of a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.


The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof.


The alkali metal may include L1, Na, K, Rb, Cs, or any combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.


The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may be oxides and halides (for example, fluorides, chlorides, bromides, or iodides) of the alkali metal, the alkaline earth metal, and the rare earth metal, or any combination thereof.


The alkali metal-containing compound may be alkali metal oxides, such as Li2O, Cs2O, or K2O, and alkali metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, or KI, or any combination thereof. The alkaline earth-metal containing compound may include alkaline earth-metal oxides, such as BaO, SrO, CaO, BaxSr1-xO (0<x<1), or BaxCa1-xO (0<x<1). The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or any combination thereof.


The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include i) one of ions of the alkali metal, the alkaline earth metal, and the rare earth metal and ii) as a ligand linked to the metal ion, for example, hydroxyquinoline, hydroxyisoquinoline, hydroxybenzoquinoline, hydroxyacridine, hydroxyphenanthridine, hydroxyphenyloxazole, hydroxyphenylthiazole, hydroxydiphenyloxadiazole, hydroxydiphenylthiadiazole, hydroxyphenylpyridine, hydroxyphenyl benzimidazole, hydroxyphenylbenzothiazole, bipyridine, phenanthroline, cyclopentadiene, or any combination thereof, but the exemplary embodiments are not limited thereto.


The electron injection layer may consist of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof, or may further include an organic material (for example, a compound represented by Formula 601). When the electron injection layer further includes an organic material, the alkali metal, the alkaline earth metal, the rare earth metal, the alkali metal-containing compound, the alkaline earth metal-containing compound, the rare earth metal-containing compound, the alkali metal complex, the alkaline earth-metal complex, the rare earth metal complex, or any combination thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.


The thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the range described above, the electron injection layer may have satisfactory electron injection characteristics without a substantial increase in driving voltage.


Second Electrode 190

The second electrode 190 may be disposed on the interlayer 150 having such a structure. The second electrode 190 may be a cathode, which is an electron injection electrode, and as a material for the second electrode 190, a metal, an alloy, an electrically conductive compound, or any combination thereof, each having a low work function, may be used.


The second electrode 190 may include lithium (L1), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—L1), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver(Mg—Ag), ITO, IZO, or any combination thereof, but the exemplary embodiments are not limited thereto. The second electrode 190 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.


The second electrode 190 may have a single-layered structure or a multi-layered structure including two or more layers.


Capping Layer

A first capping layer may be disposed outside the first electrode 110, and/or a second capping layer may be disposed outside the second electrode 190. In detail, the light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 150, and the second electrode 190 are sequentially stacked in this stated order, a structure in which the first electrode 110, the interlayer 150, the second electrode 190, and the second capping layer are sequentially stacked in this stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 150, the second electrode 190, and the second capping layer are sequentially stacked in this stated order.


Light generated in the emission layer 153 of the interlayer 150 of the light-emitting device 10 may be extracted toward the outside through the first electrode 110 and the first capping layer, each of which may be a semi-transmissive electrode or a transmissive electrode, or light generated in the emission layer 153 of the interlayer 150 of the light-emitting device 10 may be extracted toward the outside through the second electrode 190 and the second capping layer, each of which may be a semi-transmissive electrode or a transmissive electrode.


The first capping layer and the second capping layer may increase external luminescence efficiency according to the principle of constructive interference.


The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or a composite capping layer including an organic material and an inorganic material.


At least one of the first capping layer and the second capping layer may each independently include a carbocyclic compound, a heterocyclic compound, an amine group-containing compound, a porphyrine derivative, a phthalocyanine derivative, a naphthalocyanine derivative, an alkali metal complex, an alkaline earth-metal complex, or a combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may be optionally substituted with a substituent containing O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof. According to some exemplary embodiments, at least one of the first capping layer and the second capping layer may each independently include an amine group-containing compound.


In one or more exemplary embodiments, at least one of the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof.


In one or more exemplary embodiments, at least one of the first capping layer and the second capping layer may each independently include a compound selected from Compounds HT28 to HT33, Compounds CP1 to CP5, and any combination thereof, but the exemplary embodiments are not limited thereto:




embedded image


embedded image


Apparatus

The light-emitting device may be included in various apparatuses. For example, a light-emitting apparatus, an authentication apparatus, or an electronic apparatus, which includes the light-emitting device, may be provided.


