This application claims priority to and the benefit of Korean Patent Application No. 10-2021-0156047, filed on Nov. 12, 2021, in the Korean Intellectual Property Office, the entire content of which is hereby incorporated by reference.
One or more embodiments of the present disclosure relate to a light-emitting device including an emission layer and an electronic apparatus including the light-emitting device.
Self-emissive devices among light-emitting devices have wide viewing angles, high contrast ratios, short response times, and excellent (suitable) characteristics in terms of luminance, driving voltage, and response speed.
In a light-emitting device, a first electrode is arranged on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode are sequentially arranged on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in such an emission layer region to produce excitons. These excitons transition from an excited state to a ground state to thereby generate light.
Provided are a light-emitting device including an emission layer and an electronic apparatus including the light-emitting device.
Additional aspects of embodiments of the present disclosure will be set forth in part in the description which follows and, in part, will be apparent from the disclosure, or may be learned by practice of the presented embodiments of the disclosure.
According to one or more embodiments, a light-emitting device includes
According to one or more embodiments, an electronic apparatus includes the light-emitting device.
The above and other aspects and features of certain embodiments of the disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
Reference will now be made more in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout, and duplicative descriptions thereof may not be provided. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described, by referring to the drawings, to explain aspects of embodiments of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Throughout the disclosure, the expression “at least one of a, b or c” indicates only a, only b, only c, both a and b, both a and c, both b and c, all of a, b, and c, or variations thereof.
A light-emitting device includes: a first electrode;
In an embodiment, the fluorescent emitter may emit second light having a second emission spectrum, and the second light may be blue light.
In an embodiment, the first emission layer and the second emission layer may be in direct contact with each other.
In an embodiment, the light-emitting device may further include a hole transport region between the first electrode and the emission layer and an electron transport region between the emission layer and the second electrode, and the first emission layer may be arranged between the hole transport region and the second emission layer.
In an embodiment, an emission peak wavelength of the first emission spectrum may be in a range of 400 nm to 500 nm.
In an embodiment, an emission peak wavelength of the second emission spectrum may be in a range of 400 nm to 500 nm.
In an embodiment, the emission layer may emit third light having a third emission spectrum, and the third light may be blue light.
In an embodiment, the third light may be mixed light of the first light and the second light.
In an embodiment, an emission peak wavelength of the third emission spectrum may be in a range of 400 nm to 500 nm.
In an embodiment, the phosphorescent emitter may be an organometallic compound, and the organometallic compound may include a transition metal and a first ligand bonded to the transition metal.
In an embodiment, the transition metal may be platinum, and the first ligand may include a tetradentate ligand or a tridentate ligand.
In an embodiment, a chemical bond between the platinum and the first ligand may include a platinum-carbon bond.
In an embodiment, the transition metal may be iridium, and the first ligand may be a fluoro group(-F)-containing ligand or a carbene-containing ligand.
In an embodiment, the organometallic compound may be represented by Formulae 11 or 12.
In Formula 11 or 12,
In an embodiment, the fluorescent emitter may be a transition-metal-free compound, and the second emission layer may not include (e.g., may exclude) a transition metal.
In an embodiment, the second emission layer may satisfy Equation (1) below.
In Equation (1), T1(H-2) is a triplet energy level (eV) of the second host, and when the second host is a mixture of two or more different compounds, refers to a maximum value of triplet energy levels of the two or more compounds.
In an embodiment, the first emission layer and second emission layer may satisfy Equation (2).
In Equation (2),
In an embodiment, in the second host, a reverse intersystem crossing phenomenon may occur due to a triplet-triplet annihilation (TTA) effect.
In an embodiment, the fluorescent emitter may emit through TTA, and the second emission layer may emit TTA fluorescence.
In an embodiment, a thickness of the emission layer may be in a range of about 100 ̊Å to about 1,000 Å.
In an embodiment, a ratio of a thickness of the first emission layer to a total thickness of the emission layer may be in a range of about 0.875 to about 0.94.
In an embodiment, a ratio of a thickness of the second emission layer to a total thickness of the emission layer may be in a range of about 0.06 to about 0.125.
In an embodiment, an amount of the first host may be in a range of about 85 wt% to about 99.9 wt% based on 100 wt% of a total amount of the first emission layer, and an amount of the second host may be in a range of about 85 wt% to about 99.9 wt% based on 100 wt% of a total amount of the second emission layer.
In an embodiment, the phosphorescent emitter may be included in an amount of about 0.1 wt% to about 15 wt% based on 100 wt% of a total amount of the first emission layer.
In an embodiment, the phosphorescent emitter may be any one of compounds.
In an embodiment, the first host may include an electron transport host and a hole transport host.
In an embodiment, the electron transport host may be represented by Formula 13.
[0071] In Formula 13,
In an embodiment, the electron transport host may be any one of compounds.
In an embodiment, the hole transport host may be selected from 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1 ,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), and/or 3,3-di(9H-carbazol-9-yl)biphenyl (mCBP), and for example, may be CBP.
In an embodiment, an amount of the electron transport host may be in a range of about 20 wt% to about 40 wt%, for example, about 25 wt% to about 35 wt%, for example, about 28 wt% to about 32 wt%, based on 100 wt% of a total amount of the first host.
In an embodiment, an amount of the hole transport host may be in a range of about 60 wt% to about 80 wt%, for example, about 65 wt% to about 75 wt%, for example, about 68 wt% to about 72 wt%, based on 100 wt% of a total amount of the first host.
In an embodiment, the fluorescent emitter may include a compound represented by Formula 21:
[0081] wherein, in Formula 21,
In an embodiment, the fluorescent emitter may include at least one of DSA-ph(1-4-di-[4-(N,N-diphenyl)amino]styryl-benzene), 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi), (1,4-bis-2,2-diphenylvinyl)biphenyl (DPAVBi), 4,4′-bis(9-ethyl-3-carbazovinylene)-1,1′-biphenyl (BczVBi), or 2,5,8,11-tetra-tert-butylperylene (TBP).
In an embodiment, the second host may include a compound represented by Formula 22:
In an embodiment, Ar22 in Formula 22 may include one of a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, and/or a dibenzothiophene group.
In an embodiment, the second host may be at least one selected from 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), and/or Formulae H1 to H165.
Because a light-emitting device according to an embodiment includes a first emission layer and a second emission layer, first light and second light may each be emitted. Also, the first light may be phosphorescence, the second light may be TTA fluorescence, and both of the first light and the second light may be blue light.
