This application claims priority to and the benefit of Korean Patent Application No. 10-2022-0189634, filed on Dec. 29, 2022, in the Korean Intellectual Property Office, the entire content of which is incorporated by reference herein.
One or more embodiments of the present disclosure relate to a light-emitting device, an electronic device including the same, and an electronic apparatus including the same.
Self-emissive devices (for example, organic light-emitting devices) in light-emitting devices have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of luminance, driving voltage, and response speed.
In a light-emitting device, a first electrode is on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode are sequentially on the first electrode. Holes provided from the first electrode move toward the emission layer through the hole transport region, and electrons provided from the second electrode move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. These excitons are transitioned from an excited state to a ground state to thereby generate light.
One or more embodiments of the present disclosure include a light-emitting device having a low driving voltage and high power efficiency, an electronic device including the same, and an electronic apparatus including the same.
Additional aspects of embodiments will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments of the disclosure.
According to one or more embodiments, a light-emitting device includes:
According to one or more embodiments, an electronic device includes the light-emitting device.
According to one or more embodiments, an electronic apparatus includes the light-emitting device.
The above and other aspects and features of certain embodiments of the disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
Reference will now be made in more detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, embodiments are merely described below, by referring to the figures, to explain aspects of embodiments of the present description. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Throughout the disclosure, the expression “at least one of a, b or c” indicates only a, only b, only c, both a and b, both a and c, both b and c, all of a, b, and c, or variations thereof.
A light-emitting device according to an embodiment includes: a first electrode; a second electrode facing the first electrode; and an interlayer between the first electrode and the second electrode.
The interlayer may include an emission layer and an electron transport region.
The electron transport region may be between the emission layer and the second electrode.
The emission layer may include a first emitter. The first emitter may emit first light having a first emission spectrum.
The emission peak wavelength of the first light (maximum emission wavelength, or maximum emission peak wavelength) may be about 510 nm to about 570 nm.
For example, the emission peak wavelength of the first light may be about 510 nm to about 565 nm, about 510 nm to about 560 nm, about 510 nm to about 555 nm, about 510 nm to about 550 nm, about 510 nm to about 545 nm, about 510 nm to about 540 nm, about 515 nm to about 570 nm, about 515 nm to about 565 nm, about 515 nm to about 560 nm, about 515 nm to about 555 nm, about 515 nm to about 550 nm, about 515 nm to about 545 nm, about 515 nm to about 540 nm, about 520 nm to about 570 nm, about 520 nm to about 565 nm, about 520 nm to about 560 nm, about 520 nm to about 555 nm, about 520 nm to about 550 nm, about 520 nm to about 545 nm, about 520 nm to about 540 nm, about 525 nm to about 570 nm, about 525 nm to about 565 nm, about 525 nm to about 560 nm, about 525 nm to about 555 nm, about 525 nm to about 550 nm, about 525 nm to about 545 nm, or about 525 nm to about 540 nm.
The full width at half maximum (FWHM) of the first light may be 15 nm to 85 nm.
For example, the FWHM of the first light may be about 20 nm to about 85 nm, about 25 nm to about 85 nm, about 30 nm to about 85 nm, about 35 nm to about 85 nm, about 40 nm to about 85 nm, about 45 nm to about 85 nm, about 50 nm to about 85 nm, about 15 nm to about 80 nm, about 20 nm to about 80 nm, about 25 nm to about 80 nm, about 30 nm to about 80 nm, about 35 nm to about 80 nm, about 40 nm to about 80 nm, about 45 nm to about 80 nm, about 50 nm to about 80 nm, about 15 nm to about 75 nm, about 20 nm to about 75 nm, about 25 nm to about 75 nm, about 30 nm to about 75 nm, about 35 nm to about 75 nm, about 40 nm to about 75 nm, about 45 nm to about 75 nm, about 50 nm to about 75 nm, about 15 nm to about 70 nm, about 20 nm to about 70 nm, about 25 nm to about 70 nm, about 30 nm to about 70 nm, about 35 nm to about 70 nm, about 40 nm to about 70 nm, about 45 nm to about 70 nm, about 50 nm to about 70 nm, about 15 nm to about 65 nm, about 20 nm to about 65 nm, about 25 nm to about 65 nm, about 30 nm to about 65 nm, about 35 nm to about 65 nm, about 40 nm to about 65 nm, about 45 nm to about 65 nm, about 50 nm to about 65 nm, about 15 nm to about 60 nm, about 20 nm to about 60 nm, about 25 nm to about 60 nm, about 60 nm to about 60 nm, about 35 nm to about 60 nm, about 40 nm to about 60 nm, about 45 nm to about 60 nm, or about 50 nm to about 60 nm.
The emission peak wavelength (or maximum emission wavelength) and FWHM of the first light described in the present specification may be evaluated from the emission spectrum of a film including the first emitter (for example, see Evaluation Example 2). The emission peak wavelength in the present specification refers to the peak wavelength having the maximum emission intensity in the emission spectrum or electroluminescence spectrum.
The first light may be green light.
The first emitter may include iridium.
In an embodiment, the first emitter may be an organometallic compound containing iridium. The first emitter may be neutral, may include one iridium, and may not include transition metals other than iridium.
In an embodiment, the first emitter may include, in addition to the iridium, a first ligand, a second ligand, and a third ligand, each of which is coupled to the iridium.
In this regard, the first ligand may be a bidentate ligand including a Y1-containing ring B1 and a Y2-containing ring B2, the second ligand may be a bidentate ligand including a Y5-containing ring B3 and a Y4-containing ring B4, and the third ligand may be a bidentate ligand including a Y5-containing ring B5 and a Y6-containing ring B6, wherein each of Y1, Y5, and Y5 is nitrogen (N), and each of Y2, Y4, and Y6 is carbon (C).
In an embodiment, the Y2-containing ring B2 and the Y4-containing ring B4 may be different from each other.
In various embodiments, the Y2-containing ring B2 may be a polycyclic group. For example, the Y2-containing ring B2 may be a polycyclic group in which three or more a monocyclic groups (for example, 3 to 15 a monocyclic groups) are condensed together with each other. The monocyclic group may be, for example, a furan group, a thiophene group, a selenophene group, a pyrrole group, a cyclopentadiene group, a silole group, a benzene group, a pyridine group, a pyrimidine group, a pyrazine group, or a pyridazine group. In an embodiment, the Y2-containing ring B2 may be a monocyclic group as described above.
In an embodiment, the Y2-containing ring B2 may be a polycyclic group in which one 5-membered monocyclic group (for example, a furan group, a thiophene group, a selenophene group, a pyrrole group, a cyclopentadiene group, a silole group, etc.) and at least two 6-membered a monocyclic groups (for example, a benzene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, etc.) are condensed together with each other.
In an embodiment, the Y4-containing ring B4 may be a monocyclic group. For example, the Y4-containing ring B4 may be a 6-membered monocyclic group (for example, a benzene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, etc.).
In an embodiment, the Y4-containing ring B4 may be a naphthalene group, a phenanthrene group, or an anthracene group.
In an embodiment, the first emitter may be a homoleptic complex. For example, the first ligand, second ligand and third ligand may be the same as each other.
In an embodiment, the first emitter may be a heteroleptic complex. For example, at least one selected from the first ligand, second ligand and third ligand may be different from remaining ones of the first ligand, second ligand and third ligand.
In one or more embodiments, the third ligand may be identical to the second ligand.
In one or more embodiments, the third ligand may be identical to the first ligand.
In one or more embodiments, the third ligand may be different from each of the first ligand and the second ligand.
Additional details for the first emitter are as described herein.
The electron transport region may include a heterocyclic compound.
The heterocyclic compound may include:
The description of Formulae 8-1 to 8-4 may be understood by referring to the related description presented herein below.
The first moiety and the second moiety may be linked to each other through a single bond or a first linking group. The description of the first linking group may be the same as provided in connection with *—(Ar3)x3—*′ in Formula 8.
In Formulae 8-1 to 8-4,
Additional details for the heterocyclic compound are as described herein.
The light-emitting device may include 1) an emission layer including the first emitter and 2) an electron transport region including the heterocyclic compound, and thus, electrons may be efficiently transferred to the emission layer so that the recombination balance of electrons and holes in the emission layer may be increased. As a result, the light-emitting device has a low driving voltage and high power efficiency. Accordingly, the light-emitting device may enable the manufacture of a high-quality electronic device and a high-quality electronic apparatus.
In an embodiment, from among the color coordinates of light emitted from the light-emitting device, CIEx may be 0.25 to 0.55, 0.30 to 0.49, or 0.31 to 0.49.
In an embodiment, from among the color coordinates of the light emitted from the light-emitting device, CIEy may be 0.45 to 0.70, 0.47 to 0.65, or 0.51 to 0.61.