The light-emitting apparatus may further include, in addition to the light-emitting device, either a color filter or a color conversion layer or both a color filter and a color conversion layer. The color filter or the color conversion layer may be disposed in at least one traveling direction of light emitted from the light-emitting device. In one or more exemplary embodiments, the light emitted from the light-emitting device may be blue light or white light, but the exemplary embodiments are not limited thereto. The light-emitting device is the same as described above.


The light-emitting apparatus may include a first substrate. The first substrate may include a plurality of subpixel areas, and the color filter or the color conversion layer may include a plurality of color filter areas or color conversion layer areas respectively corresponding to the plurality of subpixel areas.


A pixel-defining film may be disposed between the plurality of subpixel areas to thereby define each of the subpixel areas. The color filter or the color conversion layer may further include light-blocking patterns between the plurality of color filter areas or color conversion layer areas.


The plurality of color filter areas or color conversion layer areas may include: a first region emitting first-color light; a second region emitting second-color light; and/or a third region emitting third-color light, wherein the first-color light, the second-color light, and/or the third-color light may have different maximum emission wavelength from one another. In one or more exemplary embodiments, the first color light may be red light, the second color light may be green light, and the third color light may be blue light, but the exemplary embodiments are not limited thereto. In one or more exemplary embodiments, the plurality of color filter areas or color conversion layer areas may each include quantum dots, but the exemplary embodiments are not limited thereto. In detail, the first region may include red quantum dots, the second region may include green quantum dots, and the third region may not include quantum dots. Quantum dots are the same as described in the exemplary embodiments. The first region, the second region, and/or the third region may each further include scatterers, but the exemplary embodiments are not limited thereto.


In one or more exemplary embodiments, the light-emitting device may emit first light, the first region may absorb the first light to emit first first-color light, the second region may absorb the first light to emit second first-color light, and the third region may absorb the first light to emit third first-color light. In this case, the first first-color light, the second first-color light, and the third first-color light may have different maximum emission wavelengths from one another. In detail, the first light may be blue light, the first first-color light may be red light, the second first-color light may be green light, and the third first-color light may be blue light, but the exemplary embodiments are not limited thereto.


The light-emitting apparatus may further include a thin-film transistor in addition to the light-emitting device as described above. The thin-film transistor may include a source electrode, a drain electrode, and an activation layer, wherein any one of the source electrode and the drain electrode may be electrically connected to any one of the first electrode and the second electrode of the light-emitting device.


The thin-film transistor may further include a gate electrode, a gate insulation layer, or the like. The activation layer may include a crystalline silicon, an amorphous silicon, an organic semiconductor, an oxide semiconductor, or the like, but the exemplary embodiments are not limited thereto.


The light-emitting apparatus may further include a sealing portion for sealing the light-emitting device. The sealing portion may be disposed between the color filter and the light-emitting device. The sealing portion allows light from the light-emitting device to be extracted to the outside, while simultaneously preventing external air and moisture from penetrating into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including at least one organic layer and/or inorganic layer. When the sealing portion is a thin-film encapsulation layer, the light-emitting apparatus may be flexible.


The light-emitting apparatus may be used as various displays, light sources, and the like. The authentication apparatus may be, for example, a biometric authentication apparatus for authenticating an individual by using biometric information of a biometric body (for example, a finger tip, a pupil, or the like). The authentication apparatus may further include, in addition to the light-emitting device, a biometric information collector.


The electronic apparatus may be applied to personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic organizers, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram (ECG) displays, ultrasonic diagnostic devices, or endoscope displays), fish finders, various measuring instruments, meters (for example, meters for a vehicle, an aircraft, and a vessel), projectors, and the like, but the exemplary embodiments are not limited thereto.


Preparation Method

Layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging (LITI).


When layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10−8 torr to about 10−3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec by taking into account a material to be included in a layer to be formed and a structure of a layer to be formed.


General Definition of Substituents

The term “C1-C60 alkyl group” as used herein refers to a linear or branched aliphatic hydrocarbon monovalent group having 1 to 60 carbon atoms, and examples thereof are a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as used herein refers to a divalent group having a structure corresponding to the C1-C60 alkyl group.


The term “C2-C60 alkenyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon double bond in the middle or at the terminus of a C2-C60 alkyl group, and examples thereof include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as used herein refers to a divalent group having a structure corresponding to the C2-C60 alkenyl group.


The term “C2-C60 alkynyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon triple bond in the middle or at the terminus of a C2-C60 alkyl group, and examples thereof include an ethynyl group and a propynyl group. The term “C2-C60 alkynylene group” as used herein refers to a divalent group having a structure corresponding to the C2-C60 alkynyl group.


