Embodiments relate to a light-emitting device and an electronic apparatus including the light-emitting device.
Among light emitting devices, organic light-emitting devices are self-emission devices that have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of brightness, driving voltage, and response speed, compared to devices in the art.
Organic light-emitting devices may include a first electrode disposed on a substrate, a hole transport region, an emission layer, an electron transport region, and a second electrode sequentially stacked on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as the holes and the electrons, recombine in the emission layer to produce excitons. These excitons transition from an excited state to a ground state to thereby generate light.
Embodiments relate to a light-emitting device including a compound having excellent light emission efficiency and high stability, and an electronic apparatus including the light-emitting device.
Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the embodiments of the disclosure.
According to an aspect, a light-emitting device may include a first electrode, a second electrode facing the first electrode, an interlayer disposed between the first electrode and the second electrode and including an emission layer. The interlayer may include a first compound represented by Formula 1, a second compound represented by Formula 2, and a third compound, and the third compound may be a blue phosphorescent compound.
In an embodiment, the light-emitting device may emit blue light having a maximum luminescence wavelength in a range of about 400 nm to about 500 nm, and the emission layer may have a difference of about 0.5 eV between a singlet energy level and a triplet energy level.
In an embodiment, the light emitting device may further include a capping layer disposed outside the second electrode. The capping layer may include a carbocyclic compound, a heterocyclic compound, an amine group-containing compound, a porphyrine derivative, a phthalocyanine derivative, a naphthalocyanine derivative, an alkali metal complex, an alkaline earth-metal complex, or any combination thereof.
According to another aspect, an electronic apparatus that includes the light-emitting device may further include a thin-Film transistor. The thin-film transistor may include a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode.
In an embodiment, the electronic apparatus may further include a encapsulation portion. The encapsulation portion may include an organic layer, an inorganic layer, or any combination thereof.
In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof.
The above and other aspects, features, and advantages of certain embodiments of the disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects of the description.
Sizes of elements in the drawings may be exaggerated for convenience of explanation. Therefore, as the sizes and thicknesses of components in the drawings may be arbitrarily illustrated for convenience of explanation, the following embodiments of the disclosure are not limited thereto.
As used herein, the expressions used in the singular such as “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
It should be understood that the terms “comprises,” “comprising,” “includes,” “including,” “have,” “having,” “contains,” “containing,” and the like are intended to specify the presence of stated features, integers, steps, operations, elements, components, or combinations thereof in the disclosure, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.
In the description, it will be understood that when an element (a region, a layer, a section, or the like) is referred to as being “on”, “connected to” or “coupled to” another element, it can be directly on, connected or coupled to the other element, or one or more intervening elements may be disposed therebetween.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. For example, “A and/or B” may be understood to mean “A, B, or A and B.” The terms “and” and “or” may be used in the conjunctive or disjunctive sense and may be understood to be equivalent to “and/or”.
The term “at least one of” is intended to include the meaning of “at least one selected from” for the purpose of its meaning and interpretation. For example, “at least one of A and B” may be understood to mean “A, B, or A and B.” When preceding a list of elements, the term, “at least one of,” modifies the entire list of elements and does not modify the individual elements of the list.
It will be understood that, although the terms “first”, “second”, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the embodiments of the inventive concept.
The terms “below,” “lower,” “above,” “upper,” and the like are used to describe the relationship of the configurations shown in the drawings. The terms are used as a relative concept and are described with reference to the direction indicated in the drawings.
The terms “about” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the recited value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the recited quantity (i.e., the limitations of the measurement system). For example, “about” may mean within one or more standard deviations, or within ± 20%, ± 10%, or ± 5% of the stated value.
Unless otherwise defined or implied herein, all terms (including technical and scientific terms) used have the same meaning as commonly understood by those skilled in the art to which this disclosure pertains. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an ideal or excessively formal sense unless clearly defined in the specification.
The light-emitting device may include a first electrode, a second electrode facing the first electrode, and an interlayer disposed between the first electrode and the second electrode and including an emission layer.
The interlayer may include a first compound represented by Formula 1, a second compound represented by Formula 2, and a third compound, and the third compound may be a blue phosphorescent compound:
In Formula 1, X1 may be C(R1)(R2), Si(R1)(R2), N-[(L1)a1-(R1)b1], O, or S.
In an embodiment, X1 may be C(R1)(R2) or N-[(L1)a1-(R1)b1].
In Formula 1, L1 may be a C4-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.
In an embodiment, L1 may be a π electron-rich C3-C60 cyclic group unsubstituted or substituted with at least one R10a.
In an embodiment, L1 may be a benzene group or a carbazole group, each unsubstituted or substituted with at least one R10a; or -Si(Q1)(Q2)(Q3).
In Formula 1, a1 may be an integer from 0 to 5.
In Formula 1, R1 to R4 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, -B(Q1)(Q2), -P(Q1)(Q2), -C(=O)(Q1), or -Si(Q1)(Q2)(Q3).
In an embodiment, R1 to R4 in Formula 1 may each independently be: hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
In an embodiment, R1 to R4 in Formula 1 may each independently be: hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
In Formulae R-1 to R-6,
In Formula 1, b1 may be an integer from 0 to 10, b3 may be an integer from 0 to 7, and b4 may be an integer from 0 to 8.
The first compound may include at least one deuterium (D).
In an embodiment, the first compound may include at least four deuterium atoms.
In an embodiment, the first compound may be represented by one of Formulae 1(1) to 1(4), but embodiments of the disclosure are not limited thereto:
In Formulae 1(1) to 1(4),
X1, R3, R4, b3, and b4 may be the same as described in connection with Formula 1.
In an embodiment, the first compound may be selected from one of Compounds 1-1 to 1-129, but embodiments of the disclosure are not limited thereto:
In Formula 2, X21 may be C(R21) or N, X22 may be C(R22) or N, X23 may be C(R23) or N, and at least one of X21, X22, and X23 may be N.
In an embodiment, X21 may be N, X22 may be C(R22), and X23 may be C(R23).
In embodiments, X21 and X22 may be N, and X23 may be C(R23).
In embodiments, X21, X22, and X23 may be N.
In Formula 2, Ar1 to Ar3 may each independently be a C4-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, -C(Q1)(Q2)(Q3), or -Si(Q1)(Q2)(Q3).
In an embodiment, in Formula 2, Ar1 to Ar3 may each independently be:
In embodiments, Ar1 to Ar3 in Formula 2 may each independently be:
In embodiments, Ar1 to Ar3 in Formula 2 may each independently be:
R21, R22, and R23 in Formula 2 may be the same as described in connection with R1 in Formula 1.
In an embodiment, the second compound may be selected from one of Compounds 2-1 to 2-96, but embodiments of the disclosure are not limited thereto:
The third compound may be a platinum (Pt) complex.
In an embodiment, the third compound may be a platinum (Pt) complex including a tetradentate ligand.
In an embodiment, the third compound may include a carbene moiety in which carbon and Pt are bonded.
In an embodiment, the third compound may be represented by Formula 3:
In Formula 3,
In an embodiment, in Formula 3, Y40 may be C, and a bond between Y40 and Pt may be a coordinate bond.
In an embodiment, in Formula 3, a bond between Y40 and Pt and a bond between N and Pt may each be a coordinate bond, and a bond between Y30 and Pt and a bond between Y20 and Pt may each be a covalent bond.