In an embodiment, the first emitter may include at least one deuterium.
In an embodiment, the first emitter may include a deuterated C1-C20 alkyl group, a deuterated C3-C10 cycloalkyl group, or a combination thereof.
In an embodiment, at least one selected from the first ligand, the second ligand, and the third ligand may include at least one deuterium.
In an embodiment, at least one selected from the first ligand, the second ligand, and the third ligand may include a deuterated C1-C20 alkyl group, a deuterated C3-C10 cycloalkyl group, or a combination thereof.
In an embodiment, the highest occupied molecular orbital (HOMO) energy level of the first emitter may be −5.70 eV to −4.70 eV or −5.52 eV to −4.81 eV.
In an embodiment, the lowest unoccupied molecular orbital (LUMO) energy level of the first emitter may be −2.70 eV to −1.70 eV or −2.68 eV to −1.84 eV.
The HOMO and LUMO energy levels may be evaluated through cyclic voltammetry analysis of the organometallic compound (for example, Evaluation Example 1).
In an embodiment, the percentage of triplet metal-to-ligand charge transfer state (3MLCT) of the total intramolecular charge transfer of the first emitter may be 15% to 40%, or 18.6% to 37.8%.
The percentage of 3MLCT of the first emitter may be evaluated by quantum chemical calculation (for example, see Evaluation Example 1 of the present application).
The emission layer may further include, in addition to the first emitter, a host, an auxiliary dopant, a sensitizer, a delayed fluorescence material, or a combination thereof. Each of the host, the auxiliary dopant, the sensitizer, the delayed fluorescence material, or a combination thereof may include at least one deuterium.
For example, the emission layer may include the first emitter and the host. The host may be different from the first emitter, and the host may include an electron-transporting compound, a hole-transporting compound, a bipolar compound, or a combination thereof. The host may not include metal. The electron-transporting compound, the hole-transporting compound, and the bipolar compound are different from each other.
In an embodiment, the emission layer includes the first emitter and a host, and the host may include an electron-transporting compound and a hole-transporting compound. The electron-transporting compound and the hole-transporting compound may form an exciplex.
For example, the electron-transporting compound may include at least one π electron-deficient nitrogen-containing C1-C60 cyclic group. For example, the electron-transporting compound may include a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or a combination thereof.
In an embodiment, the hole-transporting compound may include at least one π electron-rich C3-C60 cyclic group, a pyridine group, or a combination thereof, and may not include an electron-transporting group (for example, a π electron-deficient nitrogen-containing C1-C60 cyclic group, a cyano group, a sulfoxide group, and a phosphine oxide group, not a pyridine group).
In an embodiment, the following compounds may be excluded from the hole-transporting compound:
In an embodiment, the electron-transporting compound may include a compound represented by Formula 2-1 or a compound represented by Formula 2-2:
L51 to L53 may each independently be a single bond, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
b51 to b53 may each independently be an integer from 1 to 5,
A7 to A9 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a (for example, a benzene group or a naphthalene group, each unsubstituted or substituted with at least one R10a),
X54 may be N or C(R54), X55 may be N or C(R55), X56 may be N or C(R56), and at least one selected from X54 to X56 may be N,
X57 may be O, S, N(R57), C(R57a)(R57b), or Si(R57a)(R57b), and
R51 to R57, R57a, R57b, and R10a are each the same as described herein.
In an embodiment, the hole-transporting compound may include a compound represented by Formula 3-1, a compound represented by Formula 3-2, a compound represented by Formula 3-3, a compound represented by Formula 3-4, a compound represented by Formula 3-5, or a combination thereof:
The electron transport region may include a hole-blocking layer, a buffer layer, an electron transport layer, an electron injection layer, or a combination thereof.
In an embodiment, the electron transport region may include an electron transport layer, and the heterocyclic compound may be included in the electron transport layer. The electron transport layer may further include a metal-containing material in addition to the heterocyclic compound. The metal-containing material may be understood by referring to the description provided herein.
In an embodiment, the electron transport layer including the heterocyclic compound may be in direct contact with the emission layer.
In an embodiment, the electron transport region may include a hole-blocking layer and an electron transport layer, the hole-blocking layer may be between the emission layer and the electron transport layer, the hole-blocking layer may not include the heterocyclic compound, and the electron transport layer may include the heterocyclic compound.
The wording “the interlayer (or the electron transport region) includes a first emitter (or includes the heterocyclic compound)” can be interpreted as “the interlayer (or the electron transport region) may include one type (or kind) of compound belonging to the category of the first emitter or two or more different compounds belonging to the category of the first emitter (or one type (or kind) of compound belonging to the category of the heterocyclic compound or two or more different compounds belonging to the category of the heterocyclic compound).
The term “interlayer” as used herein refers to a single layer and/or all of a plurality of layers between the first electrode and the second electrode of the light-emitting device.
Another aspect of embodiments provides an electronic device including the light-emitting device. The electronic device may further include a thin-film transistor. For example, the electronic device may further include a thin-film transistor including a source electrode and a drain electrode, wherein the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode. In an embodiment, the electronic device may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or a combination thereof. For additional details for the electronic device, related descriptions provided herein may be referred to.
Another aspect of embodiments provides an electronic apparatus including the light-emitting device. By using the light-emitting device having an emission layer including the first emitter and an electron transport region including the heterocyclic compound as described in the present specification, the display quality, power consumption, and/or durability of the electronic apparatus may be improved.
For example, the consumer product may be one selected from a flat panel display, a curved display, a computer monitor, a medical monitor, a TV, a billboard, indoor or outdoor illuminations and/or signal light, a head-up display, a fully or partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a phone, a cell phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, laptop computers, digital cameras, camcorders, viewfinders, micro displays, 3D displays, virtual or augmented reality displays, vehicles, a video wall including a plurality of displays tiled together, a theater or stadium screen, a phototherapy device, and a signage.
The first emitter may be, for example, an organometallic compound represented by Formula 1. In an embodiment, the heterocyclic compound may be, for example, a compound represented by Formula 8:
x1 to x3 may each independently be an integer from 0 to 10,
In an embodiment, the organometallic compound represented by Formula 1 may be a heteroleptic complex or a homoleptic complex.
In one or more embodiments, in Formula 1,
In an embodiment, ring B1, ring B3, and ring B5 may each independently be:
In an embodiment, ring B1, ring B3, and ring B5 may each be a pyridine group.
In an embodiment, ring B1, ring B3, and ring B5 may each independently be:
In an embodiment, ring B2 may be a benzene group, a pyridine group, a pyrimidine group, a pyrazine group, or a pyridazine group, to which a cyclopentane group, a cyclohexane group, a norbornane group, a benzene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a furan group, a thiophene group, a selenophene group, a pyrrole group, a cyclopentadiene group, a silole group, or a combination thereof is condensed.
In an embodiment, ring B2 may be a polycyclic group in which one selected from a furan group, thiophene group, a selenophene group, a pyrrole group, a cyclopentadiene group, and a silole group is condensed together with at least two of a benzene group, a pyridine group, a pyrimidine group, a pyrazine group, and a pyridazine group.
In an embodiment, ring B2 may be a dibenzofuran group, a dibenzothiophene group, a dibenzoselenophene group, a carbazole group, a fluorene group, a dibenzosilole group, a naphthobenzofuran group, a naphthobenzothiophene group, a naphthobenzoselenophene group, a benzocarbazole group, a benzofluorene group, a benzodibenzosilole group, a dinaphthofuran group, a dinaphthothiophene group, a dinaphthoselenophene group, a dibenzocarbazole group, a dibenzofluorene group, a dinaphthosilole group, a phenanthrenonbenzofuran group, a phenanthrenonbenzothiophene group, a phenanthrenobenzoselenophene group, a naphthocarbazole group, a naphthofluorene group, a phenanthrenobenzosilole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzoselenophene group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azanaphthobenzofuran group, an azanaphthobenzothiophene group, an azanaphthobenzoselenophene group, an azabenzocarbazole group, an azabenzofluorene group, an azabenzodibenzosilole group, an azadinaphthofuran group, an azadinaphthothiophene group, an azadinaphthoselenophene group, an azadibenzocarbazole group, an azadibenzofluorene group, an azadinaphthosilole group, an azaphenanthrenonbenzofuran group, an azaphenanthrenonbenzothiophene group, an azaphenanthrenobenzoselenophene group, an azanaphthocarbazole group, an azanaphthofluorene group, or an azaphenanthrenobenzosilole group.