The term “C1-C60 alkoxy group” as used herein refers to a monovalent group represented by —OA101(wherein A101 is the C1-C60 alkyl group), and examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.


The term “C3-C10 cycloalkyl group” as used herein refers to a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof are a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cycloctyl group, an adamantanyl group, a norbornanyl group, a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, a bicyclo[2.2.1]heptyl group, and a bicyclo[2.2.2]octyl group. The term “C3-C10 cycloalkylene group” as used herein refers to a divalent group having a structure corresponding to the C3-C10 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group” as used herein refers to a monovalent cyclic group with 1 to 10 carbon atoms containing a heteroatom (for example, N, O, Si, P, S, or any combination thereof) as a ring-forming atom, and examples thereof are a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as used herein refers to a divalent group having a structure corresponding to the C1-C10 heterocycloalkyl group.


The term “C3-C10 cycloalkenyl group” as used herein refers to a monovalent monocyclic group that has 3 to 10 carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group” as used herein refers to a divalent group having a structure corresponding to the C3-C10 cycloalkenyl group.


The term “C1-C10 heterocycloalkenyl group” as used herein refers to a monovalent cyclic group with 1 to 10 carbon atoms containing a heteroatom (for example, N, O, Si, P, S, or any combination thereof) as a ring-forming atom, wherein the ring has at least one double bond. Examples of the C1-C10 heterocycloalkenyl group include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group” as used herein refers to a divalent group having a structure corresponding to the C1-C10 heterocycloalkenyl group.


The term “C6-C60 aryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms, and a C6-C60 arylene group used herein refers to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. Examples of the C1-C10 aryl group are a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, and an ovalenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the two or more rings may be fused to each other.


The term “C1-C60 heteroaryl group” as used herein refers to a monovalent heterocyclic aromatic system having a heteroatom (for example, N, O, Si, P, S, or any combination thereof) as a ring-forming atom and 1 to 60 carbon atoms, and the term “C1-C60 heteroarylene group” as used herein refers to a divalent heterocyclic aromatic system having a heteroatom (for example, N, O, Si, P, S, or any combination thereof) as a ring-forming atom and 1 to 60 carbon atoms. Examples of the C1-C60 heteroaryl group are a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, and a naphthyridinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the two or more rings may be fused with each other.


The term “C6-C60 aryloxy group” as used herein refers to —OA102 (wherein A102 is the C6-C60 aryl group), and the term “C6-C60 arylthio group” used herein refers to —SA103 (wherein A103 is the C6-C60 aryl group).


The term “monovalent non-aromatic fused polycyclic group” as used herein refers to a monovalent group (for example, having 8 to 60 carbon atoms) having two or more rings fused with each other, only carbon atoms as ring-forming atoms, and non-aromaticity in its entire molecular structure. Examples of the monovalent non-aromatic fused polycyclic group are an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, and an indenoanthracenyl group. The term “divalent non-aromatic fused polycyclic group” as used herein refers to a divalent group having a structure corresponding to the monovalent non-aromatic fused polycyclic group.


The term “monovalent non-aromatic fused heteropolycyclic group” as used herein refers to a monovalent group (for example, having 1 to 60 carbon atoms) in which two or more rings are fused to each other, which includes, as a ring-forming atom, a heteroatom (for example, N, O, Si, P, and S, or any combination thereof) other than carbon, and which has non-aromaticity in its entire molecular structure. Examples of the monovalent non-aromatic fused heteropolycyclic group are a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphthoindolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, and a benzothienodibenzothiophenyl group. The term “divalent non-aromatic fused heteropolycyclic group” as used herein refers to a divalent group having a structure corresponding to the monovalent non-aromatic fused heteropolycyclic group.


The term “C5-C60 carbocyclic group” as used herein refers to a monocyclic or polycyclic group that includes only carbon as a ring-forming atom and consists of 5 to 60 carbon atoms. The C5-C60 carbocyclic group may be an aromatic carbocyclic group or a non-aromatic carbocyclic group. The C5-C60 carbocyclic group may be a compound, such as benzene, a monovalent group, such as a phenyl group, or a divalent group, such as a phenylene group. In one or more exemplary embodiments, depending on the number of substituents connected to the C5-C60 carbocyclic group, the C5-C60 carbocyclic group may be a trivalent group or a quadrivalent group. Examples of the C5-C60 carbocyclic group are a cyclopentadiene group, a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indeno phenanthrene group, and an indenoanthracene group.