In an embodiment, in Formula 3, T10 and T30 may each be a single bond, and T20 may not be a single bond.
In an embodiment, Formula 3 may satisfy at least one of Condition 1 to Condition 3:
In an embodiment, the third compound may include a compound represented by one of Formulae 3(1) and 3(2):
In Formulae 3(1) and 3(2),
In an embodiment, the third compound may be selected from one of Compounds 3-1 to 3-16, but embodiments of the disclosure are not limited thereto:
Because the first compound represented by Formula 1 provides high light emission efficiency, and the first compound includes at least one deuterium (D), resonance may be suppressed in the first compound, and charge mobility is excellent, thus a device including the first compound may have an improved lifespan and improved light emission efficiency. Charge transfer efficiency and exciton generation efficiency of the third compound may increase due to resonance suppression of the first compound, and thus an absolute quantity of excitons transferred to the third compound, which is luminescent, increases, resulting in improved light emission efficiency. Therefore, a light-emitting device, for example, an organic light-emitting device using the first compound, the second compound, and the third compound together as a material for an emission layer, may have excellent light emission efficiency and long lifespan, and in terms of a blue phosphorescent device, the lifespan of the device may be improved while high efficiency is maintained.
Synthesis methods of the first compound, the second compound, and the third compound may be recognizable by one of ordinary skill in the art with reference to Synthesis Examples and/or Examples provided below.
At least one of each of the first compound, the second compound, and the third compound may be used in a light-emitting device (for example, an organic light-emitting device). Thus, a light-emitting device may include a first electrode; a second electrode facing the first electrode; and an interlayer disposed between the first electrode and the second electrode and including an emission layer, wherein the interlayer may include a first compound as described in the specification, a second compound as described in the specification, and a third compound as described in the specification.
In an embodiment, the first compound and the second compound may act as a host, and
the third compound may act as a phosphorescent dopant such that phosphorescence may be emitted from the emission layer, or may act as a fluorescent dopant such that delayed fluorescence may be emitted from the emission layer.
In an embodiment, the first electrode of the light-emitting device may be an anode, the second electrode of the light-emitting device may be a cathode, the interlayer may further include a hole transport region between the first electrode and the emission layer and an electron transport region between the emission layer and the second electrode,
In an embodiment, at least one of the hole transport region and the emission layer may include an arylamine-containing compound, an acridine-containing compound, a carbazole-containing compound, or any combination thereof, or
at least one of the emission layer and the electron transport region may include a silicon-containing compound, a phosphine oxide-containing compound, a sulfur oxide-containing compound, a phosphorus oxide-containing compound, a triazine-containing compound, a pyrimidine-containing compound, a pyridine-containing compound, a dibenzofuran-containing compound, a dibenzothiophene-containing compound, or any combination thereof.
In embodiments, at least one of each of the first compound, the second compound, and the third compound may be included between a pair of electrodes of the light-emitting device. Accordingly, at least one of each of the first compound, the second compound, and the third compound may be included in the interlayer of the light-emitting device, for example, the emission layer of the interlayer.
In embodiments, the emission layer in the interlayer of the light-emitting device may include a dopant and a host, wherein the first compound and the second compound may be included in the host, and the third compound may be included in the dopant. Thus, the first compound and the second compound may act as a host, and the third compound may act as a dopant. The emission layer may emit red light, green light, blue light, and/or white light. In an embodiment, the emission layer may emit blue light. The blue light may have a maximum luminescence wavelength in a range of about 400 nm to about 500 nm. For example, the blue light may have a maximum luminescence wavelength in a range of about 450 nm to about 500 nm. In an embodiment, the emission layer may have a difference of equal to or less than about 0.5 eV between a singlet (S1) energy level and a triplet (T1) energy level.
In embodiments, the light-emitting device may further include at least one of a first capping layer disposed outside the first electrode and a second capping layer disposed outside the second electrode, wherein the first compound, the second compound, the third compound, or any combination thereof may be included in at least one of the first capping layer and the second capping layer. More details on the first capping layer and the second capping layer are the same as described in the specification.
In an embodiment, the light-emitting device may include: a first capping layer disposed outside the first electrode and including the first compound; a second capping layer disposed outside the second electrode and including the first compound; or the first capping layer and the second capping layer.
The term “interlayer” as used herein refers to a single layer or all layers located between the first electrode and the second electrode of the light-emitting device.
According to another aspect, an electronic apparatus including the light-emitting device is provided. The electronic apparatus may further include a thin-Film transistor. In embodiments, the electronic apparatus may further include a thin-film transistor including a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode. In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof. More details on the electronic apparatus are the same as described in the specification.
Hereinafter, a structure of the light-emitting device 10 according to an embodiment and a method of manufacturing the light-emitting device 10 will be described in connection with
In
The first electrode 110 may be formed by, for example, depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a high work function material that can easily inject holes may be used as a material for forming the first electrode 110.
The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. When the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or any combination thereof. In embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof may be used as a material for forming the first electrode 110.
The first electrode 110 may have a single-layered structure consisting of a single layer or a multi-layered structure including multiple layers. In an embodiment, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO.
The interlayer 130 is disposed on the first electrode 110. The interlayer 130 includes an emission layer.
The interlayer 130 may further include a hole transport region between the first electrode 110 and the emission layer and an electron transport region between the emission layer and the second electrode 150.
The interlayer 130 may further include metal-containing compounds such as organometallic compounds, inorganic materials such as quantum dots, and the like, in addition to various organic materials.
In embodiments, the interlayer 130 may include, i) two or more emitting units sequentially stacked between the first electrode 110 and the second electrode 150 and ii) at least one charge generation layer between adjacent ones of the emitting units. When the interlayer 130 includes the emitting units and the at least one charge generation layer as described above, the light-emitting device 10 may be a tandem light-emitting device.
The hole transport region may have i) a single-layered structure consisting of a single layer consisting of a single material, ii) a single-layered structure consisting of a single layer including different materials, or iii) a multi-layered structure including layers including different materials.
The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof.
In an embodiment, the hole transport region may have a multi-layered structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein, in each structure, layers are stacked sequentially from the first electrode 110.
The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof:
In Formulae 201 and 202,
In an embodiment, Formulae 201 and 202 may each include at least one of the groups represented by Formulae CY201 to CY217:
Regarding Formulae CY201 to CY217, R10b and R10c are the same as described in connection with R10a, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formula CY201 to CY217 may be unsubstituted or substituted with at least one R10a described herein.
In an embodiment, ring CY201 to ring CY204 in Formulae CY201 to CY217 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.
In an embodiment, Formulae 201 and 202 may each include at least one of the groups represented by Formulae CY201 to CY203.
In an embodiment, Formula 201 may include at least one of the groups represented by Formulae CY201 to CY203 and at least one of the groups represented by Formulae CY204 to CY217.
In embodiments, in Formula 201, xa1 is 1, R201 is a group represented by one of Formulae CY201 to CY203, xa2 is 0, and R202 is a group represented by one of Formulae CY204 to CY207.
In embodiments, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY203.
In embodiments, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY203 and may include at least one of the groups represented by Formulae CY204 to CY217.
In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY217.
In an embodiment, the hole transport region may include one of Compounds HT1 to HT44, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, 4,4’,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), or any combination thereof:
A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å. For example, the thickness of the hole transport region may be in a range of about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or any combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å. For example, the thickness of the hole injection layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the hole transport layer may be in a range of about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.
