Light emitting device and lighting system having the same

Abstract
The present invention provides a light emitting device comprising a first light emitting portion that emits white light at a color temperature of 6000K or more and a second light emitting portion that emits white light at a color temperature of 3000K or less, which include light emitting diode chips and phosphors and are independently driven. The present invention has an advantage in that a light emitting device can be diversely applied in a desired atmosphere and use by realizing white light with different light spectrums and color temperatures. Particularly, the present invention has the effect on health by adjusting the wavelength of light or the color temperature according to the circadian rhythm of humans.
Description
CROSS REFERENCE RELATED APPLICATIONS

This application is the National Stage of International Application No. PCT/KR2007/001587, filed Mar. 31, 2007, and claims priority from and the benefit of Korean Patent Application No. 10-2006-0029517, filed on Mar. 31, 2006, which are both hereby incorporated by reference for all purposes as if fully set forth herein.


BACKGROUND OF THE INVENTION

Field of the Invention


The present invention relates to a light emitting diode, and more particularly, a light emitting diode that can realize different light spectrums and color temperatures by forming a plurality of light emitting portions within a single package.


Discussion of the Background


A light emitting diode is an electroluminescence device having a structure in which an n-type semiconductor of which major carriers are electrons and a p-type semiconductor of which major carriers are holes are joined together, and emits predetermined light through recombination of these electrons and holes. A light emitting diode consumes less electric power and has a longer service life as compared with conventional light bulbs or fluorescent lamps. The electric power consumption of a light emitting diode is less than a few tenth to a few hundredth of those of conventional illumination devices, and the life span thereof is several to several ten times, thereby having reduced electric power consumption and excellent durability. Further light emitting diode can be installed in a small space and durable against vibration. A light emitting device using such a light emitting diode is used for display and back light, and a study is actively in progress so as to apply to illumination. A white light emitting diode as well as a light emitting diode with a single color such as red, blue and green is recently released. It is expected that a demand will increase rapidly as light emitting devices using a white light emitting diode are applied to products for a car and illumination.


The organism of humans has the circadian rhythm that means the physiological rhythm repeats in a 24 hours cycle. For example, the human hormone cortisol known as stress hormone as well as melatonin known as sleep hormone have a big influence of alertness and sleep. In the morning the cortisol level is increasing as a basis for the day's activities. The minimum of cortisol is at midnight. In comparison the melatonin level drops in the morning. So sleepiness is reduced. But when the day is ending and it becomes dark the melatonin level is increasing and the sleeping hormone is effective and the basis for a healthy sleep.


In general, light influences the physiological rhythm of humans, and more particularly, the sunlight plays an extremely important role in such an influence. The color temperature of the sunlight is higher than 6000K in the morning and getting decreased during the afternoon gradually. The color temperature indicates a physical figure with Kelvin (K) for a color of a light source. The higher the color temperature is, the more the part of blue is, and the lower the color temperature is, the more the part of yellow-red is dominating. Further, the increasing color temperature makes activity and concentration of the brain increased and the decreasing color temperature makes the sensitivity active and the mind comfortable.


Light provides various feelings according to wavelength or color temperatures and has a great influence on the physiological rhythm of humans. If the physiological rhythm does not adapt properly, many diseases such as digestive trouble and chronic fatigue can be caused. Accordingly, a study on illumination devices with consideration of the circadian rhythm is in progress.


In case of a light emitting device using a conventional light emitting diode, a variety of methods of making white light have been proposed. A common method of making white light is to combine a part of the first light emitted from a light emitting diode chip and the second light which of wavelength is changed by phosphor by applying phosphor around a light emitting diode chip. Phosphor substances for making white light can be garnet phosphors, thiogallate phosphors, sulfide phosphors, silicate phosphors, oxynitride phosphors and so forth. However, a light emitting device using such materials has a disadvantage in that a scope of color temperature is narrow, the color rendering index is very low, and the stability of these lamps is unsatisfactory. That is, there is a problem that it is difficult to manufacture a light emitting device providing various light spectrums or color temperatures.


SUMMARY OF THE INVENTION

The object of the present invention is to provide a light emitting device and lighting system having the same capable of realizing various light spectrums or color temperatures by forming a plurality of light emitting portions within a single package. Another object of the present invention is to provide a light emitting device and lighting system having the same capable of adjusting light spectrums or color temperatures of light according to the physiological rhythm of humans.


According to an exemplary embodiment, a light emitting device includes a first light emitting portion for emitting daylight with a high color temperature of 6000K or more; and a second light emitting portion for emitting warm white light at a color temperature of 3000K or less, wherein each of the first and second light emitting portions comprises a light emitting diode chip and a phosphor, and the first and second light emitting portions are driven independently.


The phosphor is expressed by Chemical Formula 1 as follows:

a(M′O).b(M″2O).c(M″X).d Al2O3.e(M′″O).f(M″″2O3).g(M′″″oOp).h(M″″″xOy)  <Chemical Formula 1>


wherein the metal M′ is one or more elements from the group of Pb, Cu


wherein the metal M″ is one or more monovalent elements from the group Li, Na, K, Rb, Cs, Au, Ag,


MIII includes at least one selected from a group consisting of Be, Mg, Ca, Sr, Ba, Zn, Cd and Mn, the MIV includes at least one selected from a group consisting of Sc, B, Ga and In, the MV includes at least one selected from a group consisting of Si, Ge, Ti, Zr, Mn, V, Nb, Ta, W and Mo, the MVI includes at least one selected from a group consisting of Bi, Sn, Sb, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, the X includes at least one selected from a group consisting of F, Cl, Br and I, 0<a≦2, 0≦b≦2, 0≦c≦2, 0≦d<8, 0<e≦4, 0≦f≦3, 0≦g≦8, 1≦o≦2, 1≦p≦5, 0≦h≦2, 1≦x≦2 and 1≦y≦5.


The phosphor is expressed by Chemical Formula 2 as follows:

a(MIO).b(MII2O).c(MIIIX).4-a-b-c(MIIIO).7(Al2O3).d(B2O3).e(Ga2O3).f(SiO2).g(GeO2).h(MIVxOy)  <Chemical Formula 2>


wherein the MI includes at least one selected from a group consisting of Pb and Cu, the MII includes at least one selected from a group consisting of Li, Na, K, Rb, Cs, Au and A, the MIII includes at least one selected from a group consisting of Be, Mg, Ca, Sr, Ba, Zn, Cd, Mn, the MIV includes at least one selected from a group consisting of Bi, Sn, Sb, Sc, Y, La, In, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, the X includes at least one selected from a group of F, Cl, Br and I, 0<a≦4, 0≦b≦2, 0≦c≦2, a+b+c≦4, 0≦d≦1, 0≦e≦1, 0≦f≦1, 0≦g≦1, 0<h≦0.5, 1≦x≦2 and 1≦y≦5.


The phosphor is expressed by Chemical Formula 3 as follows:

a(MIO).b(MIIO).c(Al2O3).d(MIII2O3).e(MIVO2).f(MVxOy)  <Chemical Formula 3>


wherein the MI includes at least one selected from a group consisting of Pb and Cu, the MII includes at least one selected from a group consisting of Be, Mg, Ca, Sr, Ba, Zn, Cd and Mn, the MIII includes at least one selected from a group consisting of B, Ga and In, the MIV includes at least one selected from a group consisting of Si, Ge, Ti, Zr and Hf, the MV includes at least one selected from a group consisting of Bi, Sn, Sb, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, 0<a≦1, 0≦b≦2, 0<c≦8, 0≦d≦1, 0≦e≦1, 0<f≦2, 1≦x≦2 and 1≦y≦5.


The phosphor is expressed by Chemical Formula 4 as follows:

a(MIO).b(MIIO).c(MIIIX).d(MIII2O).e(MIV2O3).f(MVoOp).g(SiO2).h(MVIxOy)  <Chemical Formula 4>


wherein the MI includes at least one selected from a group consisting of Pb and Cu, the MII includes at least one selected from a group consisting of Be, Mg, Ca, Sr, Ba, Zn, Cd and Mn, the MIII includes at least one selected from a group consisting of Li, Na, K, Rb, Cs, Au and Ag, the MIV includes at least one selected from a group consisting of Al, Ga, In and B, the MV includes at least one selected from a group consisting of Ge, V, Nb, Ta, W, Mo, Ti, Zr, Hf and P, MVI includes at least one selected from a group consisting of Bi, Sn, Sb, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, the X includes at least one selected from a group consisting of F, Cl, Br and I, 0<a≦2, 0<b≦8, 0≦c≦4, 0≦d≦2, 0≦e≦2, 0≦f≦2, 0≦g≦10, 0<h≦5, 1≦o≦2, 1≦p≦5, 1≦x≦2 and 1≦y≦5.


The phosphor is expressed by Chemical Formula 5 as follows:

a(MIO).b(MII2O).c(MIIX).d(Sb2O5).e(MIIIO).f(MIVxOy)  <Chemical Formula 5>


wherein the MI includes at least one selected from a group consisting of Pb and Cu, the MII includes at least one selected from a group consisting of Li, Na, K, Rb, Cs, Au and Ag, the MIII includes at least one selected from a group consisting of Be, Mg, Ca, Sr, Ba, Zn, Cd and Mn, the MIV includes at least one selected from a group consisting of Bi, Sn, Sc, Y, La, Pr, Sm, Eu, Tb, Dy and Gd, the X includes at least one selected from a group consisting of F, Cl, Br and I, 0<a≦2, 0≦b≦2, 0≦c≦4, 0≦d≦8, 0≦e≦8, 0≦f≦2, 1≦x≦2 and 1≦y≦5.