The term “C1-C60 heterocyclic group” as used herein refers to a monocyclic or polycyclic group which includes 1 to 60 carbon atoms and, as a ring-forming atom, a heteroatom (for example, N, O, Si, P, S, or any combination thereof), in addition to carbon (the number of carbon atoms may be 1 to 60). The C1-C60 heterocyclic group may be an aromatic heterocyclic group or a non-aromatic heterocyclic group. The C1-C60 heterocyclic group may be a compound such as a pyridine, a monovalent group such as a pyridinyl group, or a divalent group such as a pyridinylene group. In one or more exemplary embodiments, depending on the number of substituents connected to the C1-C60 heterocyclic group, the C1-C60 heterocyclic group may be a trivalent group or a quadrivalent group. Examples of the C1-C60 heterocyclic group are a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, a benzoquinoline group, an isoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a cinnoline group, a phenanthroline group, a phthalazine group, a naphthyridine group, a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzo isoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, a pyrazole group, an imidazole group, a triazole group, a tetrazole group, an oxazole group, an isooxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, and a benzothienodibenzothiophene group.


The substituent of the substituted C5-C60 carbocyclic group, the substituted C1-C60 heterocyclic group, the substituted C1-C60 alkylene group, the substituted C2-C60 alkenylene group, the substituted C3-C10 cycloalkylene group, the substituted C1-C10 heterocycloalkylene group, the substituted C3-C10 cycloalkenylene group, the substituted C1-C10 heterocycloalkenylene group, the substituted C6-C60 arylene group, the substituted C1-C60 heteroarylene group, the substituted divalent non-aromatic fused polycyclic group, the substituted divalent non-aromatic fused heteropolycyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted monovalent non-aromatic fused polycyclic group, and the substituted monovalent non-aromatic fused heteropolycyclic group may be:


deuterium (—D), —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic fused polycyclic group, a monovalent non-aromatic fused heteropolycyclic group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q1n), and —P(═O)(Q11)(Q12);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic fused polycyclic group, or a monovalent non-aromatic fused heteropolycyclic group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C10 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic fused polycyclic group, a monovalent non-aromatic fused heteropolycyclic group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), and —P(═O)(Q21)(Q22);


—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32); or any combination thereof.


Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 used herein may each be, independently from one another, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C0 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic fused polycyclic group, a monovalent non-aromatic fused heteropolycyclic group, a biphenyl group, or a terphenyl group.


The term “Ph” as used herein refers to a phenyl group, the term “Me” as used herein refers to a methyl group, the term “Et” as used herein refers to an ethyl group, the term “ter-Bu” or “But” as used herein refers to a tert-butyl group, and the term “OMe” as used herein refers to a methoxy group.


The term “biphenyl group” as used herein refers to “a phenyl group substituted with a phenyl group.” In other words, the “biphenyl group” is a substituted phenyl group having a C6-C60 aryl group as a substituent.


The term “terphenyl group” as used herein refers to “a phenyl group substituted with a biphenyl group.” In other words, the “terphenyl group” is a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.


As used herein, a substituent for a monovalent group, e.g., alkyl, may also be, independently, a substituent for a corresponding divalent group, e.g., alkylene.


The terms “hydrogen” and “deuterium” refer to their respective atoms and corresponding radicals, and the terms “—F, —Cl, —Br, and —I” are radicals of, respectively, fluorine, chlorine, bromine, and iodine.


* and *′ as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula.


Hereinafter, a compound according to exemplary embodiments and a light-emitting device according to exemplary embodiments will be described in detail with reference to Examples. The wording “B was used instead of A” used in describing Synthesis Examples refers to that an identical molar equivalent of B was used in place of A.


EXAMPLES
Example 1

ITO 300 Å/Ag 50 Å/ITO 300 Å(anode) was cut to a size of 50 mm×50 mm×0.7 mm, sonicated with isopropyl alcohol and pure water each for 5 minutes, and then cleaned by irradiation of ultraviolet rays for 30 minutes and exposure to ozone. Then, the glass substrate was loaded onto a vacuum deposition apparatus.


Compound HT1 and p-dopant (HAT-CN) were vacuum-deposited at a weight ratio of 1:0.1 on the substrate to form a p-doped hole transport layer having a thickness of 100 Å, and then HT1 as a hole transport compound was vacuum-deposited thereon to form a hole transport layer having a thickness of 1,200 Å.