The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by an emission layer, and the electron blocking layer may block the flow of electrons from an electron transport region. The emission auxiliary layer and the electron blocking layer may include the materials as described above.
The hole transport region may further include, in addition to these materials, a charge-generating material for the improvement of conductive properties. The charge-generating material may be uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer of a charge-generating material).
The charge-generating material may be, for example, a p-dopant.
In an embodiment, a lowest unoccupied molecular orbital (LUMO) energy level of the p-dopant may be equal to or less than about -3.5 eV.
In an embodiment, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound containing element EL1 and element EL2, or any combination thereof.
Examples of the quinone derivative may include TCNQ and F4-TCNQ.
Examples of the cyano group-containing compound may include HAT-CN and a compound represented by Formula 221 below.
In Formula 221,
Regarding the compound containing element EL1 and element EL2, element EL1 may be metal, metalloid, or a combination thereof, and element EL2 may be a non-metal, metalloid, or a combination thereof.
Examples of the metal may include: an alkali metal (for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), or the like); an alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), or the like); a transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper(Cu), silver (Ag), gold (Au), or the like); a post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), or the like); and a lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), or the like).
Examples of the metalloid may include silicon (Si), antimony (Sb), and tellurium (Te).
Examples of the non-metal may include oxygen (O) and halogen (for example, F, Cl, Br, I, etc.).
In an embodiment, examples of the compound containing element EL1 and element EL2 may include metal oxide, metal halide (for example, metal fluoride, metal chloride, metal bromide, or metal iodide), metalloid halide (for example, metalloid fluoride, metalloid chloride, metalloid bromide, or metalloid iodide), metal telluride, or any combination thereof.
Examples of the metal oxide may include tungsten oxide (for example, WO, W2O3, WO2, WO3, or W2O5), vanadium oxide (for example, VO, V2O3, VO2, or V2O5), molybdenum oxide (for example, MoO, Mo2O3, MoO2, MoO3, or Mo2O5), and rhenium oxide (for example, ReO3).
Examples of the metal halide may include alkali metal halide, alkaline earth metal halide, transition metal halide, post-transition metal halide, and lanthanide metal halide.
Examples of the alkali metal halide may include LiF, NaF, KF, RbF, CsF, LiCI, NaCI, KCI, RbCI, CsCI, LiBr, NaBr, KBr, RbBr, CsBr, Lil, Nal, KI, Rbl, and Csl.
Examples of the alkaline earth metal halide may include BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2, SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, Bel2, Mgl2, Cal2, Srl2, and Bal2.
Examples of the transition metal halide may include titanium halide (for example, TiF4, TiCl4, TiBr4, or Til4), zirconium halide (for example, ZrF4, ZrCl4, ZrBr4, or Zrl4), hafnium halide (for example, HfF4, HfCl4, HfBr4, or Hfl4), vanadium halide (for example, VF3, VCl3, VBr3, or VI3), niobium halide (for example, NbF3, NbCl3, NbBr3, or Nbl3), tantalum halide (for example, TaF3, TaCl3, TaBr3, or Tal3), chromium halide (for example, CrF3, CrCl3, CrBr3, or Crl3), molybdenum halide (for example, MoF3, MoCl3, MoBr3, or Mol3), tungsten halide (for example, WF3, WCl3, WBr3, or Wl3), manganese halide (for example, MnF2, MnCl2, MnBr2, or Mnl2), technetium halide (for example, TcF2, TcCl2, TcBr2, or Tcl2), rhenium halide (for example, ReF2, ReCl2, ReBr2, or Rel2), iron halide (for example, FeF2, FeCl2, FeBr2, or Fel2), ruthenium halide (for example, RuF2, RuCl2, RuBr2, or Rul2), osmium halide (for example, OsF2, OsCl2, OsBr2, or Osl2), cobalt halide (for example, CoF2, CoCl2, CoBr2, or Col2), rhodium halide (for example, RhF2, RhCl2, RhBr2, or Rhl2), iridium halide (for example, IrF2, IrCl2, IrBr2, or Irl2), nickel halide (for example, NiF2, NiCl2, NiBr2, or Nil2), palladium halide (for example, PdF2, PdCl2, PdBr2, or Pdl2), platinum halide (for example, PtF2, PtCl2, PtBr2, or Ptl2), copper halide (for example, CuF, CuCl, CuBr, or Cul), silver halide (for example, AgF, AgCl, AgBr, or Agl), and gold halide (for example, AuF, AuCl, AuBr, or Aul).
Examples of the post-transition metal halide may include zinc halide (for example, ZnF2, ZnCl2, ZnBr2, or Znl2), indium halide (for example, lnl3), and tin halide (for example, Snl2).
Examples of the lanthanide metal halide may include YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3, SmCl3, YbBr, YbBr2, YbBr3, SmBr3, Ybl, Ybl2, Ybl3, and Sml3.
Examples of the metalloid halide may include antimony halide (for example, SbCl5).
Examples of the metal telluride may include an alkali metal telluride (for example, Li2Te, Na2Te, K2Te, Rb2Te, or Cs2Te), alkaline earth metal telluride (for example, BeTe, MgTe, CaTe, SrTe, or BaTe), transition metal telluride (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, or Au2Te), post-transition metal telluride (for example, ZnTe), and lanthanide metal telluride (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, or LuTe).
When the light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a sub-pixel. In embodiments, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other to emit white light. In embodiments, the emission layer may include two or more materials of a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed with each other in a single layer to emit white light.
The emission layer may include a host and a dopant. The dopant may include a phosphorescent dopant, a fluorescent dopant, or any combination thereof.
An amount of the dopant in the emission layer may be in a range of about 0.01 to about 15 parts by weight based on 100 parts by weight of the host.
In embodiments, the emission layer may include a quantum dot.
In an embodiment, the emission layer may include a delayed fluorescence material. The delayed fluorescence material may act as a host or a dopant in the emission layer.
A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the emission layer may be in a range of about 200 Å to about 600 Å. When the thickness of the emission layer is within this range, excellent luminescence characteristics may be obtained without a substantial increase in driving voltage.
The host may include a compound represented by Formula 301 below:
In Formula 301,
In an embodiment, when xb11 in Formula 301 is 2 or more, two or more of Ar301 (s) may be linked to each other via a single bond.
In an embodiment, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or any combination thereof:
In Formulae 301-1 and 301-2,
In an embodiment, the host may include an alkaline earth-metal complex. In an embodiment, the host may include a Be complex (for example, Compound H55), a Mg complex, a Zn complex, or any combination thereof.
In an embodiment, the host may include one of Compounds H1 to H124, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di(carbazol-9-yl)benzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or any combination thereof:
The phosphorescent dopant may include at least one transition metal as a central metal.
The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or any combination thereof.
The phosphorescent dopant may be electrically neutral.
In an embodiment, the phosphorescent dopant may include an organometallic compound represented by Formula 401:
In Formulae 401 and 402,
In an embodiment, in Formula 402, i) X401 may be nitrogen, and X402 may be carbon, or ii) both X401 and X402 may be nitrogen.