In an embodiment, ring B2 may be a dibenzofuran group, a dibenzothiophene group, a dibenzoselenophene group, a naphthobenzofuran group, a naphthobenzothiophene group, a naphthobenzoselenophene group, a dinaphthofuran group, a dinaphthothiophene group, a dinaphthoselenophene group, a phenanthrenonbenzofuran group, a phenanthrenonbenzothiophene group, a phenanthrenonbenzoselenophene group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzoselenophene group, an azanaphthobenzofuran group, an azanaphthobenzothiophene group, an azanaphthobenzoselenophene group, an azadinaphthofuran group, an azadinaphthothiophene group, an azadinaphthoselenophene group, an azaphenanthrenonbenzofuran group, an azaphenanthrenonbenzothiophene group, or an azaphenanthrenonbenzoselenophene group.
In an embodiment, ring B4 may be a benzene group, a naphthalene group, a phenanthrene group, an anthracene group, a pyridine group, a pyrimidine group, a pyrazine group, or a pyridazine group.
In an embodiment, ring B6 may be a benzene group, a naphthalene group, a phenanthrene group, an anthracene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a dibenzofuran group, a dibenzothiophene group, a dibenzoselenophene group, a carbazole group, a fluorene group, a dibenzosilole group, a naphthobenzofuran group, a naphthobenzothiophene group, a naphthobenzoselenophene group, a benzocarbazole group, a benzofluorene group, a benzodibenzosilole group, a dinaphthofuran group, a dinaphthothiophene group, a dinaphthoselenophene group, a dibenzocarbazole group, a dibenzofluorene group, a dinaphthosilole group, a phenanthrenobenzofuran group, a phenanthrenobenzothiophene group, a phenanthrenobenzoselenophene group, a naphthocarbazole group, a naphthofluorene group, a phenansthrenobenzosilole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzoselenophene group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azanaphthobenzofuran group, an azanaphthobenzothiophene group, an azanaphthobenzoselenophene group, an azabenzocarbazole group, an azabenzofluorene group, an azabenzodibenzosilole group, an azadinaphthofuran group, an azadinaphthothiophene group, an azadinaphthoselenophene group, an azadibenzocarbazole group, an azadibenzofluorene group, an azadinaphthosilole group, an azaphenanthrenobenzofuran group, an azaphenanthrenobenzothiophene group, an azaphenanthrenobenzoselenophene group, an azanaphthocarbazole group, an azanaphthofluorene group, or an azaphenanthrenobenzosilole group.
In an embodiment, the Y2-containing ring B2 of Formula 1-1 and the Y4-containing ring B4 of Formula 1-2 may be different from each other.
In an embodiment, Ar1 to Ar3 in Formula 8 may each independently be a benzene group, a naphthalene group, a phenanthrene group, an anthracene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, a fluorene group, or a pyridine group, each unsubstituted or substituted with R10a.
x1 to x3 in Formula 8 represent the number of Ar1 to the number of Ar3, respectively. When x1 is 2 or greater, two or more of Ar1 may be identical to or different from each other, when x2 is 2 or greater, two or more of Ar2 may be identical to or different from each other, and when x3 is 2 or greater, two or more of Ar3 may be identical to or different from each other. For example, in Formula 8, x1 and x2 may each independently be an integer from 1 to 10, and x3 may be 0, 1 or 2.
In an embodiment, at least one selected from x1 and x2 in Formula 8 may be 2 or more (for example, 2, 3, 4, or 5).
In an embodiment, in Formula 8, x1 and x2 may each independently be an integer from 1 to 10, x3 may be 0, 1, or 2, Ar1 to Ar3 may each independently be a benzene group, a naphthalene group, a phenanthrene group, an anthracene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, a fluorene group, or a pyridine group, each unsubstituted or substituted with R10a.
In an embodiment, in Formula 8, one or more of Ar1 in number of x1, one or more of Ar2 in number of x2, or a combination thereof may each independently be a dibenzofuran group, a dibenzothiophene group, a carbazole group, a fluorene group, or a pyridine group, each unsubstituted or substituted with R10a.
In an embodiment, in Formula 8, one or more of Ar1 in number of x1, one or more of Ar2 in number of x2, or a combination thereof may each independently be a dibenzofuran group, a dibenzothiophene group, or a carbazole group, each unsubstituted or substituted with R10a.
Ar13 in Formula 8 may be a group represented by any one selected from Formulae 8-1 to 8-4, and Z3 that is not hydrogen may be substituted at any position of Ar13.
In an embodiment, W1 to W6 and Z1 to Z6 in Formula 1 and Formula 8 may each independently be:
In this regard, Q1 to Q3 are each the same as described herein.
In an embodiment, at least one selected from W1 to W6, at least one selected from Z1 to Z6, or a combination thereof may include at least one deuterium.
In an embodiment, at least one selected from W1 to W6, at least one selected from Z1 to Z6, or a combination thereof may be a deuterated C1-C20 alkyl group, or a deuterated C3-C10 cycloalkyl group.
The term “biphenyl group” as used herein refers to a monovalent substituent having a structure in which two benzene groups are connected to each other through a single bond.
Examples of the C3-C10 cycloalkyl group as used herein are a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, an adamantanyl group, a norbornanyl group, and the like.
The term “deuterated” as used herein includes the meaning of both fully deuterated and partially deuterated.
The term “fluorinated” as used herein includes the meaning of both fully fluorinated and partially fluorinated.
b1 to b6 in Formula 1 respectively indicate the number of W1 to the number of W6, and may each independently be, for example, 0, 1, 2, 3, or 4. When b1 is 2 or more, two or more of W1 may be identical to or different from each other, when b2 is 2 or more, two or more of W2 may be identical to or different from each other, when b3 is 2 or more, two or more of W3 may be identical to or different from each other, when b4 is 2 or more, two or more of W4 may be identical to or different from each other, when b5 is 2 or more, two or more of W5 may be identical to or different from each other, and when b6 is 2 or more, two or more of W6 may be identical to or different from each other.
y1 to y3 in Formula 8 indicate the number of Z1 to the number of Z3, respectively, and may be, for example, one selected from integers from 0 to 5. For example, y1 to y3 may each independently be 0, 1, or 2.
In an embodiment, the first emitter may be an organometallic compound represented by Formula 1A or an organometallic compound represented by Formula 1B:
In an embodiment, the first emitter may be an organometallic compound represented by Formula 1A-1, an organometallic compound represented by Formula 1B-1, or an organometallic compound represented by Formula 1C-1:
Because n is 1 or 2 in Formula 1A and 1A-1, Formulae 1A and 1A-1 may correspond to an organometallic compound in which the third ligand in Formula 1 is the same as the second ligand or the first ligand.
The organometallic compound represented by Formula 1B or 1B-1 is an organometallic compound having three different bidentate ligands, and in Formula 1, a third ligand is different from each of a first ligand and a second ligand.
In an embodiment, ring B21 in Formulae 1A and 1B may be a benzene group, a naphthalene group, a phenanthrene group, an anthracene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a benzoquinoline group, a benzoisoquinoline group, a benzoquinoxaline group, or a benzoquinazoline group.
In an embodiment, ring B21 in Formulae 1A and 1B may be a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a benzoquinoline group, a benzoisoquinoline group, a benzoquinoxaline group, or a benzoquinazoline group.
In an embodiment, at least one selected from Y21 to Y26 in Formulae 1A-1 and 1B-1 may be N.
In an embodiment, at least one selected from Y23 to Y26 in Formulae 1A-1 and 1B-1 may be N.
In an embodiment, Y26 in Formulae 1A-1 and 1B-1 may be N.
In an embodiment, in Formulae 1A-1 and 1B-1, Y21 to Y25 may not be N and Y26 may be N.
In an embodiment, each of Y11 to Y14, Y21, Y22, Y31 to Y34 and Y41 to Y44 in Formulae 1A, 1B, 1A-1 and 1B-1 may not be N.
In an embodiment, each of Y11 to Y14, Y21 to Y24, Y31 to Y34, Y41 to Y44, Y51 to Y54, and Y61 to Y64 in Formula 1C-1 may be C.
In an embodiment, a group represented by
in Formula 1-1, a group represented by
in Formula 1-2, a group represented by
in Formula 1-3, a group represented by
in Formulae 1A, 1B, 1A-1, 1B-1, and 1C-1, a group represented by
in Formulae 1A, 1B, 1A-1, 1B-1, and 1C-1, and a group represented by
in Formulae 1B, 1B-1, and 1C-1 may each independently be one selected from groups represented by Formulae BN-1 to BN-16:
In an embodiment, a group represented by
in Formula 1-1, a group represented by
in Formula 1-2, and a group represented by
in Formula 1-3 may each independently be one selected from groups represented by Formulae BC-1 to BC-47:
Formulae BC-1 to BC-47 may be substituted or unsubstituted with W2, W4, or W6 as described herein, and could be easily understood with reference to the structures of Formulae 1-1, 1-2, and 1-3.