The first light and the second light are generated by different emission mechanisms, and light belonging to the same spectrum region may be generated. Therefore, the light-emitting device may have improved color and luminescence efficiency by further including the second emission layer.
In an embodiment,
In an embodiment, the light-emitting device may include a capping layer located outside the first electrode or located outside the second electrode.
For example, the light-emitting device may further include at least one of a first capping layer located outside the first electrode and a second capping layer located outside the second electrode, and at least one of the first capping layer and the second capping layer may include a certain organometallic compound. The first capping layer and/or the second capping layer may respectively be the same as described in the present disclosure.
In an embodiment, the light-emitting device may include:
The expression “(an interlayer and/or a capping layer) includes an organometallic compound” as used herein may include an embodiment in which “(an interlayer and/or a capping layer) includes identical organometallic compounds represented by Formula 1” and a case in which “(an interlayer and/or a capping layer) includes two or more different organometallic compounds represented by Formula 1.”
The term “interlayer” as used herein refers to a single layer and/or all of a plurality of layers arranged between the first electrode and the second electrode of the light-emitting device.
According to one or more embodiments, provided is an electronic apparatus including the light-emitting device. The electronic apparatus may further include a thin-film transistor. For example, the electronic apparatus may further include a thin-film transistor including a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode. In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or one or more combinations thereof. More details for the electronic apparatus are as described in the present disclosure.
Hereinafter, a structure of the light-emitting device 10 according to an embodiment and a method of manufacturing the light-emitting device 10 will be described in connection with
In
The first electrode 110 may be formed by, for example, depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high work function material that facilitates injection of holes.
The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. When the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or one or more combinations thereof. In an embodiment, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or one or more combinations thereof may be used as a material for forming a first electrode.
The first electrode 110 may have a single-layered structure including (e.g., consisting of) a single layer or a multilayer structure including a plurality of layers. For example, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO. Interlayer 130
The interlayer 130 may be located on the first electrode 110. The interlayer 130 may include an emission layer.
The interlayer 130 may further include a hole transport region between the first electrode 110 and the emission layer and an electron transport region between the emission layer and the second electrode 150.
The interlayer 130 may further include metal-containing compounds such as organometallic compounds, inorganic materials such as quantum dots, and the like, in addition to various suitable organic materials.
In an embodiment, the interlayer 130 may include, i) two or more emitting units sequentially stacked between the first electrode 110 and the second electrode 150, and ii) a charge generation layer between the two emitting units. When the interlayer 130 includes the emitting units and the charge generation layer as described above, the light-emitting device 10 may be a tandem light-emitting device.
The hole transport region may have: i) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a single material, ii) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.
The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or one or more combinations thereof.
For example, the hole transport region may have a multi-layered structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, the layers of each structure being stacked sequentially from the first electrode 110.
The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or a combination thereof:
[00130] wherein, in Formulae 201 and 202,
In an embodiment, each of Formulae 201 and 202 may include at least one of groups represented by Formulae CY201 to CY217:
wherein in Formulae CY201 to CY217, R10b and Rl0c may each be the same as described with respect to R10a, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formulae CY201 to CY217 may be unsubstituted or substituted with R10a as described above.
In an embodiment, ring CY201 to ring CY204 in Formulae CY201 to CY217 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.
In an embodiment, each of Formulae 201 and 202 may include at least one of groups represented by Formulae CY201 to CY203.
In an embodiment, Formula 201 may include at least one of groups represented by Formulae CY201 to CY203 and at least one of groups represented by Formulae CY204 to CY217.
In an embodiment, xa1 in Formula 201 may be 1, R201 may be a group represented by one of Formulae CY201 to CY203, xa2 may be 0, and R202 may be a group represented by one of Formulae CY204 to CY207.
In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY203.
In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY203, and may include at least one of groups represented by Formulae CY204 to CY217.
In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY217.
In an embodiment, the hole transport region may include one of Compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), or one or more combinations thereof:
A thickness of the hole transport region may be in a range of about 50 A to about 10,000 A, for example, about 100 Å to about 4,000 Å.When the hole transport region includes a hole injection layer, a hole transport layer, or a combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, for example, about 100 Å to about 1,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å.When the thicknesses of the hole transport region, the hole injection layer and the hole transport layer are within these ranges, satisfactory (suitable) hole-transporting characteristics may be obtained without a substantial increase in driving voltage.
The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by an emission layer, and the electron blocking layer may block (reduce) the leakage of electrons from an emission layer to a hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron blocking layer.
The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties. The charge-generation material may be substantially uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer consisting of a charge-generation material).
The charge-generation material may be, for example, a p-dopant.
In an embodiment, a lowest unoccupied molecular orbital (LUMO) energy level of the p-dopant may be about -3.5 eV or less.
In an embodiment, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound containing element EL1 and element EL2, or one or more combinations thereof.
Examples of the quinone derivative may include TCNQ, F4-TCNQ, and/or the like.
Examples of the cyano group-containing compound may include HAT-CN, a compound represented by Formula 221, and/or the like.
[00157] In Formula 221,
In the compound containing element EL1 and element EL2, element EL1 may be metal, metalloid, or a combination thereof, and element EL2 may be non-metal, metalloid, or a combination thereof.
Examples of the metal may include: an alkali metal (for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); an alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); a transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); a post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), etc.); and a lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.).
Examples of the metalloid may include silicon (Si), antimony (Sb), and/or tellurium (Te).
Examples of the non-metal may include oxygen (O) and halogen (for example, F, Cl, Br, I, etc.).
In an embodiment, examples of the compound containing element EL1 and element EL2 may include metal oxide, metal halide (for example, metal fluoride, metal chloride, metal bromide, or metal iodide), metalloid halide (for example, metalloid fluoride, metalloid chloride, metalloid bromide, or metalloid iodide), metal telluride, or one or more combinations thereof.
Examples of the metal oxide may include tungsten oxide (for example, WO, W2O3, WO2, WO3, W2O5, etc.), vanadium oxide (for example, VO, V2O3, VO2, V2O5, etc.), molybdenum oxide (MoO, Mo2O3, MoO2, MoOs, Mo2O5, etc.), and/or rhenium oxide (for example, ReO3, etc.).
Examples of the metal halide may include an alkali metal halide, an alkaline earth metal halide, a transition metal halide, a post-transition metal halide, and a lanthanide metal halide.