In an embodiment, when xc1 in Formula 401 is 2 or more, two ring A401(s) in two or more L401(s) may optionally be linked to each other via T402, which is a linking group, or two ring A402(s) in two or more L401(s) may optionally be linked to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 are the same as described in connection with T401 in the specification.
L402 in Formula 401 may be an organic ligand. For example, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), a isonitril group, a —CN group, a phosphorus group (for example, a phosphine group and a phosphite group), or any combination thereof.
The phosphorescent dopant may include, for example, one of following Compounds PD1 to PD25 or any combination thereof:
The fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or any combination thereof.
In an embodiment, the fluorescent dopant may include a compound represented by Formula 501:
In Formula 501,
In an embodiment, Ar501 in Formula 501 may include a condensed cyclic group (for example, an anthracene group, a chrysene group, or a pyrene group) in which three or more monocyclic groups are condensed with each other.
In an embodiment, xd4 in Formula 501 may be 2.
In an embodiment, the fluorescent dopant may include one of following Compounds FD1 to FD36, DPVBi, DPAVBi, or any combination thereof:
The emission layer may include a delayed fluorescence material.
The delayed fluorescence material used herein may be selected from any compound that is capable of emitting delayed fluorescent light based on a delayed fluorescent emission mechanism.
The delayed fluorescence material included in the emission layer may act as a host or a dopant depending on the type of other materials included in the emission layer.
In an embodiment, the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material may be in a range of about 0 eV to about 0.5 eV. When the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material satisfies the above-described range, up-conversion from the triplet state to the singlet state of the delayed fluorescence materials may effectively occur, and thus, the light emission efficiency of the light-emitting device 10 may be improved.
In an embodiment, the delayed fluorescence material may include i) a material that includes at least one electron donor (for example, a π electron-rich C3-C60 cyclic group, such as a carbazole group) and at least one electron acceptor (for example, a sulfoxide group, a cyano group, or a π-electron-deficient nitrogen-containing C1-C60 cyclic group), ii) a material including a C8-C60 polycyclic group in which two or more cyclic groups share boron (B) and are condensed with each other.
The delayed fluorescence material may include at least one of Compounds DF1 to DF9:
The emission layer may include a quantum dot.
The quantum dot used herein refers to a crystal of a semiconductor compound, and may include any material that is capable of emitting light of various emission wavelengths depending on a size of the crystal.
A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.
The quantum dot may be synthesized by a wet chemical process, a metal organic chemical vapor deposition process, a molecular beam epitaxy process, or a similar process.
The wet chemical process refers to a method in which an organic solvent and a precursor material are mixed, and a quantum dot particle crystal is grown. When the crystal grows, the organic solvent acts as a dispersant naturally coordinated on the surface of the quantum dot crystal and controls the growth of the crystal. Accordingly, by using a process that is easily performed at low costs compared to a vapor deposition process, such as a metal organic chemical vapor deposition (MOCVD) process and a molecular beam epitaxy (MBE) process, the growth of quantum dot particles may be controlled.
The quantum dot may include a Groups III-VI semiconductor compound, a Groups II-VI semiconductor compound, a Groups III-V semiconductor compound, a Group I-III-VI semiconductor compound, a Groups IV-VI semiconductor compound, a Group IV element or compound, or any combination thereof.
Examples of the Groups II-VI semiconductor compound may include: a binary compound, such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, or MgS; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, or MgZnS; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, or HgZnSTe; or any combination thereof.
Examples of the Groups III-V semiconductor compound may include: a binary compound, such as GaN, GaP, GaAs, GaSb, AIN, AIP, AlAs, AlSb, InN, InP, InAs, or InSb; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AINP, AINAs, AINSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, or InPSb; a quaternary compound, such as GaAINP, GaAINAs, GaAINSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAINP, InAINAs, InAINSb, InAIPAs, or InAIPSb; or any combination thereof. In an embodiment, the Groups III-V semiconductor compound may further include a Group II element. Examples of the Groups III-V semiconductor compound further including a Group II element may include InZnP, InGaZnP, or InAlZnP.
Examples of the Groups III-VI semiconductor compound may include: a binary compound, such as GaS, GaSe, Ga2Se3, GaTe, InS, In2S3, InSe, In2Se3, or InTe; a ternary compound, such as InGaS3 or InGaSe3; or any combination thereof.
Examples of the Groups I-III-VI semiconductor compound may include: a ternary compound such as AgInS, AgInS2, CuInS, CuInS, CuGaO2, AgGaO2, or AgAlO2; or any combination thereof.
Examples of the Group IV-VI semiconductor compound may include: a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, or PbTe; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, or SnPbTe; a quaternary compound, such as SnPbSSe, SnPbSeTe, or SnPbSTe; or any combination thereof.
The Group IV element or compound may include a single element, such as Si or Ge; a binary compound, such as SiC or SiGe; or any combination thereof.
Each element included in the multi-element compound such as the binary compound, the ternary compound, and the quaternary compound may be present in a particle at a uniform concentration or a non-uniform concentration.
The quantum dot may have a single structure having a uniform concentration of each element included in the corresponding quantum dot or a dual structure of a core-shell. In an embodiment, a material included in the core may be different from a material included in the shell.
The shell of the quantum dot may function as a protective layer for maintaining semiconductor characteristics by preventing chemical degeneration of the core and/or may function as a charging layer for imparting electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multilayer. An interface between the core and the shell may have a concentration gradient in which the concentration of elements existing in the shell decreases toward the center.
Examples of the shell of the quantum dot are an oxide of a metal or a non-metal, a semiconductor compound, or any combination thereof. Examples of the oxide of metal or non-metal may include a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, or NiO; a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, or CoMn2O4; or any combination thereof. Examples of the semiconductor compound are, as described herein, a Groups III-VI semiconductor compound, a Groups II-VI semiconductor compound, a Groups III-V semiconductor compound, a Groups I-III-VI semiconductor compound, a Groups IV-VI semiconductor compound, or any combination thereof. In an embodiment, the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AIP, AlSb, or any combination thereof.
A full width at half maximum (FWHM) of an emission wavelength spectrum of the quantum dot may be equal to or less than about 45 nm. For example, the FWHM of an emission wavelength spectrum of the quantum dot may be equal to or less than about 40 nm. For example, the FWHM of an emission wavelength spectrum of the quantum dot may be equal to or less than about 30 nm. When the FWHM of the emission wavelength spectrum of the quantum dot is within this range, color purity or color reproduction may be improved. Light emitted through such a quantum dot may be irradiated omnidirectionally. Accordingly, a wide viewing angle may be increased.
The quantum dot may be a spherical, a pyramidal, a multi-arm, or a cubic nanoparticle, a nanotube, a nanowire, a nanofiber, or a nanoplate particle.
By adjusting a size of the quantum dot, the energy band gap may also be adjusted, and thus the quantum dot emission layer may obtain light of various wavelengths. Therefore, by using quantum dots of different sizes, a light-emitting device that emits light of various wavelengths may be implemented. In an embodiment, the size of the quantum dot may be selected to emit red, green and/or blue light. The size of the quantum dot may be adjusted such that light of various colors are combined to emit white light.
The electron transport region may have: i) a single-layered structure consisting of a single layer consisting of a single material, ii) a single-layered structure consisting of a single layer including different materials, or iii) a multi-layered structure including layers including different materials.
The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.
For example, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein, for each structure, constituting layers are sequentially stacked from an emission layer.