In an embodiment, a group represented by
in Formula 1-1 may be one selected from Formulae BC-6 to BC-47.
In an embodiment, a group represented by
in Formula 1-2 may be represented by one selected from Formulae BC-1 to BC-5.
In an embodiment, b51 to b53 may each independently be 1 or 2.
In Formulae 2-1 and 2-2, X54 may be N or C(R54), X55 may be N or C(R55), X56 may be N or C(R56), and at least one selected from X54 to X56 may be N. R54 to R56 are the same as described herein. In an embodiment, two or three of X54 to X56 may be N.
R51 to R57, R57a, R57b, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, and R84b may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C1-C60 arylthio group unsubstituted or substituted with at least one R10a, a C7-C60 aryl alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 heteroaryl alkyl group unsubstituted or substituted with at least one R10a, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2). Q1 to Q3 may each be the same as described herein.
For example, i) R1 to R7, R5a, R5b, R6a, R6b, R7a, R7b, R′, and R″ in Formula 1, ii) R51 to R57, R57a, R57b, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, and R84b in Formulae 2-1, 2-2 and 3-1 to 3-5, and iii) R10a may each independently be:
For example, in Formula 91,
In an embodiment, i) W1 to W6, W11 to W14, W21 to W27, W27a, W27b, W31 to W34, W41 to W44, W71 to W74, W80, W80a and W80b in Formulae 1, 1A, 1B, 1A-1, 1B-1, BN-1 to BN-16, and BC-1 to BC-47, ii) R51 to R57, R57a, R57b, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a and R84b in Formulae 2-1, 2-2, 3-1 to 3-5, 502b and 503, and iii) R10a may each independently be hydrogen, deuterium, —F, a cyano group, a nitro group, —CH3, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a group represented by one selected from Formulae 9-1 to 9-19, a group represented by one selected from Formulae 10-1 to 10-246, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), or —P(═O)(Q1)(Q2) (where Q1 to Q3 are each the same as described herein) (provided that each of R10a and W71 to W74 is not hydrogen):
In Formula 1, i) two or more of W1(s) in the number of b1 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, ii) two or more of W2(s) in the number of b2 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, iii) two or more of W3(s) in the number of b3 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, iv) two or more of W4(s) in the number of b4 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, v) two or more of W5(s) in the number of b5 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, vi) two or more of W6(s) in the number of b6 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.
In Formulae 3-1 to 3-5, L81 to L85 may each independently be:
In one or more embodiments, a group represented by
in Formulae 3-1 and 3-2 may be a group represented by one selected from Formulae CY71-1(1) to CY71-1(8), and/or
in Formulae 3-1 and 3-3 may be a group represented by one selected from Formulae CY71-2(1) to CY71-2(8), and/or
in Formulae 3-2 and 3-4 may be a group represented by one selected from Formulae CY71-3(1) to CY71-3(32),
in Formulae 3-3 to 3-5 may be a group represented by one selected from Formulae CY71-4(1) to CY71-4(32), and/or
in Formulae CY71-1(1) to CY71-1(8) and CY71-4(1) to CY71-4(32), each of X86 and X87 may not be a single bond at the same time,
In an embodiment, the first emitter or the organometallic compound represented by Formula 1, 1A, 1B, 1A-1 or 1B-1 may be one selected from the following Compounds GD-1 to GD-18:
According to another embodiment, the heterocyclic compound may be one selected from the following compounds ET-1 to ET-6:
Hereinafter, the structure of the light-emitting device 10 according to an embodiment and a method of manufacturing the light-emitting device 10 will be described with reference to
Referring to
The first electrode 110 may be formed by, for example, depositing and/or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high-work function material that facilitates injection of holes.
The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. In an embodiment, when the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or a combination thereof. In one or more embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, a material for forming the first electrode 110 may include magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or a combination thereof.
The first electrode 110 may have a single-layer structure consisting of a single layer or a multi-layer structure including a plurality of layers. For example, the first electrode 110 may have a three-layer structure of ITO/Ag/ITO.
The interlayer 130 is arranged on the first electrode 110. The interlayer 130 may include the emission layer.
The interlayer 130 may further include a hole transport region arranged between the first electrode 110 and the emission layer, and an electron transport region arranged between the emission layer and the second electrode 150.
The interlayer 130 may further include, in addition to various suitable organic materials, a metal-containing compound such as an organometallic compound, an inorganic material such as quantum dots, and/or the like.
In an embodiment, the interlayer 130 may include i) two or more emitting units sequentially stacked between the first electrode 110 and the second electrode 150, and ii) a charge generation layer between two neighboring emitting units. When the interlayer 130 includes the two or more emitting units and the charge generation layer, the light-emitting device 10 may be a tandem light-emitting device.
The hole transport region may have: i) a single-layer structure consisting of a single layer consisting of a single material, ii) a single-layer structure consisting of a single layer consisting of a plurality of materials that are different from each other, or iii) a multi-layer structure including a plurality of materials including a plurality of materials that are different from each other.
The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or a combination thereof.
For example, the hole transport region may have a multi-layer structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein constituent layers of each structure are stacked sequentially from the first electrode 110.
The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or a combination thereof:
In Formulae 201 and 202,
For example, each of Formulae 201 and 202 may include at least one selected from groups represented by Formulae CY201 to CY217:
In one or more embodiments, ring CY201 to ring CY204 in Formulae CY201 to CY217 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.
In one or more embodiments, each of Formulae 201 and 202 may include at least one selected from the groups represented by Formulae CY201 to CY203.
In one or more embodiments, Formula 201 may include at least one selected from the groups represented by Formulae CY201 to CY203 and at least one selected from the groups represented by Formulae CY204 to CY217.
In one or more embodiments, in Formula 201, xa1 may be 1, R201 may be one selected from the groups represented by Formulae CY201 to CY203, xa2 may be 0, and R202 may be one selected from the groups represented by Formulae CY204 to CY207.
In one or more embodiments, each of Formulae 201 and 202 may not include the groups represented by Formulae CY201 to CY203.
In one or more embodiments, each of Formulae 201 and 202 may not include the groups represented by Formulae CY201 to CY203, and may include at least one selected from the groups represented by Formulae CY204 to CY217.
In one or more embodiments, each of Formulae 201 and 202 may not include the groups represented by Formulae CY201 to CY217.
For example, the hole transport region may include one selected from Compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′, 4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), or a combination thereof:
A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å, for example, about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or a combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, for example, about 100 Å to about 1,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, suitable or satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.
The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by the emission layer, and the electron blocking layer may block or reduce the leakage of electrons from the emission layer to the hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron blocking layer.
p-Dopant
The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties (e.g., electrically conductive properties). The charge-generation material may be uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer consisting of a charge-generation material).
The charge-generation material may be, for example, a p-dopant.
For example, the p-dopant may have a LUMO energy level of less than or equal to about −3.5 eV.
In an embodiment, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound including element EL1 and element EL2, or a combination thereof.
Examples of the quinone derivative are TCNQ, F4-TCNQ, and the like.
Examples of the cyano group-containing compound are HAT-CN, a compound represented by Formula 221, and the like:
In Formula 221, R221 to R223 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, and
In the compound including element EL1 and element EL2, element EL1 may be metal, metalloid, or a combination thereof, and element EL2 may be non-metal, metalloid, or a combination thereof.
Examples of the metal are an alkali metal (for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), etc.); lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.); and the like.
Examples of the metalloid are silicon (Si), antimony (Sb), tellurium (Te), and the like.
Examples of the non-metal are oxygen (O), halogen (for example, F, Cl, Br, I, etc.), and the like.
Examples of the compound including element EL1 and element EL2 are metal oxide, metal halide (for example, metal fluoride, metal chloride, metal bromide, metal iodide, etc.), metalloid halide (for example, metalloid fluoride, metalloid chloride, metalloid bromide, metalloid iodide, etc.), metal telluride, or a combination thereof.
Examples of the metal oxide are tungsten oxide (for example, WO, W203, WO2, WO3, W2O5, etc.), vanadium oxide (for example, VO, V2O3, VO2, V2O5, etc.), molybdenum oxide (MoO, Mo2O3, MoO2, MoO3, Mo2O5, etc.), rhenium oxide (for example, ReO3, etc.), and the like.
Examples of the metal halide are alkali metal halide, alkaline earth metal halide, transition metal halide, post-transition metal halide, lanthanide metal halide, and the like.
Examples of the alkali metal halide are LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCI, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, CsI, and the like.
Examples of the alkaline earth metal halide are BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2), SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, Bel2, MgI2, CaI2, SrI2, BaI2, and the like.