Examples of the alkali metal halide may include LiF, NaF, KF, RbF, CsF, LiCI, NaCI, KCI, RbCI, CsCI, LiBr, NaBr, KBr, RbBr, CsBr, Lil, Nal, KI, Rbl, and/or Csl.
Examples of the alkaline earth metal halide may include BeF2, MgF2, CaF2, SrF2, BaF2, BeCI2, MgCl2, CaCl2, SrCI2, BaCI2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, Bel2, Mgl2, Cal2, Srl2, and/or Bal2
Examples of the transition metal halide may include titanium halide (for example, TiF4, TiCl4, TiBr4, Til4, etc.), zirconium halide (for example, ZrF4, ZrCl4, ZrBr4, Zrl4, etc.), hafnium halide (for example, HfF4, HfCl4, HfBr4, Hfl4, etc.), vanadium halide (for example, VF3, VCI3, VBr3, VI3, etc.), niobium halide (for example, NbF3, NbCI3, NbBr3, Nbl3, etc.), tantalum halide (for example, TaF3, TaCI3, TaBr3, Tal3, etc.), chromium halide (for example, CrF3, CrCl3, CrBr3, Crl3, etc.), molybdenum halide (for example, MoF3, MoCl3, MoBr3, Mol3, etc.), tungsten halide (for example, WF3, WCI3, WBr3, WI3, etc.), manganese halide (for example, MnF2, MnCl2, MnBr2, Mnl2, etc.), technetium halide (for example, TcF2, TcCl2, TcBr2, Tcl2, etc.), rhenium halide (for example, ReF2, ReCl2, ReBr2, Rel2, etc.), iron halide (for example, FeF2, FeCl2, FeBr2, Fel2, etc.), ruthenium halide (for example, RuF2, RuCl2, RuBr2, Rul2, etc.), osmium halide (for example, OsF2, OsCl2, OsBr2, Osl2, etc.), cobalt halide (for example, CoF2, CoCl2, CoBr2, Col2, etc.), rhodium halide (for example, RhF2, RhCl2, RhBr2, Rhl2, etc.), iridium halide (for example, IrF2, IrCl2, IrBr2, Irl2, etc.), nickel halide (for example, NiF2, NiCl2, NiBr2, Nil2, etc.), palladium halide (for example, PdF2, PdCl2, PdBr2, Pdl2, etc.), platinum halide (for example, PtF2, PtCl2, PtBr2, Ptl2, etc.), copper halide (for example, CuF, CuCI, CuBr, Cul, etc.), silver halide (for example, AgF, AgCl, AgBr, Agl, etc.), and/or gold halide (for example, AuF, AuCI, AuBr, Aul, etc.).
Examples of the post-transition metal halide may include zinc halide (for example, ZnF2, ZnCl2, ZnBr2, Znl2, etc.), indium halide (for example, lnl3, etc.), and/or tin halide (for example, Snl2, etc.).
Examples of the lanthanide metal halide may include YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCI3 SmCI3, YbBr, YbBr2, YbBr3, SmBr3, Ybl, Ybl2, Ybl3, and/or SmI3 .
Examples of the metalloid halide may include antimony halide (for example, SbCl5, etc.).
Examples of the metal telluride may include alkali metal telluride (for example, Li2Te, Na2Te, K2Te, Rb2Te, Cs2Te, etc.), alkaline earth metal telluride (for example, BeTe, MgTe, CaTe, SrTe, BaTe, etc.), transition metal telluride (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), post-transition metal telluride (for example, ZnTe, etc.), and/or lanthanide metal telluride (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.).
When the light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a sub-pixel. In an embodiment, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other. In an embodiment, the emission layer may include two or more materials of a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed with each other in a single layer to emit white light.
The emission layer may include a host and a dopant. The dopant may include a phosphorescent dopant, a fluorescent dopant, or a combination thereof.
An amount of the dopant in the emission layer may be in a range of about 0.01 parts by weight to about 15 parts by weight based on 100 parts by weight of the host.
In an embodiment, the emission layer may include a quantum dot.
In an embodiment, the emission layer may include a delayed fluorescence material. The delayed fluorescence material may act as a host or a dopant in the emission layer.
A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å.When the thickness of the emission layer is within the range, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.
The host may include a compound represented by Formula 301:
[00181] wherein, in Formula 301,
In an embodiment, when xb11 in Formula 301 is 2 or more, two or more of Ar301(s) may be linked to each other via a single bond.
In an embodiment, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or a combination thereof:
In an embodiment, the host may include an alkali earth metal complex, a post-transition metal complex, or a combination thereof. In an embodiment, the host may include a Be complex (for example, Compound H55), an Mg complex, a Zn complex, or one or more combinations thereof.
In an embodiment, the host may include one of Compounds H1 to H124, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or one or more combinations thereof:
The phosphorescent dopant may include at least one transition metal as a central metal.
The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or one or more combinations thereof.
The phosphorescent dopant may be electrically neutral.
In an embodiment, the phosphorescent dopant may include an organometallic compound represented by Formula 401:
In an embodiment, in Formula 402, i) X401 may be nitrogen, and X402 may be carbon, or ii) each of X401 and X402 may be nitrogen.
In an embodiment, when xc1 in Formula 402 is 2 or more, two ring A401 in two or more of L401 (s) may be optionally linked to each other via T402, which is a linking group, and two ring A402 may optionally be linked to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 are the same as described in connection with T401.
L402 in Formula 401 may be an organic ligand. In an embodiment, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), an isonitrile group, —CN group, a phosphorus group (for example, a phosphine group, a phosphite group, etc.), or one or more combinations thereof.
The phosphorescent dopant may include, for example, one of Compounds PD1 to PD39 or one or more combinations thereof:
The fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or a combination thereof.
In an embodiment, the fluorescent dopant may include a compound represented by Formula 501:
[00223] wherein, in Formula 501,
In an embodiment, Ar501 in Formula 501 may be a condensed cyclic group (for example, an anthracene group, a chrysene group, or a pyrene group) in which three or more monocyclic groups are condensed together.
In an embodiment, xd4 in Formula 501 may be 2.
For example, the fluorescent dopant may include: one of Compounds FD1 to FD36; DPVBi; DPAVBi; or one or more combinations thereof:
The emission layer may include a delayed fluorescence material.
In the present disclosure, the delayed fluorescence material may be selected from compounds capable of emitting delayed fluorescence based on a delayed fluorescence emission mechanism.