The electron transport region (for example, the buffer layer, the hole blocking layer, the electron control layer, or the electron transport layer in the electron transport region) may include a metal-free compound including at least one π-electron-deficient nitrogen-containing C1-C60 cyclic group.
In an embodiment, the electron transport region may include a compound represented by Formula 601.
In Formula 601,
In an embodiment, when xe11 in Formula 601 is 2 or more, two or more of Ar601(s) may be linked to each other via a single bond.
In an embodiment, Ar601 in Formula 601 may be a substituted or unsubstituted anthracene group.
In an embodiment, the electron transport region may include a compound represented by Formula 601-1:
In Formula 601-1,
In an embodiment, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.
The electron transport region may include one of Compounds ET1 to ET45, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAIq, TAZ, NTAZ, or any combination thereof:
A thickness of the electron transport region may be in a range of about 100 Å to about 5,000 Å. For example, the thickness of the electron transport region may be in a range of about 100 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, or any combination thereof, a thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 20 Å to about 1,000 Å, and the thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 30 Å to about 300 Å. For example, the thickness of the electron transport layer may be in a range of about 150 Å to about 500 Å. When the thickness of the buffer layer, the hole blocking layer, the electron control layer, the electron transport layer, and/or the electron transport region are within these ranges, satisfactory electron transporting characteristics may be obtained without a substantial increase in driving voltage.
The electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.
The metal-containing material may include an alkali metal complex, an alkaline earth-metal complex, or any combination thereof. A metal ion of the alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and a metal ion of the alkaline earth-metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may be a hydroxy quinoline, a hydroxy isoquinoline, a hydroxy benzoquinoline, a hydroxy acridine, a hydroxy phenanthridine, a hydroxy phenyloxazole, a hydroxy phenylthiazole, a hydroxy phenyloxadiazole, a hydroxy phenylthiadiazole, a hydroxy phenylpyridine, a hydroxy phenylbenzimidazole, a hydroxy phenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.
In an embodiment, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (LiQ) or ET-D2:
The electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode 150. The electron injection layer may directly contact the second electrode 150.
The electron injection layer may have: i) a single-layered structure consisting of a single layer consisting of a single material, ii) a single-layered structure consisting of a single layer including different materials, or iii) a multi-layered structure including layers including different materials.
The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof.
The alkali metal may include Li, Na, K, Rb, Cs, or any combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.
The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may include oxides and halides (for example, fluorides, chlorides, bromides, or iodides) of the alkali metal, the alkaline earth metal, and the rare earth metal, telluride, or any combination thereof.
The alkali metal-containing compound may include alkali metal oxides, such as Li2O, Cs2O, or K2O, alkali metal halides, such as LiF, NaF, CsF, KF, Lil, Nal, Csl, or KI, or any combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal compound, such as BaO, SrO, CaO, BaxSr1-xO (x is a real number that satisfies the condition of 0<x<1), or BaxCa1-xO (x is a real number that satisfies the condition of 0<x<1). The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or any combination thereof. In an embodiment, the rare earth metal-containing compound may include lanthanide metal telluride. Examples of the lanthanide metal telluride may include LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, and Lu2Te3.
The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include i) one of ions of the alkali metal, the alkaline earth metal, and the rare earth metal and ii) a ligand linked to the metal ion, for example, hydroxyquinoline, hydroxy isoquinoline, hydroxybenzoquinoline, hydroxyacridine, hydroxyphenanthridine, hydroxyphenyloxazole, hydroxyphenylthiazole, hydroxyphenyloxadiazole, hydroxyphenylthiadiazole, hydroxyphenylpyridine, hydroxyphenyl benzimidazole, hydroxyphenylbenzothiazole, bipyridine, phenanthroline, cyclopentadiene, or any combination thereof.
The electron injection layer may consist of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof, or may further include an organic material (for example, a compound represented by Formula 601).
In an embodiment, the electron injection layer may consist of i) an alkali metal-containing compound (for example, an alkali metal halide), or ii) a) an alkali metal-containing compound (for example, an alkali metal halide); and b) an alkali metal, an alkaline earth metal, a rare earth metal, or any combination thereof. In an embodiment, the electron injection layer may be a KI:Yb co-deposited layer or a Rbl:Yb co-deposited layer.
When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.
A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å. For example, the thickness of the electron injection layer may be in a range of about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the range described above, the electron injection layer may have satisfactory electron injection characteristics without a substantial increase in driving voltage.
The second electrode 150 may be located on the interlayer 130 having such a structure. The second electrode 150 may be a cathode, which is an electron injection electrode, and as the material for forming the second electrode 150, a metal, an alloy, an electrically conductive compound, or any combination thereof, each having a low work function, may be used.
The second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag-Yb), ITO, IZO, or any combination thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
The second electrode 150 may have a single-layered structure or a multi-layered structure including two or more layers.
A first capping layer may be located outside the first electrode 110, and/or a second capping layer may be located outside the second electrode 150. The light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are sequentially stacked in this stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in this stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in this stated order.
Light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be emitted toward the outside through the first electrode 110, which is a semi-transmissive electrode or a transmissive electrode, and the first capping layer, and light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be emitted toward the outside through the second electrode 150, which is a semi-transmissive electrode or a transmissive electrode, and the second capping layer.
The first capping layer and the second capping layer may increase external light emission efficiency according to the principle of constructive interference. Accordingly, light emission efficiency of the light-emitting device 10 is increased, so that the light emission efficiency of the light-emitting device 10 may be improved.
The first capping layer and the second capping layer may each include a material having a refractive index of equal to or greater than about 1.6 (at 589 nm).
The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or a composite capping layer including an organic material and an inorganic material.
At least one of the first capping layer and the second capping layer may each independently include a carbocyclic compound, a heterocyclic compound, an amine group-containing compound, a porphyrine derivative, a phthalocyanine derivative, a naphthalocyanine derivative, an alkali metal complex, an alkaline earth-metal complex, or any combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may be optionally substituted with a substituent containing O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof. In an embodiment, at least one of the first capping layer and the second capping layer may each independently include an amine group-containing compound.
In an embodiment, at least one of the first capping layer and second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof.
In an embodiment, at least one of the first capping layer and the second capping layer may each independently include one of Compounds HT28 to HT33, one of Compounds CP1 to CP6, β-NPB, or any combination thereof:
The light-emitting device may be included in various electronic apparatuses. In an embodiment, an electronic apparatus including the light-emitting device may be a light-emitting apparatus, an authentication apparatus, or the like.
The electronic apparatus (for example, a light-emitting apparatus) may further include, in addition to the light-emitting device, a color filter, a color conversion layer, or a color filter and a color conversion layer. The color filter and/or the color conversion layer may be located in at least one traveling direction of light emitted from the light-emitting device. In an embodiment, light emitted from the light-emitting device may be blue light or white light. The light-emitting device may be the same as described above. In an embodiment, the color conversion layer may include a quantum dot. The quantum dot may be, for example, a quantum dot as described herein.
The electronic apparatus may include a first substrate. The first substrate may include subpixels, the color filter may include color filter areas respectively corresponding to the subpixels, and the color conversion layer may include color conversion areas respectively corresponding to the subpixels.
A pixel-defining film may be between the subpixels to define each of the subpixels.
The color filter may further include color filter areas and light-blocking patterns between the color filter areas, and the color conversion layer may further include color conversion areas and light-blocking patterns between the color conversion areas.