The phosphor is expressed by Chemical Formula 6 as follows:

a(MIO).b(MII2O).c(MIIX).dGeO2.e(MIIIO).f(MIV2O3).g(MVoOp).h(MVIxOy)  <Chemical Formula 6>


wherein the MI includes at least one selected from a group consisting of Pb and Cu, the MII includes at least one selected from a group consisting of Li, Na, K, Rb, Cs, Au and Ag, the MIII includes at least one selected from a group consisting of Be, Mg, Ca, Sr, Ba, Zn and Cd, the MIV includes at least one selected from a group consisting of Sc, Y, B, Al, Ga, In and La, the MV includes at least one selected from a group consisting of Si, Ti, Zr, Mn, V, Nb, Ta, W and Mo, the MVI includes at least one selected from a group consisting of Bi, Sn, Pr, Sm, Eu, Gd and Dy, the X includes at least one selected from a group consisting of F, Cl, Br and I, 0<a≦2, 0≦b≦2, 0≦c≦10, 0<d≦10, 0≦e≦14, 0≦f≦14, 0≦g≦10, 0≦h≦2, 1≦o≦2, 1≦p≦5, 1≦x≦2 and 1≦y≦5 .


The phosphor is expressed by Chemical Formula 7 as follows:

a(MIO).b(MII2O).c(MIIX).dP2O5.e(MIIIO).f(MIV2O3).g(MVO2).h(MVIxOy)  <Chemical Formula 7>


wherein the MI includes at least one selected from a group consisting of Pb and Cu, the MII includes at least one selected from a group consisting of Li, Na, K, Rb, Cs, Au and Ag, the MIII includes at least one selected from a group consisting of Be, Mg, Ca, Sr, Ba, Zn, Cd and Mn, the MIV includes at least one selected from a group consisting of Sc, Y, B, Al, La, Ga and In, the MV includes at least one selected from a group consisting of Si, Ge, Ti, Zr, Hf. V, Nb, Ta, W and Mo, MVI includes at least one selected from a group consisting of Bi, Sn, Pr, Sm, Eu, Gd, Dy, Ce and Tb, the X includes at least one selected from a group consisting of F, Cl, Br and I, 0<a≦2, 0≦b≦12, 0≦c≦16, 0<d≦3, 0≦e≦5, 0≦f≦3, 0≦g≦2, 0<h≦2, 1≦x≦2 and 1≦y≦5.


The light emitting device comprises one or a plurality of phosphor.


The light emitting diode chip emits blue or UV light.


The light emitting device further comprises a controller for controlling voltage applied to at least any one of the first light emitting portion and the second light emitting portion.


The controller controls the voltage input from the outside with respect to time and applies the voltage to at least any one of the first light emitting portion and the second light emitting portion.


The controller increases and decreases voltage with a 24 hour cycle and applies the voltage to at least any one of the first light emitting portion and the second light emitting portion.


The first and second light emitting portions are formed in one package.


The light emitting device further comprises a substrate, wherein the light emitting diode chips of the first and second light emitting portions are mounted on the substrate, and the phosphor of the first and second light emitting portions are disposed on the light emitting diode chips.


The light emitting device further comprises a heat sink for emitting heat generated from the light emitting diode chips, wherein the light emitting diode chips of the first and second light emitting portions are mounted on the heat sink and the phosphor of the first and second light emitting portions are disposed on the light emitting diode chips.


A groove is formed in the substrate, and the first light emitting portion and the second light emitting are formed on the lower of the groove.


The groove comprises a plurality of grooves, each groove is positioned apart from each other, and the first light emitting portion or the second light emitting is formed on the lower of the each groove.


The light emitting device further comprises a molding portion encapsulating the first light emitting portion and the second light emitting in common.


According to an exemplary embodiment, a light emitting device comprises a first light emitting portion for emitting a first white light with a relatively high color temperature; and a second light emitting portion for emitting a second white light with a relatively low color temperature, wherein the first and second light emitting portions are driven independently.


According to an exemplary embodiment, a lighting system comprises a base plate; and a plurality of light emitting device diposed on the base plate, wherein each light emitting device comprises a first light emitting portion for emitting daylight with a high color temperature of 6000K or more, and a second light emitting portion for emitting warm white light at a color temperature of 3000K or less, wherein each of the first light emitting portion and the second light emitting portion comprises a light emitting diode chip and a phosphor, and the first light emitting portion and the second light emitting portion are driven independently.


According to an exemplary embodiment, a lighting system comprises a base plate; and at least one or more first light emitting device and at least one or more second emitting device disposed on the base plate, wherein the first light emitting device comprises a first emitting portion for emitting daylight with a high color temperature of 6000K or more, and the second emitting device comprises a second light emitting portion for emitting warm white light at a color temperature of 3000K or less, wherein each of the first light emitting portion and the second light emitting portion comprises a light emitting diode chip and a phosphor, and the first light emitting portion and the second light emitting portion are driven independently.


The first light emitting device and the second light emitting device are disposed nearly and repeatedly.


The first light emitting device is disposed on a first region of the base plate, and the second light emitting device is disposed on a second region of the base plate.


The present invention has an advantage in that a light emitting device can be diversely applied in a desired atmosphere and use by realizing white light with different light spectrums and color temperatures, as a plurality of light emitting portions are formed in a single package. Particularly, the present invention has the effect on health by appropriately adjusting wavelength or a color temperature of light according to the circadian rhythm of humans. Moreover, there is an effect of reducing cumbersome in procedure and the cost and increasing effective use of space, since it is formed by a single package, which has been comprised of a separated package to realize white light with various spectrum and color temperatures in prior art.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a conceptual block diagram illustrating a light emitting device according to a first embodiment of the present invention.



FIG. 2 is a concept block diagram illustrating a light emitting device according another embodiment of the present invention.



FIGS. 3 and 4 are graphs illustrating an embodiment of first and second controller parts respectively.



FIGS. 5 and 6 are graphs illustrating another embodiment of first and second controller parts respectively.



FIGS. 7 and 8 are graphs showing light spectrum of the light emitting device according to a first embodiment.



FIGS. 9 and 10 are graphs showing light spectrum of the light emitting device according to a second embodiment.



FIGS. 11 and 12 are graphs showing light spectrum of the light emitting device according to a third embodiment.



FIGS. 13 to 18 are sectional views of the light emitting devices applying to different structures.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. These embodiments are provided only for illustrative purposes and for full understanding of the scope of the present invention by those skilled in the art. Accordingly, the present invention is not limited to the embodiments but may be implemented into different forms. In the drawings, the width, length, thickness and the like of each component may be exaggerated for convenience and clarity of illustration. Throughout the drawings, like components are designated by like reference numerals.


A light emitting device according to the present invention is characterized by a first light emitting portion that emits white light with a relatively high color temperature within a single package, a second light emitting portion that emits light with a relatively low color temperature, and possibility of operating independently from the first light emitting portion and the second light emitting portion.


The first light emitting portion emits white light at a color temperature of 6000K or more, which is known as daylight. The second light emitting portion emits white light at a color temperature of 3000K or less, which is known as warm white.


The first and second light emitting portions include a light emitting diode chip and phosphor. The white light with a desired light spectrum and color temperature can be realized by combination of blue light or UV light emitted from a light emitting diode chip and wavelength-converted light by phosphor.


A light emitting diode chip and phosphor forming the first light emitting portion or the second light emitting portion can be diversely comprised. For example, the first light emitting portion or the second light emitting portion can include a single blue light emitting diode chip and a phosphor with yellow emission. The white light is realized by combination of blue light emitted from a light emitting diode chip and wavelength-converted yellow light by phosphor. Further, the first light emitting portion or the second light emitting portion can include a single blue light emitting diode chip, a phosphor with green emission and a phosphor with orange emission. The white light is realized by combination of blue light emitted from a light emitting diode chip and wavelength-converted green and orange light by phosphors. In this case, there is an advantage in that the color rendering index is more improved than that of the white light realized by combination of blue light emitted from a light emitting diode chip and wavelength-converted yellow light by phosphor. Namely, the color rendering index can be improved by using a light emitting diode chip and a plurality of phosphor materials with different emission peaks.


It is preferable to use a blue light emitting diode chip or a UV light emitting diode chip as the aforementioned light emitting diode chips.


The aforementioned phosphors are characterized by using phosphor materials with different emission peaks, for example silicate phosphor with emission peaks from green to red. The white light with various light spectrums and color temperatures can be realized by making a variety of colors out of light emitted from a light emitting diode chip. In case of using a plurality of phosphor materials, an influence of phosphor materials on each other can be minimized by using the same series of phosphor materials.


The aforementioned phosphor materials include aluminates, silicates, oxynitrides, antimonates, germanates, or phosphates. Particularly, use of phosphor materials containing Pb or Cu causes the high stability and excellent photoexcitation.