Examples of the transition metal halide are titanium halide (for example, TiF4, TiCl4, TiBr4, TiI4, etc.), zirconium halide (for example, ZrF4, ZrCl4, ZrBr4, Zrl4, etc.), hafnium halide (for example, HfF4, HfC14, HfBr4, HfI4, etc.), vanadium halide (for example, VF3, VCI3, VBr3, Vl3, etc.), niobium halide (for example, NbF3, NbCIs, NbBrs, NbI3, etc.), tantalum halide (for example, TaF3, TaCl3, TaBrs, TaI3, etc.), chromium halide (for example, CrF3, CrCl3, CrBr3, CrI3, etc.), molybdenum halide (for example, MoF3, MoCl3, MoBrs, MoI3, etc.), tungsten halide (for example, WF3, WCI3, WBr3, WI3, etc.), manganese halide (for example, MnF2, MnCl2, MnBr2, Mn12, etc.), technetium halide (for example, TcF2, TcCl2, TcBr2, TcI2, etc.), rhenium halide (for example, ReF2, ReCl2, ReBr2, Rel2, etc.), iron halide (for example, FeF2, FeCl2, FeBr2, Fel2, etc.), ruthenium halide (for example, RuF2, RuCl2, RuBr2, RuI2, etc.), osmium halide (for example, OsF2, OsCl2, OsBr2, OsI2, etc.), cobalt halide (for example, CoF2, COCl2, CoBr2, CoI2, etc.), rhodium halide (for example, RhF2, RhCl2, RhBr2, Rhl2, etc.), iridium halide (for example, IrF2, IrCl2, IrBr2, IrI2, etc.), nickel halide (for example, NiF2, NiCl2, NiBr2, NiI2, etc.), palladium halide (for example, PdF2, PdCl2, PdBr2, PdI2, etc.), platinum halide (for example, PtF2, PtCl2, PtBr2, Pt12, etc.), copper halide (for example, CuF, CuCl, CuBr, CuI, etc.), silver halide (for example, AgF, AgCI, AgBr, AgI, etc.), gold halide (for example, AuF, AuCl, AuBr, AuI, etc.), and the like.
Examples of the post-transition metal halide are zinc halide (for example, ZnF2, ZnCl2, ZnBr2, ZnI2, etc.), indium halide (for example, InI3, etc.), tin halide (for example, Sn12, etc.), and the like.
Examples of the lanthanide metal halide may include YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3 SmCl3, YbBr, YbBr2, YbBrs, SmBrs, YbI, YbI2, YbI3, SmI3, and the like.
Examples of the metalloid halide are antimony halide (for example, SbCI5, etc.) and the like.
Examples of the metal telluride are alkali metal telluride (for example, Li2Te, Na2Te, K2Te, Rb2Te, Cs2Te, etc.), alkaline earth metal telluride (for example, BeTe, MgTe, CaTe, SrTe, BaTe, etc.), transition metal telluride (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), post-transition metal telluride (for example, ZnTe, etc.), and lanthanide metal telluride (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.).
When the light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a sub-pixel. In an embodiment, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other, to emit white light. In one or more embodiments, the emission layer may include two or more materials of a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed together with each other in a single layer, to emit white light.
In an embodiment, the emission layer may further include a host, an auxiliary dopant, a sensitizer, delayed fluorescence material, or a combination thereof, in addition to the first emitter as described in the present specification.
When the emission layer further includes a host in addition to the first emitter, the amount of the first emitter may be about 0.01 to about 15 parts by weight based on 100 parts by weight of the host.
The thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer 120 is within these ranges, excellent luminescence characteristics may be obtained without a substantial increase in driving voltage.
The host in the emission layer may include an electron-transporting compound described herein (for example, refer to the compounds represented by Formula 2-1 or 2-2), a hole-transporting compound described herein (for example, refer to a compound represented by one selected from Formulae 3-1 to 3-5), or a combination thereof.
In one or more embodiments, the host may include an alkali earth metal complex, a post-transition metal complex, or a combination thereof. In one or more embodiments, the host may include a Be complex (for example, Compound H55), an Mg complex, a Zn complex, or a combination thereof.
In one or more embodiments, the host may include one selected from Compounds H1 to H130, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or a combination thereof:
In an embodiment, the host may include a silicon-containing compound, a phosphine oxide-containing compound, or a combination thereof.
The host may have various suitable modifications. For example, the host may include only one kind of compound, or may include two or more kinds of different compounds.
The emission layer may include, as a phosphorescent dopant, the first emitter as described herein.
In an embodiment, the emission layer may further include, in addition to the first emitter as described in the present specification, an organometallic compound represented by Formula 401:
For example, in Formula 402, i) X401 may be nitrogen and X402 may be carbon, or ii) each of X401 and X402 may be nitrogen.
In one or more embodiments, when xc1 in Formula 402 is 2 or more, two ring A401 (s) in two or more of L401(s) may be optionally linked to each other via T402, which is a linking group, or two ring A402(s) may be optionally linked to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 may each independently be as defined in T401.
In Formula 401, L402 may be an organic ligand. For example, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), an isonitrile group, a —CN group, a phosphorus group (for example, a phosphine group, a phosphite group, etc.), or a combination thereof.
The emission layer may further include a fluorescent dopant in addition to the first emitter as described in the present specification.
The fluorescent dopant may include an arylamine compound, a styrylamine compound, a boron-containing compound, or a combination thereof.
For example, the fluorescent dopant may include a compound represented by Formula 501:
xd1 to xd3 may each independently be 0, 1, 2, or 3, and
xd4 may be 1, 2, 3, 4, 5, or 6.
In an embodiment, Ar501 in Formula 501 may be a condensed cyclic group (for example, an anthracene group, a chrysene group, a pyrene group, etc.) in which three or more monocyclic groups are condensed together.
In an embodiment, xd4 in Formula 501 may be 2.
For example, the fluorescent dopant may include: one selected from Compounds FD1 to FD36; DPVBi; DPAVBi; or a combination thereof:
The emission layer may further include a delayed fluorescence material.
In the present specification, the delayed fluorescence material may be selected from compounds capable of emitting delayed fluorescence based on a delayed fluorescence emission mechanism.
The delayed fluorescence material included in the emission layer may act as a host or a dopant depending on the type (or kind) of other materials included in the emission layer.
In an embodiment, a difference between a triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material may be greater than or equal to 0 eV and less than or equal to 0.5 eV. When the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material is satisfied within the range above, up-conversion from the triplet state to the singlet state of the delayed fluorescence materials may effectively occur, and thus, the light-emitting device 10 may have improved luminescence efficiency.
For example, the delayed fluorescence material may include: i) a material including at least one electron donor (for example, a π electron-rich C3-C60 cyclic group and the like, such as a carbazole group) and at least one electron acceptor (for example, a sulfoxide group, a cyano group, a π electron-deficient nitrogen-containing C1-C60 cyclic group, and/or the like), ii) a material including a C8-C60 polycyclic group including at least two cyclic groups condensed to each other while sharing boron (B), and/or the like.
Examples of the delayed fluorescence material may include at least one selected from Compounds DF1 to DF14:
The electron transport region may have: i) a single-layer structure consisting of a single layer consisting of a single material, ii) a single-layer structure consisting of a single layer consisting of a plurality of different materials, or iii) a multi-layer structure including a plurality of layers including different materials.
The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or a combination thereof.
For example, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein constituent layers of each structure are sequentially stacked from the emission layer.
The electron transport region may include a heterocyclic compound (for example, a compound represented by Formula 8, etc.) as described in the present specification.
For example, the electron transport region may have a structure in which an electron transport layer and an electron injection layer are sequentially stacked, and the heterocyclic compound described in the present specification may be included in the electron transport layer.
In an embodiment, the electron transport region may have a structure in which a hole-blocking layer, an electron transport layer, and an electron injection layer are sequentially stacked, and the heterocyclic compound described in the present specification may be included in the electron transport layer.
The electron transport region (for example, a buffer layer, a hole-blocking layer, an electron control layer, or an electron transport layer in the electron transport region) may further include, in addition to the heterocyclic compound described herein, a metal-free compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group.
For example, the electron transport region may further include a compound represented by Formula 601 in addition to the heterocyclic compound described in the present specification.
In Formula 601, Ar601 and L601 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
In an embodiment, when xe11 in Formula 601 is 2 or more, two or more of Ar601 may be linked to each other via a single bond.
In an embodiment, Ar601 in Formula 601 may be a substituted or unsubstituted anthracene group.
For example, the electron transport region may further include a compound represented by Formula 601-1 in addition to the heterocyclic compound described in the present specification.
In Formula 601-1, X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one selected from X614 to X616 may be N,
For example, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.