The color filter areas (or the color conversion areas) may include a first area emitting first-color light, a second area emitting second-color light, and/or a third area emitting third-color light, and the first-color light, the second-color light, and/or the third-color light may have different maximum emission wavelengths from one another. In an embodiment, the first-color light may be red light, the second-color light may be green light, and the third-color light may be blue light. In an embodiment, the color filter areas (or the color conversion areas) may include quantum dots. The first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may not include a quantum dot. The quantum dot is the same as described in the specification. Each of the first area, the second area and/or the third area may further include a scattering body.
In an embodiment, the light-emitting device may emit first light, the first area may absorb the first light to emit first first-color light, the second area may absorb the first light to emit second first-color light, and the third area may absorb the first light to emit third first-color light. In this regard, the first first-color light, the second first-color light, and the third first-color light may have different maximum emission wavelengths from one another. The first light may be blue light, the first first-color light may be red light, the second first-color light may be green light, and the third first-color light may be blue light.
The electronic apparatus may further include a thin-film transistor in addition to the light-emitting device as described above. The thin-film transistor may include a source electrode, a drain electrode, and an active layer, wherein any one of the source electrode and the drain electrode may be electrically connected to any one of the first electrode and the second electrode of the light-emitting device.
The thin-film transistor may further include a gate electrode, a gate insulation layer, or the like.
The active layer may include crystalline silicon, amorphous silicon, an organic semiconductor, an oxide semiconductor, or the like.
The electronic apparatus may further include a sealing portion for sealing the light-emitting device. The sealing portion may be between the color filter and/or the color conversion layer and the light-emitting device. The sealing portion allows light from the light-emitting device to be emitted to the outside, while simultaneously preventing ambient air and moisture from penetrating into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate or a plastic substrate. The sealing portion may be a thin film encapsulation layer including one or more organic layers and/or one or more inorganic layers. When the sealing portion is a thin film encapsulation layer, the electronic apparatus may be flexible.
On the sealing portion, in addition to the color filter and/or the color conversion layer, various functional layers may be further located according to the use of the electronic apparatus. Examples of the functional layers may include a touch screen layer, a polarizing layer, and the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus for authenticating an individual by using biometric information of a biometric body (for example, a fingertip, a pupil, or the like).
The authentication apparatus may further include, in addition to the light-emitting device, a biometric information collector.
The electronic apparatus may be applied to various displays, light sources, lighting, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic organizers, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, or endoscope displays), fish finders, various measuring instruments, meters (for example, meters for a vehicle, an aircraft, and a vessel), projectors, and the like.
The light-emitting apparatus of
The substrate 100 may be a flexible substrate, a glass substrate, or a metal substrate. A buffer layer 210 may be on the substrate 100. The buffer layer 210 prevents penetration of impurities through the substrate 100 and may provide a flat surface on the substrate 100.
The TFT may be on the buffer layer 210. The TFT may include an active layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.
The active layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region, and a channel region.
A gate insulating film 230 for insulating the active layer 220 from the gate electrode 240 may be on the active layer 220, and the gate electrode 240 may be on the gate insulating film 230.
An interlayer insulating film 250 may be on the gate electrode 240. The interlayer insulating film 250 is located between the gate electrode 240 and the source electrode 260 to insulate the gate electrode 240 from the source electrode 260 and between the gate electrode 240 and the drain electrode 270 to insulate the gate electrode 240 from the drain electrode 270.
The source electrode 260 and the drain electrode 270 may be on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the active layer 220, and the source electrode 260 and the drain electrode 270 may be located to be in contact with the exposed portions of the source region and the drain region of the active layer 220.
The TFT may be electrically connected to the light-emitting device to drive the light-emitting device and may be protected by being covered with a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or a combination thereof. The light-emitting device is provided on the passivation layer 280. The light-emitting device includes the first electrode 110, the interlayer 130, and the second electrode 150.
The first electrode 110 may be on the passivation layer 280. The passivation layer 280 does not completely cover the drain electrode 270 and exposes a certain portion of the drain electrode 270, and the first electrode 110 may be connected to the exposed portion of the drain electrode 270.
A pixel defining layer 290 including an insulating material may be located on the first electrode 110. The pixel defining layer 290 may expose a certain region of the first electrode 110, and the interlayer 130 may be formed in the exposed region of the first electrode 110. The pixel defining layer 290 may be a polyimide or polyacryl-based organic film. Although not shown in
The second electrode 150 may be located on the interlayer 130, and a capping layer 170 may be additionally formed on the second electrode 150. The capping layer 170 may be formed to cover the second electrode 150.
The encapsulation portion 300 may be located on the capping layer 170. The encapsulation portion 300 may be located on the light-emitting device and protects the light-emitting device from moisture or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or a combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (for example, polymethyl methacrylate or polyacrylic acid), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE)), or any combination thereof; or a combination of an inorganic film and an organic film.
The light-emitting apparatus of
The electronic apparatus 1 may include a display area DA and a non-display area NDA outside the display area DA. The electronic apparatus 1 may realize an image through an array of a plurality of pixels that are two-dimensionally in the display area DA.
The non-display area NDA may be an area in which an image is not displayed, and may entirely surround the display area DA. A driver for providing electrical signals or power to display devices in the display area DA may be in the non-display area NDA. A pad, which is an area to which an electronic device and/or a printed circuit board may be electrically connected, may be in the non-display area NDA.
The electronic apparatus 1 may have different lengths in the x-axis direction and in the y-axis direction. For example, as shown in
Referring to
The vehicle 1000 may travel on a road and/or track. The vehicle 1000 may move in a certain direction according to rotation of at least one wheel. For example, the vehicle 1000 may include a three-wheeled or four-wheeled vehicle, a construction machine, a two-wheeled vehicle, a motorbike, a bicycle, and a train running on a track.
The vehicle 1000 may include a body having an interior and an exterior, and a chassis in which mechanical apparatuses necessary for driving are installed as the remaining parts except for the body. The exterior of the body may include a front panel, a bonnet, a roof panel, a rear panel, a trunk, and a pillar provided at a boundary between doors. The chassis of the vehicle 1000 may include a power generating apparatus, a power transmitting apparatus, a driving apparatus, a steering apparatus, a braking apparatus, a suspension apparatus, a transmission apparatus, a fuel apparatus, front and rear left and right wheels, and the like.
The vehicle 1000 may include a side window glass 1100, a front window glass 1200, a side mirror 1300, a cluster 1400, a center fascia 1500, a passenger seat dashboard 1600, and a display apparatus 2.
The side window glass 1100 and the front window glass 1200 may be partitioned by a pillar between the side window glass 1100 and the front window glass 1200.
The side window glass 1100 may be installed on a side surface of the vehicle 1000. In an embodiment, the side window glass 1100 may be installed on a door of the vehicle 1000. A plurality of side window glasses 1100 may be provided and may face each other. In an embodiment, the side window glass 1100 may include a first side window glass 1110 and a second side window glass 1120. In an embodiment, the first side window glass 1110 may be adjacent to the cluster 1400. In an embodiment, the second side window glass 1120 may be adjacent to the passenger seat dashboard 1600.