The aluminate phosphors include phosphor materials expressed by the following chemical formula 1, 2 and 3.

a(M′O).b(M″2O).c(M″X).dAl2O3.e(M′″O).f(M″″2O3).g(M′″″oOp).h(M″″″xOy)  Chemical Formula 1


wherein the metal M′ is one or more elements from the group of Pb, Cu


wherein the metal M″ is one or more monovalent elements from the group Li, Na, K, Rb, Cs, Au, Ag,


wherein MIII is one or more divalent elements from the group of Be, Mg, Ca, Sr, Ba, Zn, Cd, Mn,


wherein the metal MIV is one or more trivalent elements from the group of Sc, B, Ga, In,


wherein the metal MV is one or more elements from the group of Si, Ge, Ti, Zr, Mn, V, Nb, Ta, W, Mo,


wherein the metal MVI is at least one or more elements from the group of Bi, Sn, Sb, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu


wherein X is one or more elements from the group of F, Cl, Br, I,


and wherein a range of a, b, c, d, e, f, g, o, p, h, x and y is 0<a≦2, 0≦b≦2, 0≦c≦2, 0≦d≦8, 0<e≦4, 0≦f≦3, 0≦g≦8, 1≦o≦2, 1≦p≦5, 0≦h≦2, 1≦x≦2 and 1≦y≦5 respectively.

a(MIO)b(MII2O)c(MIIX)4-a-b-c(MIIIO)7(Al2O3)d(B2O3)e(Ga2O3)f(SiO2)g(GeO2)h(MIVxOy)  Chemical Formula 2


wherein MI is one or more elements from the group of Pb, Cu,


wherein MII is one or more monovalent element from Li, Na, K, Rb, Cs, Au, Ag,


wherein MIII is one or more divalent elements from the group of Be, Mg, Ca, Sr, Ba, Zn, Cd, Mn,


wherein MIV is one or more elements from the group of Bi, Sn, Sb, Sc, Y, La, In, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,


wherein X is one ore more elements from the group F, Cl, Br, I,


and wherein a range of a, b, c, d, e, f, g, h, x and y is 0<a≦4, 0≦b≦2, 0≦c≦2, a+b+c≦4, 0≦d≦1, 0≦e≦1, 0≦f≦1, 0≦g≦1, 0≦h<0.5, 1≦x≦2 and 1≦y≦5 respectively.

a(MIO)b(MIIO)c(Al2O3)d(MIII2O3)e(MIVO2)f(MVxOy)  Chemical Formula 3


wherein MI is at least one or more elements from the group of Pb, Cu,


wherein MII is at least one or more divalent elements from the group of Be, Mg, Ca, Sr, Ba, Zn, Cd, Mn,


wherein MIII is one or more elements from the group of B, Ga, In,


wherein MIV is one or more elements from the group of Si, Ge, Ti, Zr, Hf.


wherein MV is at least one or more elements from the group of Bi, Sn, Sb, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,


and wherein a range of a, b, c, d, e, f, x and y is 0<a≦1, 0≦b≦2, 0<c≦8, 0≦d≦1, 0≦e≦1, 0≦f≦2, 1≦x≦2 and 1≦y≦5 respectively.


The silicate phosphors include phosphor materials expressed by the following chemical formula 4.

a(MIO)b(MIIO)c(MIIIX)d(MIII2O)e(MIV2O3)f(MVoOp)g(SiO2)h(MVIxOy)  Chemical Formula 4


wherein MI is one or more elements from the group of Pb, Cu,


wherein MII is one or more divalent elements from the group of Be, Mg, Ca, Sr, Ba, Zn, Cd, Mn,


wherein MIII is one or more monovalent elements from the group Li, Na, K, Rb, Cs, Au, Ag,


wherein MIV is one or more from the group Al, Ga, In, B,


wherein MV is one or more elements from the group Ge, V, Nb, Ta, W, Mo, Ti, Zr, Hf, P,


wherein MVI is at least one or more elements from the group of Bi, Sn, Sb, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,


wherein X is at least one ore more elements from the group F, Cl, Br, I


and wherein a range of a, b, c, d, e, f, g, h, o, p, x and y is 0<a≦2, 0≦b≦8, 0≦c≦4, 0≦d≦2, 0≦e≦2, 0≦f≦2, 0≦g≦10, 0<h≦5, 1≦o≦2, 1≦p≦5, 1≦x≦2 and 1≦y≦5 respectively.


The antimonate phosphors include phosphor materials expressed by the following chemical formula 5.

a(MIO)b(MII2O)c(MIIX)d(Sb2O5)e(MIIIO)f(MIVxOy)  Chemical Formula 5


wherein MI is one or more elements from the group of Pb, Cu,


wherein MII is one or more monovalent elements from the group Li, Na, K, Rb, Cs, Au, Ag,


wherein the metal MIII is one or more divalent elements from the group of Be, Mg, Ca, Sr, Ba, Zn, Cd, Mn,


wherein the metal MIV is at least one or more elements from the group of Bi, Sn, Sc, Y, La, Pr, Sm, Eu, Tb, Dy, Gd,


wherein X is at least one ore more elements from the group F, Cl, Br, I,


and wherein a range of a, b, c, d, e, f, x and y is 0<a≦2, 0≦b≦2, 0≦c≦4, 0<d≦8, 0≦e≦8, 0≦f≦2, 1≦x≦2 and 1≦y≦5 respectively.


The germanate phosphors include phosphor materials expressed by the following chemical formula 6.

a(MIO)b(MII2O)c(MIIX)dGeO2e(MIIIO)f(MIV2O3)g(MVoOp)h(MVIxOy)  Chemical Formula 6


wherein MI is one or more elements from the group of Pb, Cu


wherein MII is one or more monovalent elements from the group Li, Na, K, Rb, Cs, Au, Ag,


wherein MIII is one or more divalent elements from the group of Be, Mg, Ca, Sr, Ba, Zn, Cd,


wherein MIV is one or more trivalent elements from the group of Sc, Y, B, Al, Ga, In, La,


wherein MV is one or more element from the group of Si, Ti, Zr, Mn, V, Nb, Ta, W, Mo,


wherein MVI is at least one or more elements from the group of Bi, Sn, Pr, Sm, Eu, Gd, Dy,


wherein X is at least one ore more elements from the group F, Cl, Br, I,


and wherein a range of a, b, c, d, e, f, g, h, o, p, x and y is 0<a≦2, 0≦b≦2, 0≦c≦10, 0<d≦10, 0≦e≦14, 0≦f≦14, 0≦g≦10, 0≦h≦2, 1≦o≦2, 1≦p≦5, 1≦x≦2 and 1≦y≦5 respectively.


The phosphate phosphors include phosphor materials expressed by the following chemical formula 7.

a(MIO)b(MII2O)c(MIIX)dP2O5e(MIIIO)f(MIV2O3)g(MVO2)h(MVIxOy)  Chemical Formula 7


wherein MI is one or more elements from the group of Pb, Cu,


wherein MII is one or more monovalent elements from the group Li, Na, K, Rb, Cs, Au, Ag,


wherein MIII is one or more divalent elements from the group of Be, Mg, Ca, Sr, Ba, Zn, Cd, Mn,


wherein MIV is one or more trivalent elements from the group of Sc, Y, B, Al, La, Ga, In,


wherein MV is one or more element from the group of Si, Ge, Ti, Zr, Hf, V, Nb, Ta, W, Mo,


wherein MVI is at least one or more elements from the group of Bi, Sn, Pr, Sm, Eu, Gd, Dy, Ce, Tb,


wherein X is at least one ore more elements from the group F, Cl, Br, I,


and wherein a range of a, b, c, d, e, f, g, h, x and y is 0<a≦2, 0≦b≦12, 0≦c≦16, 0<d≦3, 0≦e≦5, 0≦f≦3, 0≦g≦2, 0<h≦2, 1≦x≦2 and 1≦y≦5 respectively.



FIG. 1 is a conceptual block diagram illustrating a light emitting device according to a first embodiment of the present invention.


Referring to FIG. 1, a light emitting device includes a first light emitting portion that emits white light at a color temperature of 6000K or more, second light emitting portion that emits white light at a color temperature of 3000K less, and the said first light emitting portion and second light emitting portion are characterized by independent driving. In this kind of a light emitting device, since a plurality of light emitting portions in a single package (A) can have its own electrical connection, the said first light emitting portion and second light emitting portion can be driven independently. For example, in case that only first light emitting portion is powered on, white light at a color temperature of 6000K or more(daylight) can be realized, and in case that only second light emitting portion is powered on, white light at a color temperature of 3000K or less(warm white) can be realized. Moreover, in case that the first light emitting portion and second light emitting portion are powered on together, white at with a color temperature range in between 3000K and 6000K can be realized by combination of the white light from the first light emitting portion and the second light emitting portion. Therefore, a light emitting device can realize white light with the high CRI, variable spectrum and color temperature by selective driving of a first light emitting device and a second light emitting device. Since a light emitting device according to the present invention can realize variable spectrum and color temperature of white light, it is advantageous that it can be applied variously in desired atmosphere and uses with only single package (A). For instance, driving a first light emitting portion, which emits white light at a color temperature of 6000K or more (daylight) in the daytime, activity and concentration of human brain can be improved, and driving second light emitting portion, which emits white light at a color temperature of 3000K or less (warm white) in the night time, it helps people to have more peaceful and comfortable rest. Especially, it has effect of improving health by controlling wavelength and color temperature of the light appropriately according to circadian function of effects of human being.



FIG. 2 is a concept block diagram illustrating a light emitting device according to another embodiment of the present invention.


Referring to FIG. 2, a light emitting device comprises a first light emitting portion that emits white light at a color temperature of 6000K or more, a second light emitting portion that emits white light at a color temperature of 3000K or less, a first controller part connected to the said first light emitting portion, and a second controller part connected to the said second light emitting portion. And the first and second controller parts are characterized by control of input power from the outside to the first and second light emitting portions.


The said first and second controller part are to control each input voltage to the first and second light emitting portion, for example, the said first and second controller parts control the input voltage from the power by the time and output. So the said first and second controller parts can include timer and voltage controller circuit. That is, input voltage to the controller part from the power outside is controlled through timer and voltage controller circuit by the time then it is passed to the first and second light emitting portions.