The delayed fluorescence material included in the emission layer may act as a host or a dopant depending on the type (kind) of other materials included in the emission layer.
In an embodiment, the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material may be greater than or equal to 0 eV and less than or equal to 0.5 eV. When the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material satisfies the above-described range, up-conversion from the triplet state to the singlet state of the delayed fluorescence materials may effectively occur, and thus, the luminescence efficiency of the light-emitting device 10 may be improved (increased).
In an embodiment, the delayed fluorescence material may include i) a material including at least one electron donor (for example, a Πelectron-rich C3-C60 cyclic group, such as a carbazole group) and at least one electron acceptor (for example, a sulfoxide group, a cyano group, or a Πelectron-deficient nitrogen-containing C1-C60 cyclic group), and ii) a material including a C8-C60 polycyclic group in which two or more cyclic groups are condensed while sharing boron (B).
Examples of the delayed fluorescence material may include at least one of the following Compounds DF1 to DF9:
The emission layer may include a quantum dot.
In the present disclosure, a quantum dot refers to a crystal of a semiconductor compound, and may include any material capable of emitting light of various suitable emission wavelengths according to the size of the crystal.
A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.
The quantum dot may be synthesized by a wet chemical process, a metal organic chemical vapor deposition process, a molecular beam epitaxy process, or any process similar thereto.
According to the wet chemical process, a precursor material is mixed with an organic solvent to grow a quantum dot particle crystal. When the crystal grows, the organic solvent naturally acts as a dispersant coordinated on the surface of the quantum dot crystal and controls the growth of the crystal so that the growth of quantum dot particles can be controlled through a process which is more easily performed than vapor deposition methods, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE), and which requires lower costs.
The quantum dot may include: a Group II-VI semiconductor compound; a Group III-V semiconductor compound; a Group III-VI semiconductor compound; a Group I-III-VI semiconductor compound; a Group IV-VI semiconductor compound; a Group IV element or compound; or one or more combinations thereof.
Examples of the Group II-VI semiconductor compound may include: a binary compound, such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, or MgS; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, or MgZnS; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, or HgZnSTe; or one or more combinations thereof.
Examples of the Group III-V semiconductor compound may include: a binary compound, such as GaN, GaP, GaAs, GaSb, AIN, AIP, AlAs, AISb, InN, InP, InAs, or InSb; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AINP, AINAs, AINSb, AIPAs, AIPSb, InGaP, InNP, InAIP, InNAs, InNSb, InPAs, or InPSb; a quaternary compound, such as GaAINP, GaAINAs, GaAINSb, GaAIPAs, GaAIPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAINP, InAINAs, InAINSb, InAIPAs, or InAIPSb; or one or more combinations thereof. In an embodiment, the Group III-V semiconductor compound may further include Group II elements. Examples of the Group III-V semiconductor compound further including Group II elements may include InZnP, InGaZnP, InAIZnP, and/or the like.
Examples of the Group III-VI semiconductor compound may include: a binary compound, such as GaS, GaSe, Ga2Se3, GaTe, InS, InSe, ln2S3, ln2Se3, or InTe; a ternary compound, such as InGaS3 or InGaSe3; or one or more combinations thereof.
Examples of the Group I-III-VI semiconductor compound may include: a ternary compound, such as AglnS, AglnS2, CulnS, CulnS2, CuGaO2, AgGaO2, or AgAIO2; or one or more combinations thereof.
Examples of the Group IV-VI semiconductor compound may include: a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, or the like; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, or the like; a quaternary compound, such as SnPbSSe, SnPbSeTe, SnPbSTe, or the like; or one or more combinations thereof.
The Group IV element or compound may include: a single element compound, such as Si or Ge; a binary compound, such as SiC or SiGe; or one or more combinations thereof.
Each element included in a multi-element compound such as the binary compound, ternary compound and quaternary compound, may exist in a particle having a substantially uniform concentration or non-uniform concentration.
In an embodiment, the quantum dot may have a single structure or a dual core-shell structure. In the case of the quantum dot having a single structure, the concentration of each element included in the corresponding quantum dot is substantially uniform. In an embodiment, the material contained in the core and the material contained in the shell may be different from each other.
The shell of the quantum dot may act as a protective layer to prevent (reduce) chemical degeneration of the core to maintain semiconductor characteristics and/or as a charging layer to impart electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multi-layer. The element presented in the interface between the core and the shell of the quantum dot may have a concentration gradient that decreases toward the center of the quantum dot.
Examples of the shell of the quantum dot may be an oxide of metal, metalloid, or non-metal, a semiconductor compound, and one or more combinations thereof. Examples of the oxide of metal, metalloid, or non-metal may include: a binary compound, such as SiO2, AI2O3, TiO2, ZnO, MnO, Mn2O3, MnaO4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, or NiO; a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, or CoMn2O4; or one or more combinations thereof. Examples of the semiconductor compound may include, as described herein, a Group II-VI semiconductor compound, a Group III-V semiconductor compound, a Group III-VI semiconductor compound, a Group I-III-VI semiconductor compound, a Group IV-VI semiconductor compound, or one or more combinations thereof. In addition, the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AIP, AlSb, or one or more combinations thereof.
A full width at half maximum (FWHM) of an emission wavelength spectrum of the quantum dot may be about 45 nm or less, for example, about 40 nm or less, for example, about 30 nm or less, and within these ranges, color purity or color reproducibility may be increased. In addition, because the light emitted through the quantum dot is emitted in all directions, the wide viewing angle can be improved (increased).
In addition, the quantum dot may be a substantially spherical particle, a pyramidal particle, a multi-arm particle, a cubic nanoparticle, a nanotube particle, a nanowire particle, a nanofiber particle, or a nanoplate particle.
Because the energy band gap can be adjusted by controlling the size of the quantum dot, light having various wavelength bands can be obtained from the quantum dot emission layer. Therefore, by using quantum dots of different sizes, a light-emitting device that emits light of various wavelengths may be implemented. In an embodiment, the size of the quantum dot may be selected to emit red, green and/or blue light. In addition, the size of the quantum dot may be configured to emit white light by combining light of various suitable colors.
The electron transport region may have: i) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a single material, ii) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.
The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or one or more combinations thereof.
For example, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein, for each structure, constituting layers are sequentially stacked from the emission layer.