In an embodiment, the side window glasses 1100 may be apart from each other in the x direction or the -x direction. For example, the first side window glass 1110 and the second side window glass 1120 may be spaced apart from each other in the x direction or the -x direction. In other words, an imaginary straight line L connecting the side window glasses 1100 to each other may extend in the x direction or the -x direction. For example, the imaginary straight line L connecting the first side window glass 1110 to the second side window glass 1120 may extend in the x direction or the -x direction.
The front window glass 1200 may be installed at a front of the vehicle 1000. The front window glass 1200 may be between the side window glasses 1100 facing each other.
The side mirror 1300 may provide a rear view of the vehicle 1000. The side mirror 1300 may be installed on the exterior of the body. In an embodiment, a plurality of side mirrors 1300 may be provided. One of the plurality of side mirrors 1300 may be outside the first side window glass 1110. Another one of the plurality of side mirrors 1300 may be outside the second side window glass 1120.
The cluster 1400 may be at a front of a steering wheel. The cluster 1400 may include a tachometer, a speedometer, a coolant thermometer, a fuel gauge, a direction change indicator light, a high beam indicator light, a warning light, a seat belt warning light, a trip meter, an odometer, a hodometer, an automatic transmission selection lever indicator light, a door open warning light, an engine oil warning light, and/or a low fuel warning light thereon.
The center fascia 1500 may include a control panel on which a plurality of buttons for adjusting an audio apparatus, an air conditioning apparatus, and/or a heater of a seat are located. The center fascia 1500 may be on one side of the cluster 1400.
The passenger seat dashboard 1600 may be spaced apart from the cluster 1400 with the center fascia 1500 therebetween. In an embodiment, the cluster 1400 may be correspond to a driver seat, and the passenger seat dashboard 1600 may be correspond to a passenger seat. In an embodiment, the cluster 1400 may be adjacent to the first side window glass 1110, and the passenger seat dashboard 1600 may be adjacent to the second side window glass 1120.
In an embodiment, the display apparatus 2 may include a display panel 3, and the display panel 3 may display an image. The display apparatus 2 may be inside the vehicle 1000. In an embodiment, the display apparatus 2 may be between the side window glasses 1100 facing each other. The display apparatus 2 may be on at least one of the cluster 1400, the center fascia 1500, and the passenger seat dashboard 1600.
The display apparatus 2 may include an organic light-emitting display apparatus, an inorganic electroluminescent (EL) display apparatus (and/or an inorganic light-emitting display apparatus), a quantum dot display apparatus, and/or the like. Hereinafter, an organic light-emitting display apparatus including the light-emitting device according to an embodiment will be described as an example of the display apparatus 2 according to an embodiment. However, various suitable types (or kind) of display apparatuses as described above may be used in embodiments of the present disclosure.
Referring to
Referring to
Referring to
Layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging.
When layers constituting the hole transport region, the emission layer, and layers constituting the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10-8 torr to about 10-3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec by taking into account a material to be included in a layer to be formed and the structure of a layer to be formed.
The term “C3-C60 carbocyclic group” as used herein refers to a cyclic group that consists of carbon and hydrogen only and has three to sixty carbon atoms (for example 3 to 30, 3 to 24 or 3 to 18 carbon atoms), and the term “C1-C60 heterocyclic group” as used herein refers to a cyclic group that has one to sixty carbon atoms (for example 1 to 30, 1 to 24 or 1 to 18 carbon atoms) and further includes, in addition to carbon, a heteroatom (for example, 1 to 5 or 1 to 3, such as 1, 2, 3, 4 or 5 heteroatoms). The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group that consists of one ring or a polycyclic group in which two or more rings are condensed with each other. In an embodiment, the number of ring-forming atoms of the C1-C60 heterocyclic group may be from 3 to 61.
The term “cyclic group” as used herein includes the C3-C60 carbocyclic group and the C1-C60 heterocyclic group.
The term “π electron-rich C3-C60 cyclic group” as used herein refers to a cyclic group that has three to sixty carbon atoms (for example 3 to 30, 3 to 24 or 3 to 18 carbon atoms) and does not include *-N=*’ as a ring-forming moiety, and the term “π-electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein refers to a heterocyclic group that has one to sixty carbon atoms (for example 1 to 30, 1 to 24 or 1 to 18 carbon atoms) and includes *-N=*’ as a ring-forming moiety.
In an embodiment,
The term “the cyclic group, the C3-C60 carbocyclic group, the C1-C60 heterocyclic group, the π electron-rich C3-C60 cyclic group, or the π-electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein refer to a group that is condensed with a cyclic group, a monovalent group, a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, or the like), according to the structure of a formula described with corresponding terms. In an embodiment, “a benzene group” may be a benzo group, a phenyl group, a phenylene group, or the like, which may be easily understand by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”
In an embodiment, examples of the monovalent C3-C60 carbocyclic group and the monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, and examples of the divalent C3-C60 carbocyclic group and the divalent C1-C60 heterocyclic group may include a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a divalent non-aromatic condensed heteropolycyclic group.
The term “C1-C60 alkyl group” as used herein refers to a linear or branched aliphatic hydrocarbon monovalent group having 1 to 60 carbon atoms, and examples thereof includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. In some embodiments, C1-C60 alkyl group may be C1-C30 alkyl group, C1-C20 alkyl group or C1-C10 alkyl group. The term “C1-C60 alkylene group” as used herein refers to a divalent group having the same structure as the C1-C60 alkyl group.
The term “C2-C60 alkenyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon double bond in the middle or at the terminus of a C2-C60 alkyl group, and examples thereof include an ethenyl group, a propenyl group, and a butenyl group. In some embodiments, C2-C60 alkenyl group may be C2-C30 alkenyl group, C2-C20 alkenyl group or C2-C10 alkenyl group. The term “C2-C60 alkenylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkenyl group.
The term “C2-C60 alkynyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon triple bond in the middle or at the terminus of a C2-C60 alkyl group, and examples thereof include an ethynyl group and a propynyl group. In some embodiments, C2-C60 alkynyl group may be C2-C30 alkynyl group, C2-C20 alkynyl group or C2-C10 alkynyl group. The term “C2-C60 alkynylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkynyl group.
The term “C1-C60 alkoxy group” as used herein refers to a monovalent group represented by -OA101 (wherein A101 is the C1-C60 alkyl group), and examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.
The term “C3-C10 cycloalkyl group” as used herein refers to a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cycloctyl group, an adamantanyl group, a norbornanyl group (or a bicyclo[2.2.1]heptyl group), a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, and a bicyclo[2.2.2]octyl group. The term “C3-C10 cycloalkylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkyl group.
The term “C1-C10 heterocycloalkyl group” as used herein refers to a monovalent cyclic group that further includes, in addition to a carbon atom, at least one heteroatom (for example, 1 to 5 or 1 to 3, such as 1, 2, 3, 4 or 5 heteroatoms) as a ring-forming atom and has 1 to 10 carbon atoms, and examples thereof include a1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as used herein refers to a divalent group having the same structure as the C1-C10 heterocycloalkyl group.
The term “C3-C10 cycloalkenyl group” as used herein refers to a monovalent cyclic group that has 3 to 10 carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkenyl group.