In an embodiment, the electron transport region may further include, in addition to the heterocyclic compound described in the present specification, one selected from the following compounds ET1 to ET46, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, TAZ, NTAZ, or a combination thereof:
The thickness of the electron transport region may be in a range of about 100 Å to about 5,000 Å, for example, about 160 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, or a combination thereof, the thickness of the buffer layer, the hole blocking layer, or the electron control layer may be in a range of about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å, and the thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. When the thickness of the buffer layer, the hole-blocking layer, the electron control layer, the electron transport layer, and/or the electron transport layer are within these ranges, suitable or satisfactory electron transporting characteristics may be obtained without a substantial increase in driving voltage.
The electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.
The metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or a combination thereof. The metal ion of an alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and the metal ion of an alkaline earth metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may include a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenylbenzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or a combination thereof.
For example, the metal-containing material may include a L1 complex. The Li complex may include, for example, Compound ET-D1 (LiQ) and/or ET-D2:
The electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode 150. The electron injection layer may directly contact the second electrode 150.
The electron injection layer may have: i) a single-layer structure consisting of a single layer consisting of a single material, ii) a single-layer structure consisting of a single layer consisting of a plurality of different materials, or iii) a multi-layer structure including a plurality of layers including different materials.
The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or a combination thereof.
The alkali metal may include Li, Na, K, Rb, Cs, or a combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or a combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or a combination thereof.
The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may be oxides, halides (for example, fluorides, chlorides, bromides, iodides, etc.), and/or tellurides of the alkali metal, the alkaline earth metal, and the rare earth metal, or a combination thereof.
The alkali metal-containing compound may include: alkali metal oxides, such as Li2O, Cs2O, and/or K2O; alkali metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, KI, and/or RbI; or a combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal compound, such as BaO, SrO, CaO, BaxSr1-xO (wherein x is a real number satisfying 0<x<1), BaxCa1-xO (wherein x is a real number satisfying 0<x<1), and/or the like. The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or a combination thereof. In an embodiment, the rare earth metal-containing compound may include lanthanide metal telluride. Examples of the lanthanide metal telluride are LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, Lu2Te3, and the like.
The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include i) one selected from metal ions of the alkali metal, the alkaline earth metal, and the rare earth metal and ii), as a ligand bonded to the metal ion, for example, a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenyl benzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or a combination thereof.
In an embodiment, the electron injection layer may include (or consist of) an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or a combination thereof, as described above. In one or more embodiments, the electron injection layer may further include an organic material (for example, a compound represented by Formula 601).
In an embodiment, the electron injection layer may include (or consist of) i) an alkali metal-containing compound (for example, alkali metal halide), ii) a) an alkali metal-containing compound (for example, alkali metal halide); and b) an alkali metal, an alkaline earth metal, a rare earth metal, or a combination thereof. For example, the electron injection layer may be a KI:Yb co-deposited layer, an RbI:Yb co-deposited layer, a LiF:Yb co-deposited layer, and/or the like.
When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or a combination thereof may be uniformly or non-uniformly dispersed in a matrix including the organic material.
The thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, and, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the ranges above, suitable or satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.
The second electrode 150 may be arranged on the interlayer 130 having a structure as described above. The second electrode 150 may be a cathode, which is an electron injection electrode, and as a material for forming the second electrode 150, a metal, an alloy, an electrically conductive compound, or a combination thereof, each having a low-work function, may be used.
The second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, IZO, or a combination thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
The second electrode 150 may have a single-layer structure or a multi-layer structure including a plurality of layers.
The first capping layer may be arranged outside the first electrode 110, and/or the second capping layer may be arranged outside the second electrode 150. In some embodiments, the light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are sequentially stacked in the stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in the stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in the stated order.
Light generated in the emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the first electrode 110 which is a semi-transmissive electrode or a transmissive electrode, and the first capping layer. Light generated in the emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the second electrode 150 which is a semi-transmissive electrode or a transmissive electrode, and the second capping layer.
The first capping layer and the second capping layer may increase external emission efficiency according to the principle of constructive interference. Accordingly, the light extraction efficiency of the light-emitting device 10 is increased, so that the luminescence efficiency of the light-emitting device 10 may be improved.
Each of the first capping layer and the second capping layer may include a material having a refractive index of greater than or equal to 1.6 (at a wavelength of 589 nm).
The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.
At least one selected from the first capping layer and the second capping layer may each independently include a carbocyclic compound, a heterocyclic compound, an amine group-containing compound, a porphine derivative, a phthalocyanine derivative, a naphthalocyanine derivative, an alkali metal complex, an alkaline earth metal complex, or a combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may optionally be substituted with a substituent including O, N, S, Se, Si, F, Cl, Br, I, or a combination thereof. In an embodiment, at least one selected from the first capping layer and the second capping layer may each independently include an amine group-containing compound.
In one or more embodiments, at least one selected from the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or a combination thereof.
In one or more embodiments, at least one selected from the first capping layer and the second capping layer may each independently include: one selected from Compounds HT28 to HT33; one selected from Compounds CP1 to CP6; β-NPB; or a combination thereof:
The light-emitting device may be included in various suitable electronic devices. For example, the electronic device including the light-emitting device may be a light-emitting device, an authentication apparatus, and/or the like.
The electronic device (for example, a light-emitting device) may further include, in addition to the light-emitting device, i) a color filter, ii) a color conversion layer, or iii) a color filter and a color conversion layer. The color filter and/or the color conversion layer may be arranged in at least one traveling direction of light emitted from the light-emitting device. For example, the light emitted from the light-emitting device may be blue light, green light, or white light. Additional details for the light-emitting device may be referred to the descriptions provided herein. In an embodiment, the color conversion layer may include a quantum dot.
The electronic device may include a first substrate. The first substrate may include a plurality of subpixel areas, the color filter may include a plurality of color filter areas respectively corresponding to the subpixel areas, and the color conversion layer may include a plurality of color conversion areas respectively corresponding to the subpixel areas.
A pixel-defining film may be arranged among the subpixel areas to define each of the subpixel areas.
The color filter may further include a plurality of color filter areas and light-shielding patterns arranged among the color filter areas, and the color conversion layer may further include a plurality of color conversion areas and light-shielding patterns arranged among the color conversion areas.
The plurality of color filter areas (or the plurality of color conversion areas) may include a first area that emits a first color light, a second area that emits a second color light, and/or a third area that emits a third color light, wherein the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths from one another. For example, the first color light may be red light, the second color light may be green light, and the third color light may be blue light. For example, the plurality of color filter areas (or the plurality of color conversion areas) may include quantum dots. In some embodiments, the first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may not include a quantum dot. Additional details for the quantum dot may be referred to the descriptions provided herein. The first area, the second area, and/or the third area may each further include a scatter (e.g., a light scatterer).
For example, the light-emitting device may emit first light, the first area may absorb the first light to emit a first-first color light, the second area may absorb the first light to emit a second-first color light, and the third area may absorb the first light to emit a third-first color light. Here, the first-first color light, the second-first color light, and the third-first color light may have different maximum emission wavelengths. In some embodiments, the first light may be blue light, the first-first color light may be red light, the second-first color light may be green light, and the third-first color light may be blue light.
The electronic device may further include a thin-film transistor, in addition to the light-emitting device as described above. The thin-film transistor may include a source electrode, a drain electrode, and an activation layer, wherein any one selected from the source electrode and the drain electrode may be electrically connected to any one selected from the first electrode and the second electrode of the light-emitting device.
The thin-film transistor may further include a gate electrode, a gate insulating film, and/or the like.
The activation layer may include crystalline silicon, amorphous silicon, an organic semiconductor, an oxide semiconductor, and/or the like.
The electronic device may further include a sealing portion for sealing the light-emitting device. The sealing portion may be arranged between the color filter and/or the color conversion layer and the light-emitting device. The sealing portion allows light from the light-emitting device to be extracted to the outside, and concurrently (e.g., simultaneously) prevents or reduces penetration of ambient air and moisture into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate and/or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including at least one layer of an organic layer and/or an inorganic layer. When the sealing portion is a thin film encapsulation layer, the electronic device may be flexible.
Various suitable functional layers may be additionally on the sealing portion, in addition to the color filter and/or the color conversion layer, according to the use of the electronic device. Examples of the functional layers may include a touch screen layer, a polarizing layer, and/or the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, and/or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by using biometric information of a living body (for example, fingertips, pupils, etc.).
The authentication apparatus may further include, in addition to the light-emitting device as described above, a biometric information collector.
The electronic device may be applied to various suitable displays, light sources, lighting, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic organizers, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, and/or endoscope displays), fish finders, various suitable measuring instruments, meters (for example, meters for a vehicle, an aircraft, and/or a vessel), projectors, and/or the like.
The light-emitting device may be included in various suitable electronic apparatuses.