The electron transport region (for example, the buffer layer, the hole blocking layer, the electron control layer, or the electron transport layer) may include a metal-free compound including at least one Πelectron-deficient nitrogen-containing C1-C60 cyclic group.
In an embodiment, the electron transport region may include a compound represented by Formula 601 below:
In an embodiment, when xe11 in Formula 601 is 2 or more, two or more of Ar601(s) may be linked via a single bond.
In an embodiment, Ar601 in Formula 601 may be a substituted or unsubstituted anthracene group.
In an embodiment, the electron transport region may include a compound represented by Formula 601-1:
In an embodiment, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.
The electron transport region may include one of Compounds ET1 to ET45, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, TAZ, NTAZ, or one or more combinations thereof:
A thickness of the electron transport region may be in a range of about 100 Å to about 5,000 Å, for example, about 160 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, or one or more combinations thereof, the thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 20 Å to about 1000 Å, for example, about 30 Åto about 300 Å, and the thickness of the electron transport layer may be in a range of about 100 Å to about 1000 Å, for example, about 150 Å to about 500 Å. When the thickness of the buffer layer, the hole blocking layer, the electron control layer, the electron transport layer, and/or the electron transport region are within these ranges, satisfactory (suitable) electron transporting characteristics may be obtained without a substantial increase in driving voltage.
The electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.
The metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or a combination thereof. A metal ion of the alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and a metal ion of the alkaline earth metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may include a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenylbenzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or one or more combinations thereof.
In an embodiment, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (LiQ) or ET-D2:
The electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode 150. The electron injection layer may be in direct contact with the second electrode 150.
The electron injection layer may have: i) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a single material, ii) a single-layered structure including (e.g., consisting of) a single layer including (e.g., consisting of) a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.
The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or one or more combinations thereof.
The alkali metal may include Li, Na, K, Rb, Cs, or one or more combinations thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or one or more combinations thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or one or more combinations thereof.
The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may include oxides, halides (for example, fluorides, chlorides, bromides, or iodides), or tellurides of the alkali metal, the alkaline earth metal, and the rare earth metal, or one or more combinations thereof.
The alkali metal-containing compound may include alkali metal oxides, such as Li2O, Cs2O, or K2O, alkali metal halides, such as LiF, NaF, CsF, KF, Lil, Nal, Csl, or KI, or one or more combinations thereof. The alkaline earth metal-containing compound may include an alkaline earth metal compound, such as BaO, SrO, CaO, BaxSr1-xO (x is a real number satisfying the condition of 0<x<1), BaXCa1-XO (x is a real number satisfying the condition of 0<x<1), or the like. The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, Ybl3, Scl3Tbl3, or one or more combinations thereof. In an embodiment, the rare earth metal-containing compound may include lanthanide metal telluride. Examples of the lanthanide metal telluride may include LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, and/or Lu2Te3.
The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include i) one of ions of the alkali metal, the alkaline earth metal, and the rare earth metal and ii), as a ligand bonded to the metal ion, for example, a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenyl benzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or one or more combinations thereof.
The electron injection layer may include (e.g., consist of) an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or one or more combinations thereof, as described above. In an embodiment, the electron injection layer may further include an organic material (for example, a compound represented by Formula 601).
In an embodiment, the electron injection layer may include (e.g., consist of) i) an alkali metal-containing compound (for example, an alkali metal halide), ii) a) an alkali metal-containing compound (for example, an alkali metal halide); and b) an alkali metal, an alkaline earth metal, a rare earth metal, or one or more combinations thereof. In an embodiment, the electron injection layer may be a KI:Yb co-deposited layer, an Rbl:Yb co-deposited layer, and/or the like.
When the electron injection layer further includes an organic material, alkali metal, alkaline earth metal, rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, alkali metal complex, alkaline earth-metal complex, rare earth metal complex, or one or more combinations thereof may be substantially homogeneously or non-homogeneously dispersed in a matrix including the organic material.
A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, and, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the range described above, satisfactory (suitable) electron injection characteristics may be obtained without a substantial increase in driving voltage.
The second electrode 150 may be located on the interlayer 130 having such a structure. The second electrode 150 may be a cathode, which is an electron injection electrode, and as the material for the second electrode 150, a metal, an alloy, an electrically conductive compound, or one or more combinations thereof, each having a low work function, may be used.
In an embodiment, the second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag-Yb), ITO, IZO, or one or more combinations thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
The second electrode 150 may have a single-layered structure or a multi-layered structure including two or more layers.
A first capping layer may be located outside the first electrode 110, and/or a second capping layer may be located outside the second electrode 150. In more detail, the light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are sequentially stacked in this stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in this stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in this stated order.
Light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the first electrode 110, which is a semi-transmissive electrode or a transmissive electrode, and the first capping layer or light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the second electrode 150, which is a semi-transmissive electrode or a transmissive electrode, and the second capping layer.
The first capping layer and the second capping layer may increase external emission efficiency according to the principle of constructive interference. Accordingly, the light extraction efficiency of the light-emitting device 10 is increased, so that the emission efficiency of the light-emitting device 10 may be improved (increased).
Each of the first capping layer and second capping layer may include a material having a refractive index (at 589 nm) of 1.6 or more.
The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.
At least one of the first capping layer and the second capping layer may each independently include carbocyclic compounds, heterocyclic compounds, amine group-containing compounds, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, alkali metal complexes, alkaline earth metal complexes, or one or more combinations thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may be optionally substituted with a substituent containing O, N, S, Se, Si, F, Cl, Br, l, or one or more combinations thereof. In an embodiment, at least one of the first capping layer and the second capping layer may each independently include an amine group-containing compound.
In an embodiment, at least one of the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or a combination thereof.
In an embodiment, at least one of the first capping layer and the second capping layer may each independently include one of Compounds HT28 to HT33, one of Compounds CP1 to CP6, β-NPB, or one or more combinations thereof:
The organometallic compound represented by Formula 1 may be included in various suitable films. Accordingly, according to an embodiment, a film including the organometallic compound represented by Formula 1 may be provided. The film may be, for example, an optical member (or, a light-controlling member) (e.g., a color filter, a color-conversion member, a capping layer, a light extraction efficiency improvement layer, a selective light-absorbing layer, a polarizing layer, a quantum dot-containing layer, and/or the like), a light-blocking member (e.g., a light reflection layer or a light-absorbing layer), or a protection member (e.g., an insulating layer or a dielectric material layer).