The term “C1-C10 heterocycloalkenyl group” as used herein refers to a monovalent cyclic group that has, in addition to a carbon atom, at least one heteroatom (for example, 1 to 5 or 1 to 3, such as 1, 2, 3, 4 or 5 heteroatoms) as a ring-forming atom, 1 to 10 carbon atoms, and at least one double bond in the cyclic structure thereof. Examples of the C1-C10 heterocycloalkenyl group include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group” as used herein refers to a divalent group having the same structure as the C1-C10 heterocycloalkenyl group.
The term “C6-C60 aryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms, and the term “C6-C60 arylene group” as used herein refers to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. Examples of the C6-C60 aryl group include a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, and an ovalenyl group. In some embodiments, C6-C60 aryl group may be C6-C30 aryl group, C6-C24 aryl group or C6-C18 aryl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the two or more rings may be condensed to each other.
The term “C1-C60 heteroaryl group” as used herein refers to a monovalent group having a heterocyclic aromatic system that has, in addition to a carbon atom, at least one heteroatom (for example, 1 to 5 or 1 to 3, such as 1, 2, 3, 4 or 5 heteroatoms) as a ring-forming atom, and 1 to 60 carbon atoms. The term “C1-C60 heteroarylene group” as used herein refers to a divalent group having a heterocyclic aromatic system that has, in addition to a carbon atom, at least one heteroatom (for example, 1 to 5 or 1 to 3, such as 1, 2, 3, 4 or 5 heteroatoms) as a ring-forming atom, and 1 to 60 carbon atoms. Examples of the C1-C60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, and a naphthyridinyl group. In some embodiments, C1-C60 heteroaryl group may be C1-C30 heteroaryl group, C1-C24 heteroaryl group or C1-C18 heteroaryl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the two or more rings may be condensed with each other.
The term “monovalent non-aromatic condensed polycyclic group” as used herein refers to a monovalent group (for example, having 8 to 60 carbon atoms, such as 8 to 30 or 8 to 24 carbon atoms) having two or more rings condensed with each other, only carbon atoms as ring-forming atoms, and non-aromaticity in its entire molecular structure. Examples of the monovalent non-aromatic condensed polycyclic group include an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, and an indenoanthracenyl group. The term “divalent non-aromatic condensed polycyclic group” as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.
The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein refers to a monovalent group (for example, having 1 to 60 carbon atoms, such as 1 to 30 or 1 to 24 carbon atoms) having two or more rings condensed to each other, at least one heteroatom other than carbon atoms (for example, 1 to 5 or 1 to 3, such as 1, 2, 3, 4 or 5 heteroatoms), as a ring-forming atom, and non-aromaticity in its entire molecular structure. Examples of the monovalent non-aromatic condensed heteropolycyclic group include a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphthoindolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, and a benzothienodibenzothiophenyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed heteropolycyclic group.
The term “C6-C60 aryloxy group” as used herein refers to -OA102 (wherein A102 is the C6-C60 aryl group), and the term “C6-C60 arylthio group” as used herein refers to -SA103 (wherein A103 is the C6-C60 aryl group).
The group R10a as used herein may be :
Q1 to Q3, Q11 to Q13, Q21 to Q23 and Q31 to Q33 as used herein may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.
The term “heteroatom” as used herein refers to any atom other than a carbon atom and a hydrogen atom. Examples of the heteroatom include O, S, N, P, Si, B, Ge, Se, or any combination thereof.
The term “Ph” as used herein refers to a phenyl group, the term “Me” as used herein refers to a methyl group, the term “Et” as used herein refers to an ethyl group, the term “tert-Bu” or “But” as used herein refers to a tert-butyl group, and the term “OMe” as used herein refers to a methoxy group.
The term “biphenyl group” as used herein refers to “a phenyl group substituted with a phenyl group.” In other words, the “biphenyl group” is a substituted phenyl group having a C6-C60 aryl group as a substituent.
The term “terphenyl group” as used herein refers to “a phenyl group substituted with a biphenyl group”. In other words, the “terphenyl group” is a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.
* and *’ as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula.
Hereinafter, a compound according to embodiments and a light-emitting device according to embodiments will be described in detail with reference to Synthesis Examples and Examples. The wording “B was used instead of A” used in describing Synthesis Examples refers to that an identical molar equivalent of B was used in place of A.
Compounds other than the compounds synthesized in Synthesis Examples 1 to 6 may be easily recognized by those skilled in the art by referring to the above synthesis routes and source materials.
As an anode, an ITO/Ag/ITO substrate (hereinafter, referred to as “ITO substrate”) was cut to a size of 50 mm × 50 mm × 0.5 mm, sonicated by using isopropyl alcohol and pure water for 10 minutes each, and, cleaned by irradiation of ultraviolet rays and exposure of zone thereto for 10 minutes. The ITO substrate was loaded onto a vacuum deposition apparatus.
m-MTDATA was vacuum-deposited on the ITO substrate to form a hole injection layer having a thickness of 4 nm, and NPB was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 1 nm.
Compound 1-1 (host 1), Compound 2-1 (host 2), and Compound 3-1 (dopant) were co-deposited on the hole transport layer at a weight ratio of 6 : 3 : 1 to form an emission layer having a thickness of 40 nm. Subsequently, BAlq was vacuum-deposited thereon to form a hole blocking layer having a thickness of 10 nm. Subsequently, ET1 was deposited on the hole blocking layer to form an electron transport layer having a thickness of 30 nm, LiF, which is an alkali metal halide, was deposited on the electron transport layer to form an electron injection layer having a thickness of 1 nm, and Al was vacuum-deposited thereon to form an LiF/Al cathode having a thickness of 120 nm, thereby completing manufacture of a light-emitting device.
A light-emitting device was manufactured in the same manner as in Example 1, except that, compounds shown in Tables 1 and 2 was used instead of Compounds 1-1, 2-1, and 3-1, which were used in Example 1, in forming an emission layer. In cases of Comparative Examples 1, 2, 5, 6 and 7, host and dopant were co-deposited at a weight ratio of 9:1.
In order to evaluate characteristics of the light-emitting devices manufactured in Examples 1 to 66 and Comparative Examples 1 to 10, with respect to the light-emitting devices, light emission efficiency (cd/A) at 1000 cd/m2, lifespan (T90), and an emission color were each measured by using Keithley MU 236 and a luminance meter PR650, and results thereof are shown in Tables 1 and 2. In Tables 1 and 2, the lifespan (T90) is a measure of the time taken when the luminance reaches 90% of the initial luminance.
From Table 1, it can be seen that the light-emitting devices of Examples 1 to 30 have higher efficiency or a longer lifespan than the light-emitting devices of Comparative Examples 1 to 6.
From Table 2, it can be seen that the light-emitting devices of Examples 31 to 66 have higher efficiency or a longer lifespan than the light-emitting devices of Comparative Examples 7 to 10.
The light-emitting device may have high efficiency and long lifespan and may be used to manufacture high-quality electronic apparatuses having excellent light emission efficiency and long lifespan.
It should be understood that embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. While embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0089156 | Jul 2020 | KR | national |
This is a continuation-in-part application of U.S. Pat. Application No. 17/369,366, filed Jul. 7, 2021 (now pending), the entire contents of which are incorporated herein by reference. U.S. Pat. Application No. 17/369,366 claims priority to and benefits of Korean Pat. Application No. 10-2020-0089156 under 35 U.S.C. §119, filed on Jul. 17, 2020 in the Korean Intellectual Property Office, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17369366 | Jul 2021 | US |
Child | 18297173 | US |