FIGS. 3 and 4 are graphs illustrating an embodiment of the first and second controller parts respectively.


As shown in FIG. 3, the first controller part ({circle around (1)}) passes the voltage from the power outside for first 14 hours of the day, and blocks the voltage for remaining 12 hours of the day. In contrast, the second controller part ({circle around (2)}) blocks the voltage for first 12 hours of the day as shown in the FIG. 4, and passes the voltage for remaining 12 hours of the day. That is, for 12 hours of a day, power is delivered to only the first light emitting portion for driving, and for remaining 12 hours of a day, power is delivered to only the second light emitting portion for driving.


Operation of light emitting device is explained as follows. Power is impressed to the first and second controller parts, and the first and second controller parts control the voltage by the time and deliver to the first and second light emitting portion. As mentioned above, voltage impressed from power outside is delivered to only the first light emitting portion for 12 hours of a day, and it is delivered to only the second light emitting portion for remaining 12 hours of a day.


That is, for 12 hours of a day, for example, white light at a color temperature of 6000K or more (daylight) can be realized by driving only the first light emitting portion in the daytime, and for remaining 12 hours of a day, for example, white light at a color temperature of 3000K or less (warm white) can be realized by driving only the second light emitting portion.


The aforementioned is showing an example of power on/off to the first and second light emitting portions, but it is not limited to, it can be applied in various ways. For instance, as it is shown in FIGS. 5 and 6, luminous intensity of the first and second light emitting portions can be increased or decreased as the voltage is increased or decreased by the time. Accordingly, a color temperature of white light emitted from a light emitting device can be increased or decreased gradually.


Since such a light emitting device can control the operation of the first and second light emitting devices through the first and second controller parts, it can be applied in various ways as desired.


So that, a light emitting device of which color temperature is controlled automatically can be produced without a separated input by the time. For instance, a light emitting device can be formed to realize a relatively high color temperature during the daytime, and a relatively low color temperature during the nighttime. Especially, it has effect of improving health by controlling wavelength and a color temperature of the light appropriately according to the circadian rhythm of humans.


The aforementioned embodiment explained a controller part, which controls voltage by the time, but it is not limited to, the said controller part can include an additional separate input part, so that, it can be formed to adjust a color temperature as user's desire. Moreover, the aforementioned embodiment showed that power is impressed to the first and second controller parts at the same time, but it is not limited to, the said first and second controller parts can be connected to separated power, and they can be driven independently. Furthermore, they can be formed to include only one controller, which can control the first and second light emitting portions together.


Since such a light emitting device can realize various spectrum and color temperature of white light, it is advantageous that it can be applied variously in desired atmosphere and uses with only single package (A). For instance, driving a first light emitting portion, which emits white light at a color temperature of 6000K or more (daylight) in the daytime, activity and concentration of human brain can be improved, and driving second light emitting portion, which emits white light at a color temperature of 3000K or less (warm white) in the night time, it helps people to have more peaceful and comfortable rest. Especially, it has effect of improving health by controlling wavelength and a color temperature of the light appropriately according to the circadian rhythm of humans.


Moreover, there is an effect of reducing cumbersome in procedure and the cost and increasing effective use of space, since it is formed by a single package, which has been comprised of a separated package to realize white light with various spectrum and color temperatures in prior art.


The present invention is described more specifically in the following examples.


EXAMPLE 1

A first light emitting portion is comprised of a light emitting diode chip with wavelength of 456 nm (blue light), the phosphor consisting of Cu0,15Ba1,82Sr0,03Si0,99Ge0.01O4: Eu with peak emission of 515 nm, and the phosphor consisting of Cu0,05Sr1,72Ca0,23Si0,99Ge0,01O4: Eu with peak emission of 593 nm.


A second light emitting portion is comprised of a light emitting diode chip with wavelength of 452 nm, the phosphor consisting of Cu0,15Ba1,84Sr0,01Si0,99Zr0,01O4: Eu with peak emission of 508 nm, and the phosphor consisting of Cu0,05Sr1,85Ca0,10SiO4:Eu with peak emission of 605 nm.



FIG. 7 shows emission spectrum of the first light emitting portion and FIG. 8 shows emission spectrum of the second light emitting portion. As illustrated in the figure, luminous intensity of the first light emitting portion is relatively high in blue emission region, and luminous intensity of the second light emitting portion is relatively high in yellow or red emission region. That is, a color temperature of the first light emitting portion is relatively high and a color temperature of the second light emitting portion is relatively low.


The first light emitting portion of this embodiment has 9,500K of a color temperature with excellent color rendering index of 88. Moreover, the second light emitting portion has 2,640K of a color temperature with excellent color rendering index of 83.


So that, selective driving of first light emitting portion and second light emitting portion, white light with excellent color rendering index and various spectrum can be realized. For example, only driving the first light emitting portion in the daytime, white light with relatively high color temperature, 9,500K is realized, and only driving second light emitting portion in the nighttime, white light with relatively low color temperature, 2,640K is realized.


EXAMPLE 2

A first light emitting portion is comprised of a light emitting diode chip with wavelength of 456 nm, the phosphor consisting of Cu0,15Ba1,82Sr0,03Si0,99Ge0,01O4: Eu with peak emission of 515 nm, and the phosphor consisting of Cu0,05Sr1,8Ca0,15SiO4:Eu with peak emission of 600 nm.


A second light emitting portion is comprised of a light emitting diode chip with wavelength of 456 nm, the phosphor consisting of Cu0,15Ba1,82Sr0,03Si0,99Ge0,01O4: Eu, with peak emission of 515 nm, and the phosphor consisting of Cu0,05Sr1,8Ca0,15SiO4:Eu with peak emission of 600 nm.


The phosphors mixing ratio of the first emitting portion is different from the phosphors mixing ratio of the second emitting portion, so that color temperature and color rendering index of the first emitting portion are different from them of the second emitting portion.



FIG. 9 shows light spectrum of the first light emitting portion and FIG. 10 shows light spectrum of the second light emitting portion. As shown in FIGS. 9 and 10, a color temperature of the first light emitting portion is relatively high and a color temperature of the second light emitting portion is relatively low.


The first light emitting portion of this embodiment has 8,800K of a color temperature with an excellent color rendering index of 92. Moreover, the second light emitting portion has 2,550K of a color temperature with an excellent color rendering index of 80.


The white light with an excellent color rendering index and various light spectrum and color temperatures can be realized by selective driving of first light emitting portion and second light emitting portion. For example, the white light with a color temperature of 8800K which is relatively high is rendered during the day by driving only the first light emitting portion, and the white light with a color temperature of 2550K which is relatively low is rendered during the night by driving only the second light emitting portion.


EXAMPLE 3

A first light emitting portion is comprised of a light emitting diode chip that emits UV light with wavelength of 405 nm, the phosphor consisting of Cu0,02Ba2,8Sr0,2Mg0,98Si2O8: Eu with emission peak of 440 nm, the phosphor consisting of Cu0,15Ba1,84Sr0,01Si0,99Zr0,01O4: Eu with emission peak of 508 nm, the phosphor consisting of Cu0,02Ba0,98Sr0,98Ca0,02SiO4: Eu with emission peak of 565 nm, and the phosphor consisting of Cu0,15Mg0,85BaP2O7: Eu, Mn with emission peak of 630 nm.


A second light emitting portion is comprised of a light emitting diode chip that emits UV light with wavelength of 405 nm, the phosphor consisting of Cu0,02Ba2,8Sr0,2Mg0,98Si2O8: Eu with emission peak of 440 nm, the phosphor consisting of Cu0,15Ba1,82Sr0,03Si0,99Ge0,01O4: Eu with emission peak of 515 nm, the phosphor consisting of Cu0,05Sr1,72Ca0,23Si0,99Ge0,01O4: Eu with emission peak of 593 nm, and the phosphor consisting of Cu0,15Mg0,85BaP2O7: Eu, Mn with emission peak of 630 nm.



FIG. 11 shows light spectrum of the first light emitting portion and FIG. 12 shows light spectrum of the second light emitting portion. As shown in FIGS. 11 and 12, a color temperature of the first light emitting portion is relatively high and a color temperature of the second light emitting portion is relatively low.


The first light emitting portion of this embodiment has 8,800K of a color temperature with an excellent color rendering index of 88. Moreover, the second light emitting portion has 2600K of a color temperature with an excellent color rendering index of 95.


The white light with an excellent color rendering index and various light spectrum and color temperatures can be realized by selective driving of first light emitting portion and second light emitting portion. For example, the white light with a color temperature of 8800K which is relatively high is rendered during the day by driving only the first light emitting portion, and the white light with a color temperature of 2600K which is relatively low is rendered during the night by driving only the second light emitting portion.



FIGS. 13 to 17 show the light emitting devices applying to different structures according to the present invention.


Referring to FIG. 13, a light emitting device comprises a substrate (10), a first light emitting portion (200) and a second light emitting portion (300) mounted on the substrate (10).


The first light emitting portion (200) comprises a first light emitting diode chip (20) and a first phosphor (30). The first phosphor (30) mixed in thermoset resin (50) such as epoxy and silicon is disposed on the first light emitting diode chip (20). The first light emitting portion (200) renders white light at a color temperature of 6000K or more (daylight) by combination of light emitted from the first light emitting diode chip (20) and wavelength-converted light by the first phosphor (30).