The light-emitting device may be included in various suitable electronic apparatuses. In an embodiment, the electronic apparatus including the light-emitting device may be a light-emitting apparatus, an authentication apparatus, and/or the like.
The electronic apparatus (for example, light-emitting apparatus) may further include, in addition to the light-emitting device, i) a color filter, ii) a color conversion layer, or iii) a color filter and a color conversion layer. The color filter and/or the color conversion layer may be located in at least one traveling direction of light emitted from the light-emitting device. For example, the light emitted from the light-emitting device may be blue light or white light. The light-emitting device may be the same as described above. In an embodiment, the color conversion layer may include quantum dots. The quantum dot may be, for example, a quantum dot as described herein.
The electronic apparatus may include a first substrate. The first substrate may include a plurality of subpixel areas, the color filter may include a plurality of color filter areas respectively corresponding to the subpixel areas, and the color conversion layer may include a plurality of color conversion areas respectively corresponding to the subpixel areas.
A pixel-defining film may be located among the subpixel areas to define each of the subpixel areas.
The color filter may further include a plurality of color filter areas and light-shielding patterns located among the color filter areas, and the color conversion layer may include a plurality of color conversion areas and light-shielding patterns located among the color conversion areas.
The color filter areas (or the color conversion areas) may include a first area emitting first color light, a second area emitting second color light, and/or a third area emitting third color light, and the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths from one another. In an embodiment, the first color light may be red light, the second color light may be green light, and the third color light may be blue light. In an embodiment, the color filter areas (or the color conversion areas) may include quantum dots. In more detail, the first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may not include (e.g., may exclude) a quantum dot. The quantum dot is the same as described in the present disclosure. The first area, the second area, and/or the third area may each further include a scatterer.
In an embodiment, the light-emitting device may emit first light, the first area may absorb the first light to emit first first-color light, the second area may absorb the first light to emit second first-color light, and the third area may absorb the first light to emit third first-color light. In this regard, the first first-color light, the second first-color light, and the third first-color light may have different maximum emission wavelengths. In more detail, the first light may be blue light, the first first-color light may be red light, the second first-color light may be green light, and the third first-color light may be blue light.
The electronic apparatus may further include a thin-film transistor in addition to the light-emitting device as described above. The thin-film transistor may include a source electrode, a drain electrode, and an activation layer, wherein one of the source electrode or the drain electrode may be electrically connected to a corresponding one of the first electrode and the second electrode of the light-emitting device.
The thin-film transistor may further include a gate electrode, a gate insulating film, etc.
The activation layer may include crystalline silicon, amorphous silicon, organic semiconductor, oxide semiconductor, and/or the like.
The electronic apparatus may further include a sealing portion for sealing the light-emitting device. The sealing portion and/or the color conversion layer may be located between the color filter and the light-emitting device. The sealing portion allows light from the light-emitting device to be extracted to the outside, while simultaneously preventing (reducing) ambient air and moisture from penetrating into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including at least one layer of an organic layer and/or an inorganic layer. When the sealing portion is a thin film encapsulation layer, the electronic apparatus may be flexible.
Various suitable functional layers may be additionally located on the sealing portion, in addition to the color filter and/or the color conversion layer, according to the use of the electronic apparatus. The functional layers may include a touch screen layer, a polarizing layer, and/or the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by using biometric information of a living body (for example, fingertips, pupils, etc.).
The authentication apparatus may further include, in addition to the light-emitting device, a biometric information collector.
The electronic apparatus may be applied to various suitable displays, light sources, lighting, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic diaries, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, or endoscope displays), fish finders, various measuring instruments, meters (for example, meters for a vehicle, an aircraft, and a vessel), projectors, and/or the like.
The light-emitting apparatus of
The substrate 100 may be a flexible substrate, a glass substrate, or a metal substrate. A buffer layer 210 may be formed on the substrate 100. The buffer layer 210 may prevent (reduce) penetration of impurities through the substrate 100 and may provide a substantially flat surface on the substrate 100.
A TFT may be located on the buffer layer 210. The TFT may include an activation layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.
The activation layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region and a channel region.
A gate insulating film 230 for insulating the activation layer 220 from the gate electrode 240 may be located on the activation layer 220, and the gate electrode 240 may be located on the gate insulating film 230.
An interlayer insulating film 250 is located on the gate electrode 240. The interlayer insulating film 250 may be placed between the gate electrode 240 and the source electrode 260 to insulate the gate electrode 240 from the source electrode 260 and between the gate electrode 240 and the drain electrode 270 to insulate the gate electrode 240 from the drain electrode 270.
The source electrode 260 and the drain electrode 270 may be located on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the activation layer 220, and the source electrode 260 and the drain electrode 270 may be in contact with the exposed portions of the source region and the drain region of the activation layer 220.
The TFT is electrically connected to a light-emitting device to drive the light-emitting device, and is covered by a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or a combination thereof. A light-emitting device is provided on the passivation layer 280. The light-emitting device may include a first electrode 110, an interlayer 130, and a second electrode 150.
The first electrode 110 may be formed on the passivation layer 280. The passivation layer 280 does not completely cover the drain electrode 270 and exposes a portion of the drain electrode 270, and the first electrode 110 is connected to the exposed portion of the drain electrode 270.
A pixel-defining layer 290 containing an insulating material may be located on the first electrode 110. The pixel-defining layer 290 exposes a region of the first electrode 110, and an interlayer 130 may be formed in the exposed region of the first electrode 110. The pixel-defining layer 290 may be a polyimide or polyacrylic organic film. At least some layers of the interlayer 130 may extend beyond the upper portion of the pixel-defining layer 290 to be located in the form of a common layer.
The second electrode 150 may be located on the interlayer 130, and a capping layer 170 may be additionally formed on the second electrode 150. The capping layer 170 may be formed to cover the second electrode 150.
The encapsulation portion 300 may be located on the capping layer 170. The encapsulation portion 300 may be located on a light-emitting device to protect the light-emitting device from moisture or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or any combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (for example, polymethyl methacrylate, polyacrylic acid, or the like), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE), or the like), or one or more combinations thereof; or a combination of the inorganic film and the organic film.
The light-emitting apparatus of
Respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and/or laser-induced thermal imaging, or other methods apparent to one of ordinary skill in the art upon reviewing the present disclosure.
When layers constituting the hole transport region, the emission layer, and layers constituting the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10-8 torr to about 10-3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, depending on a material to be included in a layer to be formed and the structure of a layer to be formed.