For example, the electronic apparatus including the light-emitting device may be a flat panel display, a curved display, a computer monitor, a medical monitor, a television, a billboard, a light for indoor or outdoor lighting and/or signaling, a head-up display, a fully or partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a mobile phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro display, a 3D display, a virtual or augmented reality display, a vehicle, a video wall including a plurality of displays tiled together, a theater or stadium screen, a phototherapy device, and/or a signboard.
The light-emitting device may have excellent effects in terms of luminescence efficiency long lifespan, and thus the electronic apparatus including the light-emitting device may have characteristics, such as high luminance, high resolution, and low power consumption.
The light-emitting apparatus of
The substrate 100 may be a flexible substrate, a glass substrate, and/or a metal substrate. A buffer layer 210 may be arranged on the substrate 100. The buffer layer 210 may prevent or reduce penetration of impurities through the substrate 100 and may provide a flat surface on the substrate 100.
A TFT may be arranged on the buffer layer 210. The TFT may include an activation layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.
The activation layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region, and a channel region.
A gate insulating film 230 for insulating the activation layer 220 from the gate electrode 240 may be arranged on the activation layer 220, and the gate electrode 240 may be arranged on the gate insulating film 230.
An interlayer insulating film 250 may be arranged on the gate electrode 240.
The interlayer insulating film 250 may be arranged between the gate electrode 240 and the source electrode 260 and between the gate electrode 240 and the drain electrode 270, to insulate from one another.
The source electrode 260 and the drain electrode 270 may be arranged on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the activation layer 220, and the source electrode 260 and the drain electrode 270 may be arranged in contact with the exposed portions of the source region and the drain region of the activation layer 220.
The TFT may be electrically connected to a light-emitting device to drive the light-emitting device, and may be covered and protected by a passivation layer 280.
The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or a combination thereof. A light-emitting device may be provided on the passivation layer 280. The light-emitting device may include the first electrode 110, the interlayer 130, and the second electrode 150.
The first electrode 110 may be arranged on the passivation layer 280. The passivation layer 280 may be arranged to expose a portion of the drain electrode 270, not fully covering the drain electrode 270, and the first electrode 110 may be arranged to be connected to the exposed portion of the drain electrode 270.
A pixel defining layer 290 including an insulating material may be arranged on the first electrode 110. The pixel defining layer 290 may expose a certain region of the first electrode 110, and an interlayer 130 may be formed in the exposed region of the first electrode 110. The pixel defining layer 290 may be a polyimide-based organic film and/or a polyacrylic-based organic film. In some embodiments, at least some layers of the interlayer 130 may extend beyond the upper portion of the pixel defining layer 290 to be arranged in the form of a common layer.
A second electrode 150 may be on the interlayer 130, and a second capping layer 170 may be additionally on the second electrode 150. The second capping layer 170 may cover the second electrode 150.
The encapsulation portion 300 may be on the second capping layer 170. The encapsulation portion 300 may be arranged on a light-emitting device to protect the light-emitting device from moisture and/or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or a combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (for example, polymethyl methacrylate, polyacrylic acid, and/or the like), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE), and/or the like), or a combination thereof; or a combination of the inorganic films and the organic films.
The light-emitting apparatus of
The electronic apparatus 1 may include a display area DA and a non-display area NDA outside the display area DA. A display device may implement an image through an array of a plurality of pixels that are two-dimensionally arranged in the display area DA.
The non-display area NDA is an area that does not display an image, and may entirely surround the display area DA. On the non-display area NDA, a driver for providing electrical signals or power to display devices arranged on the display area DA may be arranged. On the non-display area NDA, a pad, which is an area to which an electronic element or a printing circuit board, may be electrically connected may be arranged.
In the electronic apparatus 1, a length in the x-axis direction and a length in the y-axis direction may be different from each other. In an embodiment, as shown in
Referring to
The vehicle 1000 may travel on a road and/or a track. The vehicle 1000 may move in a set or predetermined direction according to rotation of at least one wheel. For example, the vehicle 1000 may include a three-wheeled or four-wheeled vehicle, a construction machine, a two-wheeled vehicle, a prime mover device, a bicycle, and/or a train running on a track.
The vehicle 1000 may include a body having an interior and an exterior, and a chassis in which mechanical apparatuses necessary for driving are installed as other parts except for the body. The exterior of the body may include a front panel, a bonnet, a roof panel, a rear panel, a trunk, a pillar provided at a boundary between doors, and/or the like. The chassis of the vehicle 1000 may include a power generating device, a power transmitting device, a driving device, a steering device, a braking device, a suspension device, a transmission device, a fuel device, front and rear left and right wheels, and/or the like.
The vehicle 1000 may include a side window glass 1100, a front window glass 1200, a side mirror 1300, a cluster 1400, a center fascia 1500, a passenger seat dashboard 1600, and a display device 2.
The side window glass 1100 and the front window glass 1200 may be partitioned by a pillar arranged between the side window glass 1100 and the front window glass 1200.
The side window glass 1100 may be installed on the side of the vehicle 1000. In an embodiment, the side window glass 1100 may be installed on a door of the vehicle 1000. A plurality of side window glasses 1100 may be provided and may face each other. In an embodiment, the side window glass 1100 may include a first side window glass 1110 and a second side window glass 1120. In an embodiment, the first side window glass 1110 may be arranged adjacent to the cluster 1400. The second side window glass 1120 may be arranged adjacent to the passenger seat dashboard 1600.
In an embodiment, the side window glasses 1100 may be spaced apart from each other in the x-direction or the −x-direction. For example, the first side window glass 1110 and the second side window glass 1120 may be spaced apart from each other in the x direction or the −x direction. In other words, an imaginary straight line L connecting the side window glasses 1100 may extend in the x-direction or the −x-direction. For example, an imaginary straight line L connecting the first side window glass 1110 and the second side window glass 1120 to each other may extend in the x direction or the −x direction.
The front window glass 1200 may be installed in front of the vehicle 1000. The front window glass 1200 may be arranged between the side window glasses 1100 facing each other.
The side mirror 1300 may provide a rear view of the vehicle 1000. The side mirror 1300 may be installed on the exterior of the vehicle body. In one embodiment, a plurality of side mirrors 1300 may be provided. Any one of the plurality of side mirrors 1300 may be arranged outside the first side window glass 1110. The other one of the plurality of side mirrors 1300 may be arranged outside the second side window glass 1120.
The cluster 1400 may be arranged in front of the steering wheel. The cluster 1400 may include a tachometer, a speedometer, a coolant thermometer, a fuel gauge turn indicator, a high beam indicator, a warning lamp, a seat belt warning lamp, an odometer, an odometer, an automatic shift selector indicator lamp, a door open warning lamp, an engine oil warning lamp, and/or a low fuel warning light.
The center fascia 1500 may include a control panel on which a plurality of buttons for adjusting an audio device, an air conditioning device, and a heater of a seat are provided. The center fascia 1500 may be arranged on one side of the cluster 1400.
A passenger seat dashboard 1600 may be spaced apart from the cluster 1400 with the center fascia 1500 arranged therebetween. In an embodiment, the cluster 1400 may correspond to a driver seat, and the passenger seat dashboard 1600 may correspond to a passenger seat. In an embodiment, the cluster 1400 may be adjacent to the first side window glass 1110, and the passenger seat dashboard 1600 may be adjacent to the second side window glass 1120.
In an embodiment, the display device 2 may include a display panel 3, and the display panel 3 may display an image. The display device 2 may be arranged inside the vehicle 1000. In an embodiment, the display device 2 may be arranged between the side window glasses 1100 facing each other. The display device 2 may be arranged on at least one selected from the cluster 1400, the center fascia 1500, and the passenger seat dashboard 1600.
The display device 2 may include an organic light-emitting display device, an inorganic EL display device, a quantum dot display device, and/or the like. Hereinafter, as the display device 2 according to an embodiment of the present disclosure, an organic light-emitting display device including the light-emitting device according to the present disclosure will be described as an example, but various suitable types (or kinds) of display devices as described above may be used in embodiments of the present disclosure.
Referring to
Referring to
Referring to
Respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, laser-induced thermal imaging, and the like.
When respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10−8 torr to about 10−3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, depending on a material to be included in a layer to be formed and the structure of a layer to be formed.
The term “C3-C60 carbocyclic group” as used herein refers to a cyclic group consisting of carbon only as a ring-forming atom and having three to sixty carbon atoms, and the term “C1-C60 heterocyclic group” as used herein refers to a cyclic group that has one to sixty carbon atoms and further has, in addition to carbon, a heteroatom as a ring-forming atom. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed together with each other. For example, the number of ring-forming atoms of the C1-C60 heterocyclic group may be from 3 to 61.
The “cyclic group” as used herein may include both the C3-C60 carbocyclic group and the C1-C60 heterocyclic group.