Compound 1 was deposited on the hole transport region to form a first emission auxiliary layer having a thickness of 25 nm. Compound 2 was deposited on the first emission auxiliary layer to form a second emission auxiliary layer having a thickness of 20 nm.


Compound 1, Compound 2 (a weight ratio of 7:3), and PD13 as a phosphorescent dopant (10 weight percent (wt %) with respect to the hosts) were co-deposited on the second emission auxiliary layer to form an emission layer having a thickness of 400 Å. Subsequently, Compound ETL1 and lithium quinolate (LiQ) with a weight ratio of 50:50 were mixed to form an electron transport layer having a thickness of 360 Å on the emission layer, LiQ was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å, and then Mg and Ag were co-vacuum-deposited (at a weight ratio of 90:10) on the electron injection layer to form a cathode having a thickness of 130 Å, thereby completing manufacture of a light-emitting device.




embedded image


Example 2 and Comparative Examples 1 to 8

A light-emitting device was manufactured in the same manner as in Example 1, except that, compounds described in Table 2 were used to form a first emission auxiliary layer and a second emission auxiliary layer.




embedded image


embedded image


Evaluation Example 1

HOMO energy levels of Compounds used in the light-emitting devices manufactured according to Examples 1 and 2 and Comparative Examples 1 to 8 were measured by using a surface analyzer sold under the trade designation AC3 by RIKEN KEIKI Co., Ltd of Tokyo, Japan, and results thereof are shown in Table 1. A HOMO energy level of HT1 as a hole transport compound was measured to be −5.11 eV.















TABLE 1





First
Second
Hole






emission
emission
transport


|E1AU, HOMO-
|E2AU, HOMO-


auxiliary layer
auxiliary layer
layer
E1AU, HOMO
E2AU, HOMO
EHT, HOMO|
EHT, HOMO|





















Compound 1
Compound 2
HT1
−5.24
−5.35
0.13
0.24


Compound A
Compound 2
HT1
−5.30
−5.35
0.19
0.24


Compound 1
Compound B
HT1
−5.24
−5.41
0.13
0.3


Compound C
Compound D
m-
−5.87
−5.31
0.75
0.19




MTDATA









Evaluation Example 2

With respect to the light-emitting devices manufactured according to Examples 1 and 2 and Comparative Examples 1 to 8, efficiency and lifespan were measured at 600 nit by using a source meter sold under the trade designation Keithley SMIU 236 by Tektronix, Inc., of Beaverton, Oreg. and luminance meter sold under the trade designation PR650 from Konica Minolta, Inc. of Tokyo, Japan, and results thereof are shown in Table 1.

















TABLE 2









Thickness








Second

of second


Color
Lifespan



First emission
emission
Hole
emission
Driving
Effi-
coor-
(T97)



auxiliary layer
auxiliary
transport
auxiliary
voltage
ciency
dinate
(relative



(thickness)
layer
layer
layer (nm)
(V)
(cd/A)
CIE_x
value)







Example 1
Compound 1
Compound 2
HT1
20
3.8
171
0.250
105


Example 2
Compound 1
Compound 2
HT1
 5
3.8
170
0.250
110


Comparative
Compound A
Compound 2
HT1
 5
4.0
166
0.250
 97


Example 1










Comparative
Compound 1
Compound B
HT1
20
3.9
164
0.250
 87


Example 2










Comparative
Compound 1 +
Compound 1
HT1
20
3.7
160
0.250
 73


Example 3
p-dopant










(HAT-CN,










10%, 10 nm)









Comparative
Compound 1
Compound 1
HT1
20
3.7
161
0.250
 74


Example 4
(10 nm)









Comparative
Compound 2 +
Compound 2
HT1
20
3.8
166
0.250
100


Example 5
p-dopant










(HAT-CN,










10%, 10 nm)









Comparative
Compound 2
Compound 2
HT1
20
4.0
166
0.250
 98


Example 6
(10 nm)









Comparative
Compound 1
Compound 2
HT1
30
4.0
168
0.250
 97


Example 7










Comparative
Compound C
Compound D
m-
20
4.2
165
0.250
 57


Example 8


MTDATA









The results summarized in Table 1 and Table 2 confirm that the light-emitting devices constructed according to exemplary embodiments have low driving voltage and significant and unexpectedly improved characteristics in terms of efficiency and lifespan. In addition, the light-emitting devices manufactured according to Examples 1 and 2 have significantly and unexpectedly higher efficiency and longer lifespan, compared to the light-emitting devices manufactured according to Comparative Examples 1 to 8. Some of the advantages that may be achieved by exemplary implementations of the invention and/or exemplary methods of the invention include providing the light-emitting device having low driving voltage, high efficiency, and long lifespan.