The term “C3-C60 carbocyclic group” as used herein refers to a cyclic group consisting of carbon only as a ring-forming atom and having three to sixty carbon atoms, and the term “C1-C60 heterocyclic group” as used herein refers to a cyclic group that has one to sixty carbon atoms and further has, in addition to carbon, a heteroatom as a ring-forming atom. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed with each other. In an embodiment, the C1-C60 heterocyclic group has 3 to 61 ring-forming atoms.
The “cyclic group” as used herein may include the C3-C60 carbocyclic group and the C1-C60 heterocyclic group.
The term “Π electron-rich C3-C60 cyclic group” as used herein refers to a cyclic group that has three to sixty carbon atoms and does not include *—N═*’ as a ring-forming moiety, and the term “Π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein refers to a heterocyclic group that has one to sixty carbon atoms and includes *—N═*’ as a ring-forming moiety.
In an embodiment,
The term “cyclic group”, “C3-C60 carbocyclic group”, “C1-C60 heterocyclic group”, “Π electron-rich C3-C60 cyclic group”, or “Π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein refers to a group condensed to any cyclic group or a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, etc.), depending on the structure of a formula in connection with which the terms are used. In an embodiment, “a benzene group” may be a benzo group, a phenyl group, a phenylene group, or the like, which may be easily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”
Examples of the monovalent C3-C60 carbocyclic group and the monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, and examples of the divalent C3-C60 carbocyclic group and the monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.
The term “C1-C60 alkyl group” as used herein refers to a linear or branched aliphatic hydrocarbon monovalent group that has one to sixty carbon atoms, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as used herein refers to a divalent group having the same structure as the C1-C60 alkyl group.
The term “C2-C60 alkenyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon double bond in the middle or at the terminus of the C2-C60 alkyl group, and examples thereof include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkenyl group.
The term “C2-C60 alkynyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon triple bond in the middle or at the terminus of the C2-C60 alkyl group, and examples thereof include an ethynyl group and a propynyl group. The term “C2-C60 alkynylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkynyl group.
The term “C1-C60 alkoxy group” as used herein refers to a monovalent group represented by -OA101 (wherein A101 is the C1-C60 alkyl group), and examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.
The term “C3-C10 cycloalkyl group” as used herein refers to a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or a bicyclo[2.2.1 ]heptyl group), a bicyclo[1.1.1 ]pentyl group, a bicyclo[2.1 .1 ]hexyl group, and a bicyclo[2.2.2]octyl group. The term “C3-C10 cycloalkylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkyl group.
The term “C1-C10 heterocycloalkyl group” as used herein refers to a monovalent cyclic group that further includes, in addition to a carbon atom, at least one heteroatom as a ring-forming atom and has 1 to 10 carbon atoms, and examples thereof include a 1 ,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as used herein refers to a divalent group having the same structure as the C1-C10 heterocycloalkyl group.
The term “C3-C10 cycloalkenyl group” used herein refers to a monovalent cyclic group that has three to ten carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkenyl group.
The term “C1-C10 heterocycloalkenyl group” as used herein refers to a monovalent cyclic group that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, 1 to 10 carbon atoms, and at least one carbon-carbon double bond in the cyclic structure thereof. Examples of the C1-C10 heterocycloalkenyl group include a 4,5-dihydro-1 ,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group” as used herein refers to a divalent group having the same structure as the C1-C10 heterocycloalkenyl group.
The term “C6-C60 aryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system having six to sixty carbon atoms, and the term “C6-C60 arylene group” as used herein refers to a divalent group having a carbocyclic aromatic system having six to sixty carbon atoms. Examples of the C6-C60 aryl group include a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a fluorenyl group, a spiro-bifluorenyl group, and a benzofluorenyl group,. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the rings may be condensed with each other.
The term “C1-C60 heteroaryl group” as used herein refers to a monovalent group having a heterocyclic aromatic system that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, and 1 to 60 carbon atoms. The term “C1-C60 heteroarylene group” as used herein refers to a divalent group having a heterocyclic aromatic system that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, and 1 to 60 carbon atoms. Examples of the C1-C60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, a naphthyridinyl group, an azafluorenyl group, a carbazolyl group, an azacarbazolyl group, an indeno carbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, and a benzocarbazolyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the rings may be condensed with each other.
The term “monovalent non-aromatic condensed polycyclic group” as used herein refers to a monovalent group having two or more rings condensed to each other, only carbon atoms (for example, having 8 to 60 carbon atoms) as ring-forming atoms, and non-aromaticity in its molecular structure when considered as a whole. Examples of the monovalent non-aromatic condensed polycyclic group include an indenyl group, an indenophenanthrenyl group, and an indeno anthracenyl group. The term “divalent non-aromatic condensed polycyclic group” as used herein refers to a divalent group having the same structure as a monovalent non-aromatic condensed polycyclic group.
The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein refers to a monovalent group having two or more rings condensed to each other, at least one heteroatom other than carbon atoms (for example, having 1 to 60 carbon atoms), as a ring-forming atom, and non-aromaticity in its molecular structure when considered as a whole. Examples of the monovalent non-aromatic condensed heteropolycyclic group include a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphtho indolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, and a benzothienodibenzothiophenyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein refers to a divalent group having the same structure as a monovalent non-aromatic condensed heteropolycyclic group.
The term “C6-C60 aryloxy group” as used herein indicates —OA102 (wherein A102 is the C6-C60 aryl group), and the term “C6-C60 arylthio group” as used herein indicates —SA103 (wherein A103 is the C6-C60 aryl group).
The term “C7-C60 aryl alkyl group” used herein refers to —A104A105 (where A104 may be a C1-C54 alkylene group, and A105 may be a C6-C59 aryl group), and the term “C2-C60 heteroaryl alkyl group” used herein refers to —A106A107 (where A106 may be a C1-C59 alkylene group, and A107 may be a C1-C59 heteroaryl group).
R10a may be:
Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 used herein may each independently be: hydrogen; deuterium; —F; —Cl; —Br; -l; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or one or more combinations thereof; a C7-C60 aryl alkyl group; or a C2-C60 heteroaryl alkyl group.
The term “hetero atom” as used herein refers to any atom other than a carbon atom. Examples of the heteroatom include O, S, N, P, Si, B, Ge, Se, or one or more combinations thereof.
The term “the third-row transition metal” used herein includes hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), and/or the like.