Likewise, the second light emitting portion (300) comprises a second light emitting diode chip (60) and a second phosphor (70). The second phosphor (70) mixed in thermoset resin (90) such as epoxy and silicon is disposed on the second light emitting diode chip (60). The second light emitting portion (300) renders white light at a color temperature of 3000K or less (warm white) by combination of light emitted from the second light emitting diode chip (60) and wavelength-converted light by the second phosphor (70).


The substrate (10) can have a predetermined slope on the sidewalls of a cavity by forming a predetermined cavity wherein first and second light emitting portion (200, 300) are formed. Referring to FIG. 14, a light emitting device comprises the substrate (10) with the cavity (100), and the first light emitting portion (200) and the second light emitting portion (300) formed on the bottom of the cavity (100). The first light emitting portion (200) comprising the first light emitting diode chip (20) and the first phosphor (30) and the second light emitting portion (300) comprising the second light emitting diode chip (60) and the second phosphor (70) are formed on the bottom of the cavity (100). A compound (50, 90) of the first and second phosphor (30, 70) and thermoset resin is disposed on the first and second light emitting diode chips (20, 60). A predetermined slope of the sidewalls of the cavity (100) can maximize reflection of light emitted from the light emitting diode chips (20, 60) and increase luminescent efficiency. A molding portion(not shown) can be formed by filling the inside of the cavity (100) with transparent thermoset resin in order to protect the first and second light emitting portion (200, 300).


Further, a cavity corresponding to each of light emitting portions can be formed to separate the first light emitting portion (200) from the second light emitting portion (300). Referring to FIG. 15, a light emitting device comprises a substrate (10) with a plurality of cavities to separate light emitting portions (200, 300), and the first light emitting portion (200) and the second light emitting portion (300) separately formed on the bottom of the cavity. The first light emitting portion (200) is formed by mounting the first light emitting diode chip (20) on the bottom of a cavity (110) and filling the inside of the cavity (110) with a compound (50) of the first phosphor (30) and thermoset resin. The second light emitting portion (300) can be formed in the same way. At this time, reflection of light emitted from the light emitting diode chips (20, 60) can be maximized and luminescent efficiency can be increased by forming a predetermined slope of the sidewalls of each of the cavities.


A shape of the sidewalls of the cavity can be curved as well as straight. Referring to FIG. 16, a light emitting device comprises a substrate (10) wherein a cavity (120) is formed with the curved sidewalls, and the first light emitting portion (200) and the second light emitting portion (300) formed on the bottom of the cavity (120). Further, a partition (130) can be formed in a predetermined area of the bottom of the cavity (120) to separate the first light emitting portion (200) from the second light emitting portion (300). The partition (130) can be formed at the same height as the substrate (10) as shown in FIG. 15, or the partition can be formed at a lower height than the substrate (10) to separate the first light emitting portion (200) from the second light emitting portion (300) and a molding portion (140) filling the first and second light emitting portion (200, 300) together can be formed as shown in FIG. 16. In this case, it is advantageous to protect the first and second light emitting portion (200, 300) and make combination of light emitted from the first and second light emitting portion (200, 300) easy.



FIG. 17 shows an example of a light emitting device for efficiently emitting heat generated from the light emitting diode chips (20, 60). The light emitting device comprises a heat sink (160), the first light emitting portion (200) and the second light emitting portion (300) formed on the heat sink (160), a housing (150) surrounding the heat sink (160) lead frames (170, 180) protruding toward the outside of the housing, and a molding portion (190) filling the first and second light emitting portion (200, 300). At this time, use of excellent thermal conductive materials such as metal as a heat sink (160) can make it more efficient to emit heat generated from the light emitting diode chips (20, 60).


The heat sink (160) includes a protruding portion corresponding to each of the light emitting portions (200, 300) to make it easy to dispose a compound (50, 90) of the phosphor (30, 70) and thermoset resin on the light emitting diode chips (20, 60), but is not limited to. Further, a light emitting portion may be formed on a plane of the heat sink or on the bottom of the cavity of a heat sink.


In the aforementioned description, the first and second light emitting portions consist of a light emitting diode chip each, but is not limited to. The first and second light emitting portions may consist of a plurality of light emitting diode chips.


As the above, the present invention can be applied to various products as well as illumination. A number of light emitting diodes from 50 to 80 are needed to apply to illumination. Accordingly, packages manufactured with different structures may be mounted on a substrate or a number of light emitting diode chips may be mounted directly on a substrate.


As shown FIG. 18, a number of dots (500) are formed on a substrate (400) and each of dots (500) can comprise the first light emitting portion and the second light emitting portion. That is, each of dots (500) can render daylight and warm white, but is not limited to. Each of dots (500) can include either the first light emitting portion or the second light emitting portion. A dot including the first light emitting portion and a dot including the second light emitting portion may be arranged alternately with each other, or a group of dots including the first light emitting portion and a group of dots second light emitting portion may be arranged separately from each other. Dots can be arranged in various forms according to convenience of process or a desired purpose.


Hereinafter, preferred embodiments of the present invention have been described, but these embodiments are provided only for illustrative purposes and for full understanding of the scope of the present invention by those skilled in the art. Accordingly, the present invention is not limited to the embodiments but may be implemented into different forms.