Although certain exemplary embodiments and implementations have been described herein, other embodiments and modifications will be apparent from this description. Accordingly, the inventive concepts are not limited to such embodiments, but rather to the broader scope of the appended claims and various obvious modifications and equivalent arrangements as would be apparent to a person of ordinary skill in the art.

Claims
  • 1. A light-emitting device comprising: a first electrode;a second electrode opposing the first electrode; andan interlayer between the first electrode and the second electrode,wherein the interlayer comprises an emission layer, a first emission auxiliary layer, a second emission auxiliary layer, and a hole transport region,the hole transport region is disposed between the first electrode and the emission layer,the first emission auxiliary layer and the second emission auxiliary layer are disposed between the emission layer and the hole transport region,the first emission auxiliary layer comprises a first compound,the second emission auxiliary layer comprises a second compound,the hole transport region comprises a hole transport compound, andthe first compound and the hole transport compound satisfy the following Equation 1: |E1AU,HOMO−EHT,HOMO|≤0.15 eV  <Equation 1>wherein, in Equation 1,E1AU,HOMO is a HOMO energy level of the first compound, andEHT,HOMO is a HOMO energy level of the hole transport compound.
  • 2. The light-emitting device of claim 1, wherein the hole transport region comprises a hole transport layer, and the hole transport layer comprises the hole transport compound.
  • 3. The light-emitting device of claim 2, wherein the hole transport layer is in direct contact with the first emission auxiliary layer.
  • 4. The light-emitting device of claim 1, wherein the second compound and the hole transport compound satisfy the following Equation 2: |E2AU,HOMO−EHT,HOMO|≤0.25 eV  <Equation 2>wherein, in Equation 2,E2AU,HOMO is a HOMO energy level of the second compound, andEHT,HOMO is a HOMO energy level of the hole transport compound.
  • 5. The light-emitting device of claim 1, wherein the second emission auxiliary layer is in direct contact with the emission layer.
  • 6. The light-emitting device of claim 1, wherein the first emission auxiliary layer has a thickness of about 1 nm to about 40 nm.
  • 7. The light-emitting device of claim 1, wherein the second emission auxiliary layer has a thickness of about 1 nm to about 20 nm.
  • 8. The light-emitting device of claim 1, wherein at least one of the first emission auxiliary layer and the second emission auxiliary layer does not comprise a p-dopant.
  • 9. The light-emitting device of claim 1, wherein the first compound and the second compound are each, independently from one another, a fluorene-containing compound, a carbazole-containing compound, a diarylamine compound, a triarylamine compound, a dibenzofuran-containing compound, a dibenzothiophene-containing compound, or a dibenzosilole-containing compound.
  • 10. The light-emitting device of claim 1, wherein the first compound and the second compound are each, independently from one another, a compound represented by Formula 1 or Formula 2:
  • 11. The light-emitting device of claim 10, wherein the first compound and the second compound are each, independently from one another, a compound represented by any one of Formula 1-1 and Formula 2-1:
  • 12. The light-emitting device of claim 1, wherein the hole transport compound is a compound represented by Formula 201-1 or Formula 202-1:
  • 13. The light-emitting device of claim 1, wherein: the first electrode is an anode;the second electrode is a cathode;the light-emitting device further comprises an electron transport region disposed between the emission layer and the second electrode;the electron transport region comprises a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof; andthe hole transport region further comprises a hole injection layer, a hole transport layer, an electron blocking layer, or any combination thereof.
  • 14. The light-emitting device of claim 13, wherein the hole transport region comprises a charge-generating material.
  • 15. The light-emitting device of claim 1, wherein the emission layer comprises an amount of host and an amount of dopant, and the amount of host is greater than the amount of dopant.
  • 16. The light-emitting device of claim 15, wherein the host comprises two or more different host compounds.
  • 17. The light-emitting device of claim 1, wherein the emission layer comprises one or more quantum dots.
  • 18. The light-emitting device of claim 13, wherein the electron transport region comprises a metal-containing material.
  • 19. An apparatus comprising the light-emitting device of claim 1.
  • 20. The apparatus of claim 19, further comprising a thin-film transistor, wherein the thin-film transistor includes a source electrode and a drain electrode, andthe first electrode of the light-emitting device is electrically connected with the source electrode or the drain electrode.
Priority Claims (1)
Number Date Country Kind
10-2020-0037793 Mar 2020 KR national