“Ph” as used herein refers to a phenyl group, “Me” as used herein refers to a methyl group, “Et” as used herein refers to an ethyl group, “tert-Bu” or “But” as used herein refers to a tert-butyl group, and “OMe” as used herein refers to a methoxy group.
The term “biphenyl group” as used herein refers to “a phenyl group substituted with a phenyl group.” In other words, the “biphenyl group” is a substituted phenyl group having a C6-C60 aryl group as a substituent.
The term “terphenyl group” as used herein refers to “a phenyl group substituted with a biphenyl group”. The “terphenyl group” is a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.
* and *’ as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula or moiety.
Hereinafter, compounds according to embodiments and light-emitting devices according to embodiments will be described in more detail with reference to the following synthesis examples and examples. The wording “B was used instead of A” used in describing Synthesis Examples means that an identical molar equivalent of B was used in place of A.
Energy levels of compounds in Table 1 were obtained through simulation, and specific conditions are as follows.
TD DFT: B3LYP/6-31 G* TD=(50-50, Nstates=3)
Structures of ET(1) and ET(2) included in the first host are as follows.
Manufacture of light-emitting device
As an anode, an ITO-deposited substrate was cut to a size of 50 mm x 50 mm x 0.7 mm, sonicated with isopropyl alcohol and pure water each for 5 minutes, and then cleaned by irradiation of ultraviolet rays and exposure of ozone thereto for 30 minutes. Then, the substrate was provided to (loaded into) a vacuum deposition apparatus.
Compound 2-TNATA was vacuum-deposited on the ITO substrate to form a hole injection layer having a thickness of 600 Å, and 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB) was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 300 Å. Next, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA) was vacuum-deposited on the hole transport layer to form a buffer layer having a thickness of 300 Å.
Next, 4,4′-bis(N-carbazolyl)-1,1 ‘-biphenyl (CBP) as a hole transport host, ET(1), 5-(dibenzo[b,d]furan-4-yl)-1 -(4,6-diphenyl-1 ,3,5-triazin-2-yl)-1 H-indole (FITRZ) as an electron transport host, and PtNON as an phosphorescent emitter were co-deposited on the buffer layer at a weight ratio of 45 : 45 : 10 to form a first emission layer having a thickness of 350 Å.
In addition, 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN) as a second host and DSA-ph(1-4-di-[4-(N,N-diphenyl)amino]styryl-benzene) as a fluorescent emitter were co-deposited on the first emission layer at a weight ratio of 90 : 10 to form a second emission layer having a thickness of 50 Å.
Diphenyl(4-(triphenylsilyl)phenyl)-phosphine oxide (TSPO1) was vacuum-deposited on the emission layer to form a hole blocking layer having a thickness of 50 Å, Alq3 was deposited on the emission layer to form an electron transport layer having a thickness of 300 Å, and LiF as an alkali metal halide was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å, and Al was vacuum-deposited thereon to form a cathode electrode having a thickness of 3,000 Å, to form an LiF/AI electrode, thereby completing manufacture of a light-emitting device.
A light-emitting device was prepared in the substantially same manner as in Example 1, except that a thickness of the first emission layer was 370 Å, and a thickness of the second emission layer was 30 Å.
A light-emitting device was prepared in the substantially same manner as in Example 1, except that a thickness of the first emission layer was 380 Å, and a thickness of the second emission layer was 20 Å.
A light-emitting device was prepared in the substantially same manner as in Example 1, except that a thickness of the first emission layer was 390 Å, and a thickness of the second emission layer was 10 Å.
A light-emitting device was prepared in the substantially same manner as in Example 1, except that a thickness of the first emission layer was 400 Å, and the second emission layer was not included.
A driving voltage of 5 V was equally supplied to the light-emitting devices manufactured according to Examples 1 to 4 and Comparative Example 1. A current density (mA/cm2), luminescence efficiency (cd/A), quantum efficiency (%), power efficiency (Im/W), emission color, and maximum wavelength (nm) were each measured using a Keithley MU 236 and a luminance meter PR650, and results are shown in Table 2.
Referring to Table 2, it was confirmed that the light-emitting devices according to Examples were excellent (suitable) in terms of luminescence efficiency, quantum efficiency, and power efficiency as compared to the light-emitting device of Comparative Example 1, and blue light was stably and efficiently emitted.
A light-emitting device according to an embodiment may have an increased luminescence efficiency as compared to light-emitting devices of the related art (e.g., Comparative Examples).
The use of “may” when describing embodiments of the present disclosure refers to “one or more embodiments of the present disclosure.”
As used herein, the term “substantially,” “about,” and similar terms are used as terms of approximation and not as terms of degree, and are intended to account for the inherent deviations in measured or calculated values that would be recognized by those of ordinary skill in the art. “About” or “approximately,” as used herein, is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” may mean within one or more standard deviations, or within ± 30%, 20%, 10%, 5% of the stated value.
Also, any numerical range recited herein is intended to include all subranges of the same numerical precision subsumed within the recited range. For example, a range of “1.0 to 10.0” is intended to include all subranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this disclosure is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicant reserves the right to amend this disclosure, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein.
The electronic apparatus or any other relevant devices or components according to embodiments of the present disclosure described herein may be implemented utilizing any suitable hardware, firmware (e.g., an application-specific integrated circuit), software, or a combination of software, firmware, and hardware. For example, the various components of the apparatus may be formed on one integrated circuit (IC) chip or on separate IC chips. Further, the various components of the apparatus may be implemented on a flexible printed circuit film, a tape carrier package (TCP), a printed circuit board (PCB), or formed on one substrate. Further, the various components of the apparatus may be a process or thread, running on one or more processors, in one or more computing devices, executing computer program instructions and interacting with other system components for performing the various functionalities described herein. The computer program instructions are stored in a memory which may be implemented in a computing device using a standard memory device, such as, for example, a random access memory (RAM). The computer program instructions may also be stored in other non-transitory computer readable media such as, for example, a CD-ROM, flash drive, or the like. Also, a person of skill in the art should recognize that the functionality of various computing devices may be combined or integrated into a single computing device, or the functionality of a particular computing device may be distributed across one or more other computing devices without departing from the scope of the embodiments of the present disclosure.
It should be understood that embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. While one or more embodiments have been described with reference to the drawings, it will be understood by those of ordinary skill in the art that one or more suitable changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the following claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0156047 | Nov 2021 | KR | national |