Claims
  • 1. A light emitting device comprising: a first light emitting portion for emitting daylight with a high color temperature of 6000K or more; anda second light emitting portion for emitting warm white light at a color temperature of 3000K or less, anda molding portion encapsulating the first light emitting portion and the second light emitting portion in common,wherein each of the first and second light emitting portions comprises a light emitting diode chip and a phosphor,wherein the first and second light emitting portions are disposed in one package, the one package comprising a housing, lead frames protruding from sides of the housing, and a heat sink passing through the housing, the heat sink comprising protruding portions on its upper surface,wherein the protruding portions each comprise a top surface extending substantially parallel to the upper surface of the heat sink, the top surfaces of the protruding portions being raised above the upper surface of the heat sink in a direction extending away from a bottom surface of the light emitting device,wherein the light emitting diode chips of the first and second light emitting portions are driven independently, the light emitting diode chips are disposed on the top surfaces of the protruding portions of the heat sink, respectively, and the light emitting diode chips are encapsulated by a compound comprising the phosphor and a resin, the compound being disposed only on the top surfaces of the protruding portions,wherein the molding portion covers side surfaces of the protruding portions, the side surfaces of the protruding portions respectively connecting the top surfaces thereof and the upper surface of the heat sink, andwherein the phosphor is expressed by Chemical Formula 3 as follows: a(MIO).b(MIIO).c(Al2O3).d(MIII2O3).e(MIVO2).f(MVxOy)  <Chemical Formula 3>wherein the M I includes Cu, or Pb and Cu, the MII includes at least one selected from a group consisting of Be, Mg, Ca, Sr, Ba, Zn, Cd and Mn, the MIII includes at least one selected from a group consisting of B, Ga and In, the MIV includes at least one selected from a group consisting of Si, Ge, Ti, Zr and Hf, the MV includes at least one selected from a group consisting of Bi, Sn, Sb, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, 0<a≦1, 0≦b≦2, 0<c≦8, 0≦d≦1, 0≦e≦1, 0<f≦2, 1≦x≦2 and 1≦y≦5.
  • 2. A light emitting device comprising: a first light emitting portion for emitting daylight with a high color temperature of 6000K or more;a second light emitting portion for emitting warm white light at a color temperature of 3000K or less, anda molding portion encapsulating the first light emitting portion and the second light emitting portion in common,wherein each of the first and second light emitting portions comprises a light emitting diode chip and a phosphor,wherein the first and second light emitting portions are disposed in one package, the one package comprising a housing, lead frames protruding from sides of the housing, and a heat sink passing through the housing, the heat sink comprising protruding portions on its upper surface,wherein the protruding portions each comprise a top surface extending substantially parallel to the upper surface of the heat sink, the top surfaces of the protruding portions being raised above the upper surface of the heat sink in a direction extending away from a bottom surface of the light emitting device,wherein the light emitting diode chips of the first and second light emitting portions are driven independently, the light emitting diode chips are disposed on the top surfaces of the protruding portions of the heat sink, respectively, and the light emitting diode chips are encapsulated by a compound comprising the phosphor and a resin, the compound being disposed only on the top surfaces of the protruding portions,wherein the molding portion covers side surfaces of the protruding portions, the side surfaces of the protruding portions respectively connecting the top surfaces thereof and the upper surface of the heat sink, andwherein the phosphor is expressed by Chemical Formula 4 as follows: a(MIO).b(MIIO).c(MIIIX).d(MIII2O).e(MIV2O3).f(MVoOp).g(SiO2).h(MVIxOy)  <Chemical Formula 4>wherein the MI includes Cu, or Pb and Cu, the MII includes at least one selected from a group consisting of Be, Mg, Ca, Sr, Ba, Zn, Cd and Mn, the MIII includes at least one selected from a group consisting of Li, Na, K, Rb, Cs, Au and Ag, the MIV includes at least one selected from a group consisting of Al, Ga, In and B, the MV includes at least one selected from a group consisting of Ge, V, Nb, Ta, W, Mo, Ti, Zr, Hf and P, MVI includes at least one selected from a group consisting of Bi, Sn, Sb, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, the X includes at least one selected from a group consisting of F, Cl, Br and I, 0<a≦2, 0<b≦8, 0≦c≦4, 0≦d≦2, 0≦e≦2, 0≦f≦2, 0≦g≦10, 0<h≦5, 1≦o≦2, 1≦p≦5, 1≦x≦2 and 1≦y≦5.
  • 3. The light emitting device claimed in claim 1, further comprising a controller for controlling voltage applied to at least any one of the first light emitting portion and the second light emitting portion.
  • 4. The light emitting device claimed in claim 3, wherein the controller controls the voltage input from the outside with respect to time and applies the voltage to at least any one of the first light emitting portion and the second light emitting portion.
  • 5. The light emitting device claimed in claim 4, wherein the controller increases and decreases voltage with a 24 hour cycle and applies the voltage to at least any one of the first light emitting portion and the second light emitting portion.
  • 6. The light emitting device claimed in claim 2, further comprising a controller for controlling voltage applied to at least any one of the first light emitting portion and the second light emitting portion.
  • 7. The light emitting device claimed in claim 6, wherein the controller controls the voltage input from the outside with respect to time and applies the voltage to at least any one of the first light emitting portion and the second light emitting portion.
  • 8. The light emitting device claimed in claim 7, wherein the controller increases and decreases voltage with a 24 hour cycle and applies the voltage to at least any one of the first light emitting portion and the second light emitting portion.
Priority Claims (1)
Number Date Country Kind
10-2006-0029517 Mar 2006 KR national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/KR2007/001587 3/31/2007 WO 00 11/19/2008
Publishing Document Publishing Date Country Kind
WO2007/114614 10/11/2007 WO A
US Referenced Citations (98)
Number Name Date Kind
2110162 Leverenz Mar 1938 A
2402760 Leverenz Jun 1946 A
2570136 Lyon Oct 1951 A
2617773 Nagy et al. Nov 1952 A
2719128 Kressin Sep 1955 A
2780600 Wollentin Feb 1957 A
3143510 Bakker Aug 1964 A
3598752 Sisneros et al. Aug 1971 A
3644212 McAllister et al. Feb 1972 A
3893939 DeKalb et al. Jul 1975 A
3905911 Kelsey et al. Sep 1975 A
4215289 De Hair et al. Jul 1980 A
4770950 Ohnishi Sep 1988 A
4810416 Hase et al. Mar 1989 A
4972086 Bryan et al. Nov 1990 A
5032316 Takahashi et al. Jul 1991 A
5060118 Penrod et al. Oct 1991 A
5433295 Murphy Jul 1995 A
5472636 Forster et al. Dec 1995 A
5518808 Bruno et al. May 1996 A
5770110 Schrell et al. Jun 1998 A
5770111 Moriyama et al. Jun 1998 A
5853614 Hao et al. Dec 1998 A
5952681 Chen Sep 1999 A
5965192 Potter Oct 1999 A
5998925 Shimizu et al. Dec 1999 A
6045722 Leblans et al. Apr 2000 A
6066861 Hohn et al. May 2000 A
6084250 Justel et al. Jul 2000 A
6373184 Suh et al. Apr 2002 B1
6472765 Sano et al. Oct 2002 B1
6482664 Lee et al. Nov 2002 B1
6565771 Ono et al. May 2003 B1
6670751 Song et al. Dec 2003 B2
6686691 Mueller Feb 2004 B1
6842664 Harada Jan 2005 B2
6982045 Menkara et al. Jan 2006 B2
6982048 Atwater Jan 2006 B1
6987353 Menkara et al. Jan 2006 B2
7009199 Hall Mar 2006 B2
7019335 Suenaga Mar 2006 B2
7029602 Oshio Apr 2006 B2
7045078 Choi May 2006 B2
7138770 Uang et al. Nov 2006 B2
7189340 Shimomura et al. Mar 2007 B2
7204607 Yano et al. Apr 2007 B2
7206507 Lee et al. Apr 2007 B2
7229571 Ezuhara et al. Jun 2007 B2
7244965 Andrews et al. Jul 2007 B2
7332746 Takahashi et al. Feb 2008 B1
7554129 Roth et al. Jun 2009 B2
7608200 Seto et al. Oct 2009 B2
7679101 Ota et al. Mar 2010 B2
7679281 Kim et al. Mar 2010 B2
8070983 Roth et al. Dec 2011 B2
8070984 Roth et al. Dec 2011 B2
20020015013 Ragle Feb 2002 A1
20020070681 Shimizu et al. Jun 2002 A1
20030026096 Ellens et al. Feb 2003 A1
20030030063 Sosniak et al. Feb 2003 A1
20030038295 Koda Feb 2003 A1
20030141510 Brunner et al. Jul 2003 A1
20030168636 Dobson et al. Sep 2003 A1
20040051111 Ota et al. Mar 2004 A1
20040079957 Andrews et al. Apr 2004 A1
20040135504 Tamaki et al. Jul 2004 A1
20040136891 Kijima et al. Jul 2004 A1
20040206970 Martin Oct 2004 A1
20040251809 Shimomura Dec 2004 A1
20050001225 Yoshimura et al. Jan 2005 A1
20050001537 West et al. Jan 2005 A1
20050029927 Setlur et al. Feb 2005 A1
20050030744 Ducharme et al. Feb 2005 A1
20050117334 Lee et al. Jun 2005 A1
20050139846 Park et al. Jun 2005 A1
20050141048 Mizutani Jun 2005 A1
20050239227 Aanegola et al. Oct 2005 A1
20050264161 Oaku et al. Dec 2005 A1
20050274930 Roth et al. Dec 2005 A1
20050274972 Roth et al. Dec 2005 A1
20060158090 Wang et al. Jul 2006 A1
20060261309 Li et al. Nov 2006 A1
20060261350 Kawazoe et al. Nov 2006 A1
20060267042 Izuno et al. Nov 2006 A1
20070029526 Cheng et al. Feb 2007 A1
20070247051 Kuze et al. Oct 2007 A1
20070284563 Lee et al. Dec 2007 A1
20080036364 Li et al. Feb 2008 A1
20080067472 Roth et al. Mar 2008 A1
20080067920 Roth et al. Mar 2008 A1
20080224163 Roth et al. Sep 2008 A1
20090050847 Xu et al. Feb 2009 A1
20090050849 Lee et al. Feb 2009 A1
20090134413 Roth et al. May 2009 A1
20090152496 Roth et al. Jun 2009 A1
20090262515 Lee et al. Oct 2009 A1
20100002454 Lee et al. Jan 2010 A1
20100207132 Lee et al. Aug 2010 A1
Foreign Referenced Citations (133)
Number Date Country
410266 Mar 2003 AT
1218084 Jun 1999 CN
1289454 Mar 2001 CN
1317537 Oct 2001 CN
1344777 Apr 2002 CN
1434521 Aug 2003 CN
2624578 Jul 2004 CN
1581503 Feb 2005 CN
2690724 Apr 2005 CN
1707819 Dec 2005 CN
10233050 Feb 2004 DE
10259946 Jul 2004 DE
0094132 Nov 1983 EP
0382295 Aug 1993 EP
0765925 Apr 1997 EP
0862794 Sep 1998 EP
0 896 994 Feb 1999 EP
1249873 Oct 2002 EP
1605030 Dec 2005 EP
2031038 Mar 2009 EP
1336053 Nov 1973 GB
2016034 Sep 1979 GB
31-1118 Feb 1956 JP
33-8177 Sep 1958 JP
38-6082 May 1963 JP
39-8803 May 1964 JP
47-6258 Apr 1972 JP
49-38994 Oct 1974 JP
55-135190 Oct 1980 JP
57-109886 Jul 1982 JP
61-258892 Nov 1986 JP
62-197487 Sep 1987 JP
03-228366 Oct 1991 JP
05-63070 Mar 1993 JP
5-78659 Mar 1993 JP
05-198843 Aug 1993 JP
9-40946 Feb 1997 JP
9-153644 Jun 1997 JP
9-279140 Oct 1997 JP
10-321914 Dec 1998 JP
11-177143 Jul 1999 JP
11-233730 Aug 1999 JP
2000-260580 Sep 2000 JP
2000-294387 Oct 2000 JP
2001-115157 Apr 2001 JP
2001-308393 Nov 2001 JP
2001-524163 Nov 2001 JP
2002-057376 Feb 2002 JP
2002-094122 Mar 2002 JP
2002-97465 Apr 2002 JP
2002-97466 Apr 2002 JP
2002-173677 Jun 2002 JP
2002-531956 Sep 2002 JP
2002-335019 Nov 2002 JP
2002-359403 Dec 2002 JP
2002-368277 Dec 2002 JP
2003-064358 Mar 2003 JP
2003-133595 May 2003 JP
2003-152229 May 2003 JP
2003-183649 Jul 2003 JP
2003-224306 Aug 2003 JP
2003-321675 Nov 2003 JP
2004-006582 Jan 2004 JP
2004-010786 Jan 2004 JP
2004-71726 Mar 2004 JP
2004-079867 Mar 2004 JP
2004-88011 Mar 2004 JP
2004-127988 Apr 2004 JP
2004-134699 Apr 2004 JP
2004-192833 Jul 2004 JP
2005-100799 Apr 2005 JP
2005-100800 Apr 2005 JP
2005-101296 Apr 2005 JP
2005-153606 Jun 2005 JP
2005-167177 Jun 2005 JP
2005-354027 Dec 2005 JP
2006-503431 Jan 2006 JP
2006-073656 Mar 2006 JP
2006-252944 Sep 2006 JP
2009-007545 Jan 2009 JP
10-232395 Dec 1999 KR
20010032450 Apr 2001 KR
10-2001-0050839 Jun 2001 KR
20010101910 Nov 2001 KR
10-2002-0000835 Jan 2002 KR
10-2002-0053975 Jul 2002 KR
10-392363 Jul 2002 KR
10-2002-0079513 Oct 2002 KR
2003-0063211 Jul 2003 KR
10-2003-0082395 Oct 2003 KR
10-0426034 Jul 2004 KR
10-2004-0088418 Oct 2004 KR
10-2005-0008426 Jan 2005 KR
10-2005-0070349 Jul 2005 KR
10-2005-0098462 Oct 2005 KR
10-2005-0106945 Nov 2005 KR
WO2005109532 Nov 2005 KR
10-2005-0117164 Dec 2005 KR
10-2005-0117165 Dec 2005 KR
10-0626272 Sep 2006 KR
10-2006-0134728 Dec 2006 KR
10-2007-0016900 Feb 2007 KR
I328885 Mar 1999 TW
546854 Aug 2003 TW
96-32457 Oct 1996 WO
98-05078 Feb 1998 WO
98-12757 Mar 1998 WO
98-42798 Oct 1998 WO
98-39805 Nov 1998 WO
00-19546 Apr 2000 WO
0033390 Jun 2000 WO
01-41215 Jun 2001 WO
02-054502 Jul 2002 WO
02-054503 Jul 2002 WO
02-089219 Nov 2002 WO
03-021691 Mar 2003 WO
03030274 Apr 2003 WO
2004036962 Apr 2004 WO
2004038801 May 2004 WO
2004-085570 Oct 2004 WO
2004100275 Nov 2004 WO
2004-111156 Dec 2004 WO
2005068584 Jul 2005 WO
2005-109532 Nov 2005 WO
2005-112137 Nov 2005 WO
2006-043682 Apr 2006 WO
2006-068359 Jun 2006 WO
2006-081803 Aug 2006 WO
2006109659 Oct 2006 WO
2007-035026 Mar 2007 WO
2007-055538 May 2007 WO
2007-069869 Jun 2007 WO
2009-028818 Mar 2009 WO
Non-Patent Literature Citations (135)
Entry
Chinese Office Action dated Dec. 28, 2007 issued in China App No. 200580016844.4 corresponding to U.S. Appl. No. 11/568,769.
Lee, Chung-Hoon, et al., Unpublished U.S. Appl. No. 12/440,001; corresponds to WO2009-028818.
Search Report dated Aug. 21, 2007 for EP Application No. EP04106882.6.
Search Report dated Nov. 5, 2008 for EP Application No. EP06812549.1.
Search Report dated Feb. 2, 2009 for EP Application No. EP08014684.
Chen, R., “Developments in Luminescence and Display Materials Over the Last 100 Years as reflected in Electrochemical Society Publications”, Journal of Electrochemical Society, 149, pp. 69-78.
G. Blasse, B.C. Grabmeier, “Luminescent Materials”, Springer, 1994, pp. 40-47.
G. Blasse and A. Bril, “Characteristic Luminescence”, Philips Technical Review, 31 (1970) 304, pp. 306 & 310.
S. Shionoya, W.M. Yen, “Phosphor Handbook” CRC Press, 1999, Ch. 3.3, pp. 179-182.
G. Blasse, B.C. Grabmeier, “Luminescent Materials”, Springer, 1994, p. 25.
J. Garcia Sole, L.E. Bausa, D. Jaque, “An Introduction to the Optical Spectroscopy of Inorganic Solids”, Wiley, 2005, pp. 163-164.
P.A. Cox, “Transition Metal Oxides”, Oxford University Press, 1995, p. 105.
G.L. Miessler, D.A. Tarr, “Inorganic Chemistry”, 3rd ed., Pearson/ Prentice Hall, pp. 117-118.
B. Cordero, et al. “Covalent Radii Revisited”, Dalton Trans., (2008), pp. 2832-2838.
G. Blasse, B.C. Grabmeier, “Luminescent Materials”, Springer, 1994, pp. 87-90.
Feldman, C., “Inorganic Luminescent Materials: 100 Years of Research and Application”, Adv. Funct. Matter, 2003, pp. 511-516.
Blasse, G., “Characteristic Luminescence”, Philips Technical Review, vol. 31 (1970), pp. 304-332.
Declaration Under Rule 37 CFR 1.132 of Ulrich Kynast dated Sep. 6, 2008.
Shionoya, “Phosphor Handbook”, CRC Press, pp. 183-184.
Garcia Sole, et al., “An Introduction to the Optical Spectroscopy of Inorganic Solids”, pp. 132-133.
R.J. Angel et al., “Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800° C.”, American Mineralogist, 74 (1989) pp. 509-512.
Notice of Allowance dated May 4, 2009 issued in U.S. Appl. No. 11/024,702.
Non-final office action dated Nov. 2, 2009 issued in U.S. Appl. No. 12/098,263, filed Apr. 4, 2008.
Non-final office action dated Nov. 14, 2008 issued in U.S. Appl. No. 11/024,722, filed Dec. 30, 2004.
Non-final office action dated May 29, 2009 issued in U.S. Appl. No. 11/024,722, filed Dec. 30, 2004.
Final office action dated Oct. 28, 2009 issued in U.S. Appl. No. 11/024,722, filed Dec. 30, 2004.
Non-final office action dated Nov. 29, 2006 issued in U.S. Appl. No. 11/024,722, filed Dec. 30, 2004.
Non-final office action dated Nov. 29, 2007 issued in U.S. Appl. No. 11/024,702, filed Dec. 30, 2004.
Non-final office action dated Jun. 22, 2006 issued in U.S. Appl. No. 11/024,702, filed Dec. 30, 2004.
Final office action dated Feb. 7, 2007 issued in U.S. Appl. No. 11/024,702, filed Dec. 30, 2004.
Non-final office action dated Jan. 13, 2010 issued in U.S. Appl. No. 11/569,060, filed Jun. 22, 2007.
Lee, Chung-Hoon, et al., Unpublished U.S. Appl. No. 12/491,780.
Non-final office action dated Nov. 17, 2009 issued in U.S. Appl. No. 12/097,741, filed Oct. 9, 2008.
Extended European Search Report issued on Oct. 6, 2010.
European Search Report of Oct. 26, 2010 in EP 10 17 7817, corresponding to U.S. Appl No. 11/024,722.
TW Office Action of Sep. 10, 2010 in TW Patent Appl. No. 098123458.
IP Australia Office Action dated Jul. 2, 2010 for AU Patent Appl. No. 2005-319965, corresponding to U.S. Appl. No. 12/098,263.
Non-Final Office Action dated Aug. 10, 2010 in U.S. Appl. No. 12/731,811.
Non-Final Office Action dated Aug. 18, 2010 in U.S. Appl. No. 11/948,813.
CN Office Action dated Feb. 5, 2010 in CN Appl. No. 2005100023042.
Final Office Action dated Sep. 9, 2010 in U.S. Appl. No. 11/568,769.
Non-Final Office Action dated Apr. 30, 2010 in U.S. Appl. No. 11/568,769.
Final Office Action dated Jun. 21, 2010 in U.S. Appl No. 11/569,060.
Non-Final Office Action dated Aug. 10, 2010 in U.S. Appl. No. 11/024,722.
Final Office Action dated Nov. 12, 2010 in U.S. Appl. No. 12/097,741.
Non Final Office Action dated Jun. 16, 2010 in U.S. Appl. No. 12/097,741.
EP Search Report dated Sep. 1, 2010 in EP Appl No. 08015119 correpsonding to U.S. Appl No. 12/440,001.
Non Final Office Action dated Aug. 17, 2010 in U.S. Appl. No. 11/948,845.
Non Final Office Action dated Mar. 17, 2010 in U.S. Appl. No. 11/024,722.
Final Office Action dated May 11, 2010 in U.S. Appl. No. 12/098,263.
Notice of Allowance dated Aug. 18, 2010 in U.S. Appl. No. 12/098,263.
Non Final Office Action dated Nov. 30, 2010 in U.S. Appl. No. 12/196,923.
Final Office Action dated Nov. 30, 2010 in U.S. Appl. No. 11/024,722.
Non Final Office Action dated Nov. 24, 2010 in U.S. Appl. No. 12/093,441.
Non Final Office Action dated Nov. 26, 2010 in U.S. Appl. No. 12/440,001.
International Search Report dated Feb. 11, 2009 for PCT Application No. PCT/2008/004733.
Butler, “Fluorescent Lamp Phosphors”, The Pennsylvania State University Press, 1980, pp. 281-284.
Wanmaker, “Luminescence of Copper-Activated Orthophosphates of the Type ABPO (A=Ca,Sr or Ba and B=Li,Na or K)”, Journal of the Electrochemical Society, pp. 109-113.
Shionoya, “Phosphor Handbook”, edited under the auspiece of Phosphor Research Society, CRC Press, 1999, pp. 238-239, 241.
Van Gool, Philips Res. Rept. Suppl., 3, 1, 1961(pp. 1-9, 30-51, 84-85).
Wanmaker, “Luminescence of Copper-Activated Calcium and Strontium Orthophosphates”, Journal of the Electrochemical Society, pp. 1027-1031.
Shionoya, “Phosphor Handbook”, edited under the auspiece of Phosphor Research Society, CRC Press, 1999, pp. 204-205.
Blasse, “Radiationless Processes in Luminescent Materials”, Radiationless Processes, 1980, pp. 287-289, 293.
Butler, “Fluorescent Lamp Phosphors”, The Pennsylvania State University Press, 1980, pp. 181-182.
Butler, “Fluorescent Lamp Phosphors”, The Pennsylvania State University Press, 1980, pp. 175-176.
Bernhardt, Investigations of the Orange Luminescence of PbMoO4 Crystals, Phys. Stat.Sol.(a),91,643,1985, pp. 643-647.
Shionoya, S., et al.(Eds.), “Principal phosphor materials and their optical properties” in Phosphor Handbook, CRC Press, 1999, p. 826.
Ralchenko, Yu., Kramida, A.E., Reader, J. and NIST ASD Team (2008). NIST Atomic Spectra Database (version 3.1.5), [Online]. Available: http://physics.nist.gov/asd3 [Feb. 27, 2009]. National Institute of Standards and Technology, Gaithersburg, MD.
Yang, “Conversion Fluorescence in Er3+Yb3+Co-Doped Oxy-Fluoride Compound Materials Based on GeO2,” Natural Science Journal of Xiangtan University, vol. 23, No. 2, 2001, pp. 37-41.
International Search Report dated Feb. 27, 2009 for PCT Application No. PCT/KR2008/004734.
X.W.Sun, et al. “Pulsed Laser Deposition of Silicate Phosphor Thin Films”, Appl. Phys. A, 69, 1999, 5 pages.
W.L. Wanmaker, et al. “Luminescence of Phosphors Based on the Host Lattice ABGe2O6(A,B=Ca,Sr,Ba)” Journal of Solid State Chemistry 3, (1971),pp. 194-196.
N. S. Akhmetov, “Inorganic Chemistry”, Moscow “Vysshaya Shkola”, 1975; (partial translation; translated pp. 332-333, 372-373, 384-385, 427, 432, 436, 445, 471, 476, 486, 491, 496-497, 501, 546-549).
Markovsky L, Ya. Et al., Phosphors (Moscow-Leningrad, KHIMIYA Publishers, 1966, p. 7 (partial translation).
Joung Kyu Park, et al., “Silicate Phosphors for White LEDs Identified Through Combinatorial Chemistry”, Electrochemical and Solid-State Letters, vol. 10(2), pp. J15-J18, (2007), XP-00251106706-11-12).
Joung Kyu Park, et al., “Luminescence Characteristics of Yellow Emitting Ba3SiO5:EU2+ Phosphor”, Journal of Materials Science 40 (2005), pp. 2069-2071, XP-002511068.
H.G. Kang, et al., “Embodiment and Luminescence Properties of Sr3SiO5:Eu(yellow-orange phosphor) by co-doping lanthanide”, Solid State Phenomena, vol. 124-126 (2007) pp. 511-514.
G. Roth, et al. “Advanced Silicate Phosphors for improved white LED”, Global Phosphor Summit Seoul/Korea, Mar. 5-7, 2007.
T.L. Barry, “Equilibria and Eu2+ luminescence of subsolidus phases bounded by Ba3MgSi2O8, Sr3MgSi2O8 and Ca3MgSi2O8,” J. Electrochem. Soc., vol. 115 No. 7 (Jul. 1968), pp. 733-738.
G. Blasse, et al., “Fluorescence of Europium2+-activated silicates,” Philips Res. Repts 23 (1968), pp. 189-199.
S.D. Jee, et al., “Photoluminescence properties of Eu2+ -activated Sr3SiO5 Phosphors,” J. Mater Sci. 41 (2006), pp. 3139-3141.
T.L. Barry, “Fluorescence of Eu2+ Activated Phases in Binary Alkaline Earth Orthosilicate Systems”, J. Electrochem Soc., Nov. 1968, pp. 1181-1184.
Shenstone, A.G., “The Third Spectrum of Copper(Cu III)”, Journal of Research of the National Bureau of Standards-A. Physics and Chemistry, vol. 79A, No. 3, May-Jun. 1975, pp. 497-521.
Lever, A.B.P., “Inorganic Electronic Spectroscopy”, 2nd ed., Elsevier, 1984, pp. 355 and 557-559.
Dubicki, Lujcan et al., “The First d-d Fluorescence of a six-Coordinate Copper(II) Ion”, J.Am.Chem.Soc., 1989, No. 111, pp. 3452-3454.
Scacco, A., et al., “Optical Spectra of Cu2+ Ions in LiF Crystals”, Radiation Effects and Defects in Solids, vol. 134, 1995, pp. 333-336.
Shionoya, S., et al.(Eds.), “Principal phosphor materials and their optical properties” in Phosphor Handbook, CRC Press, 1999, pp. 231-255.
Yang, Ping et al., “Photoluminescence of Cu+ doped and Cu2+ doped ZnS nanocrystrallites”, Journal of Physics and Chemistry of Solids, No. 63, 2002, pp. 639-643.
Suyver, J.F., et al.,“Luminescence of nanocrystalline ZnSe:Cu”, Applied Physics Letters, vol. 79, No. 25, Dec. 17, 2001, pp. 4222-4224.
Bol, Ageeth A., et al., “Luminescence of nanocrystalline ZnS:Cu2+”, Journal of Luminescence, No. 99, 2002, pp. 325-334.
Non-final office action mailed May 23, 2007 for U.S. Appl. No. 11/024,722, filed Dec. 30, 2004.
Declaration under 37 CFR 1.132 by Ulrich Kynast, dated Aug. 24, 2007.
Final office action dated Oct. 22, 2007 issued in U.S. Appl. No. 11/024,722, filed Dec. 30, 2004.
“Phosphors for Mercury Lamps” https:/www.lamptech.co.uk/documents/M14%20Phosphors.htm 2003 (2 pages).
Search Report dated Apr. 11, 2006 for EP Application No. EP04106880.0.
International Search Report dated Aug. 12, 2005 for PCT Application No. PCT/KR2005/001287.
International Search Report dated Aug. 12, 2005 for PCT Application No. PCT/KR2005/001288.
International Search Report dated Oct. 13, 2005 for PCT Application No. PCT/KR2005/002333.
International Search Report dated Oct. 24, 2005 for PCT Application No. PCT/KR2005/002332.
International Search Report dated Feb. 20, 2007 for PCT Application No. PCT/KR2006/004716.
International Search Report dated Jul. 12, 2007 for PCT Application No. PCT/KR2007/001587.
International Search Report dated Mar. 21, 2007 for PCT Application No. PCT/KR2006/005500.
Chinese Office Action dated Dec. 28, 2007 issued in China App No. 2005800150173 corresponding to U.S. Appl. No. 11/569,060.
Non-final office action dated Aug. 12, 2009 issued in U.S. Appl. No. 11/569,060, filed Jun. 22, 2007.
Chinese Office Action dated Feb. 15, 2008 issued in Chinese Patent App No. 20051002304.2 corresponding to U.S. Appl. No. 11/024,722.
Indian Office Action of Indian Application No. 2468/KOLNP/2007 issued on Jan. 28, 2011, corresponding to U.S. Appl. No. 12/098,263.
Non-Final Office Action dated Apr. 24, 2012 issued for U.S. Appl. No. 12/854,001.
Final Office Action dated Apr. 26, 2012 issued for U.S. Appl. No. 12/491,780.
Final Office Action dated Apr. 18, 2012 issued for U.S. Appl. No. 12/491,457.
Non-Final Office Action dated Apr. 2, 2012 issued for U.S. Appl. No. 13/279,878.
Non-Final Office Action of U.S. Appl. No. 12/295,438 dated on Jan. 12, 2012.
Notice of Allowance of U.S. Appl. No. 13/004,554 mailed on Dec. 13, 2011.
Non-Final Office Action of U.S. Appl. No. 12491,780 dated on Dec. 7, 2011.
Notice of Allowance of U.S. Appl. No. 12/098,263 issued on Oct. 11, 2011.
Final Office Action of U.S. Appl. No. 12/854,001 issued on Oct. 11, 2011.
Notice of Allowance of U.S. Appl. No. 11/948,813 issued on Aug. 22, 2011.
Final Office Action of U.S Appl. No. 12/731,811 issued on Jul. 29, 2011.
Austrian Office Action for AT Application No. 1545/2010-1 issued on May 31, 2011.
Austrian Office Action for AT Application No. 9514/2005 issued on Jun. 1, 2011.
Chinese Office Action of Chinese Patent Application No. 201010185274.4 issued on Mar. 2, 2011.
Chinese Office Action of Chinese Patent Application No. 201010198537.5 issued on Mar. 18, 2011.
Chinese Office Action of Chinese Patent Application No. 200880105091.8 issued on Apr. 1, 2011.
Non-Final Office Action of U.S Appl. No. 12/854,001 issued on Apr. 6, 2011.
Non-Final Office Action of U.S Appl. No. 12/098,263 issued on Mar. 30, 2011.
Notice of Allowance of U.S Appl. No. 11/948,845 issued on Mar. 23, 2011.
Notice of Allowance of U.S Appl. No. 11/024,722 issued on Mar. 10, 2011.
Non-Final Office Action of U.S Appl. No. 13/004,554 issued on Mar. 15, 2011.
Bogner et al., DE 102 33 050 A1, Feb. 5, 2004, Machine Traslation.
Notice of Allowance dated Apr. 11, 2012 issued for U.S. Appl. No. 12/093,441.
Notice of Allowance issued on May 9, 2014 in U.S. Appl. No. 12/097,741.
Preliminary Notice of First Office Action with Search Report issued on May 15, 2013 in Taiwanese Patent Application No. 095147024.
Final Office Action issued on Apr. 23, 2013 in U.S. Appl. No. 13/279,878.
Non-Final Office Action issued on Jun. 18, 2014 in U.S. Appl. No. 13/279,878.
Notice of Allowance issued on Jan. 14, 2016, in U.S. Appl. No. 13/279,878.
Final Office Action issued on Sep. 8, 2015 in U.S. Appl. No. 13/279,878.
Related Publications (1)
Number Date Country
20090303694 A1 Dec 2009 US