The term “π electron-rich C3-C60 cyclic group” as used herein refers to a cyclic group that has three to sixty carbon atoms and does not include *—N═*′ as a ring-forming moiety, and the term “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein refers to a heterocyclic group that has one to sixty carbon atoms and includes *—N═*′ as a ring-forming moiety.
For example, the C3-C60 carbocyclic group may be i) a T1 group or ii) a condensed cyclic group in which two or more T1 groups are condensed together with each other (for example, a cyclopentadiene group, an adamantane group, a norbornane group, a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indenophenanthrene group, or an indenoanthracene group),
The terms “the cyclic group,” “the C3-C60 carbocyclic group,” “the C1-C60 heterocyclic group,” “the π electron-rich C3-C60 cyclic group,” or “the π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein refer to a group condensed to any cyclic group, a monovalent group, or a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, etc.) according to the structure of a formula for which the corresponding term is used. For example, the “benzene group” may be a benzo group, a phenyl group, a phenylene group, or the like, which may be easily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”
Examples of the monovalent C3-C60 carbocyclic group and the monovalent C1-C60 heterocyclic group are a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group. Examples of the divalent C3-C60 carbocyclic group and the monovalent C1-C60 heterocyclic group are a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.
The term “C1-C60 alkyl group” as used herein refers to a linear or branched aliphatic hydrocarbon monovalent group that has one to sixty carbon atoms, and examples thereof are a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as used herein refers to a divalent group having substantially the same structure as the C1-C60 alkyl group.
The term “C2-C60 alkenyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon double bond at a main chain (e.g., in the middle) or at a terminal end (e.g., the terminus) of the C2-C60 alkyl group, and examples thereof are an ethenyl group, a propenyl group, a butenyl group, and the like. The term “C2-C60 alkenylene group” as used herein refers to a divalent group having substantially the same structure as the C2-C60 alkenyl group.
The term “C2-C60 alkynyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon triple bond at a main chain (e.g., in the middle) or at a terminal end (e.g., the terminus) of the C2-C60 alkyl group, and examples thereof are an ethynyl group, a propynyl group, and the like. The term “C2-C60 alkynylene group” as used herein refers to a divalent group having substantially the same structure as the C2-C60 alkynyl group.
The term “C1-C60 alkoxy group” as used herein refers to a monovalent group represented by —OA101 (wherein A101 is the C1-C60 alkyl group), and examples thereof are a methoxy group, an ethoxy group, an isopropyloxy group, and the like.
The term “C3-C10 cycloalkyl group” as used herein refers to a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof are a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or bicyclo[2.2.1]heptyl group), a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, a bicyclo[2.2.2]octyl group, and the like. The term “C3-C10 cycloalkylene group” as used herein refers to a divalent group having substantially the same structure as the C3-C10 cycloalkyl group.
The term “C1-C10 heterocycloalkyl group” as used herein refers to a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and examples thereof are a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, a tetrahydrothiophenyl group, and the like. The term “C1-C10 heterocycloalkylene group” as used herein refers to a divalent group having substantially the same structure as the C1-C10 heterocycloalkyl group.
The term “C3-C10 cycloalkenyl group” as used herein refers to a monovalent cyclic group that has three to ten carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity (e.g., is not aromatic), and examples thereof are a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, and the like. The term “C3-C10 cycloalkenylene group” as used herein refers to a divalent group having substantially the same structure as the C3-C10 cycloalkenyl group.
The term “C1-C1 heterocycloalkenyl group” as used herein refers to a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having at least one carbon-carbon double bond in the cyclic structure thereof. Examples of the C1-C1 heterocycloalkenyl group are a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, a 2,3-dihydrothiophenyl group, and the like. The term “C1-C10 heterocycloalkenylene group” as used herein refers to a divalent group having substantially the same structure as the C1-C10 heterocycloalkenyl group.
The term “C6-C60 aryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms, and the term “C6-C60 arylene group” as used herein refers to a divalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms. Examples of the C6-C60 aryl group are a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, and the like. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the rings may be condensed together with each other.
The term “C1-C60 heteroaryl group” as used herein refers to a monovalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. The term “C1-C60 heteroarylene group” as used herein refers to a divalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. Examples of the C1-C60 heteroaryl group are a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, and a naphthyridinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the rings may be condensed together with each other.
The term “monovalent non-aromatic condensed polycyclic group” as used herein refers to a monovalent group (for example, having 8 to 60 carbon atoms) having two or more rings condensed to each other, only carbon atoms as ring-forming atoms, and no aromaticity in its entire molecular structure (e.g., is not aromatic when considered as a whole). Examples of the monovalent non-aromatic condensed polycyclic group are an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, an indeno anthracenyl group, and the like. The term “divalent non-aromatic condensed polycyclic group” as used herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed polycyclic group described above.
The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein refers to a monovalent group (for example, having 1 to 60 carbon atoms) having two or more rings condensed to each other, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having non-aromaticity in its entire molecular structure (e.g., is not aromatic when considered as a whole). Examples of the monovalent non-aromatic condensed heteropolycyclic group are a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphthoindolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indeno carbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, and a benzothienodibenzothiophenyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed heteropolycyclic group described above.
The term “C6-C60 aryloxy group” as used herein indicates —OA102 (wherein A102 is the C6-C60 aryl group), and the term “C6-C60 arylthio group” as used herein indicates —SA103 (wherein A103 is the C6-C60 aryl group).
The term “C7-C60 arylalkyl group” as used herein refers to —A104A105 (wherein A104 is a C1-C54 alkylene group, and A105 is a C6-C59 aryl group), and the term “C2-C60 heteroarylalkyl group” as used herein refers to —A106A107 (wherein A106 is a C1-C59 alkylene group, and A107 is a C1-C59 heteroaryl group).
The term “R10a” as used herein may be:
The term “heteroatom” as used herein refers to any suitable atom other than a carbon atom. Examples of the heteroatom are O, S, N, P, Si, B, Ge, Se, and a combination thereof.
In the present specification, the third-row transition metal may include hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), and the like.
“Ph” as used herein refers to a phenyl group, “Me” as used herein refers to a methyl group, “Et” as used herein refers to an ethyl group, “ter-Bu” or “But” as used herein refers to a tert-butyl group, and “OMe” as used herein refers to a methoxy group.
The term “biphenyl group” as used herein refers to “a phenyl group substituted with a phenyl group.” In other words, the “biphenyl group” may be a substituted phenyl group having a C6-C60 aryl group as a substituent.
The term “terphenyl group” as used herein refers to “a phenyl group substituted with a biphenyl group.” In other words, the “terphenyl group” may be a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.
Hereinafter, a light-emitting device according to embodiments will be described in more detail with reference to Examples.
The HOMO energy level, LUMO energy level, band gap, and percentage of 3MLCT of each of Compounds GD-1 to GD-12 were evaluated according to the method in Table 1, and results thereof are shown in Table 2.
3MLCT
PMMA and Compound GD-1 (4 wt % compared to PMMA) were mixed together in a CH2Cl2 solution, and then, the resultant obtained therefrom was coated on a quartz substrate using a spin coater, and then heat treated in an oven at 80° C., followed by cooling to room temperature to manufacture Film GD-1 having a thickness of 40 nm. Subsequently, Films GD-2 to GD-12 were prepared using substantially the same method as used to manufacture Film GD-1, except that each of Compounds GD-2 to GD-12 was used instead of Compound GD-1.
The emission spectrum of each of Films GD-2 to GD-12 was measured by using the quantaurus-QY absolute PL quantum yield spectrometer of Hamamatsu Inc. (equipped with a xenon light source, a monochromator, a photonic multichannel analyzer, and an integrating sphere, and using PLQY measurement software (Hamamatsu Photonics, Ltd., Shizuoka, Japan)). During measurement, the excitation wavelength was scanned from 320 nm to 380 nm at 10 nm intervals, and the spectrum measured at the excitation wavelength of 340 nm was used to obtain the maximum emission wavelength (emission peak wavelength) and FWHM of the compound included in each film. Results thereof are shown in Table 3.
The HOMO energy level and LUMO energy level of each of Compounds ET-1 to ET-6 and PET-1 to PET-5 were evaluated in the method shown in Table 1, and results thereof are shown in Table 4.
The hole mobility and electron mobility of each of Compounds ET-1 to ET-6 and PET-1 to PET-5 were evaluated using the space-charge-limited current (SCLC) described in “Hole mobility of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine investigated by using space-charge-limited currents, ‘Appl. Phys. Lett. 90, 203512 (2007)”, and results obtained therefrom are shown in Table 4.
To manufacture an anode, a glass substrate (product of Corning Inc.) having a 15 Ω/cm2 (1,200 Å) ITO formed thereon was cut to a size of 50 mm×50 mm×0.7 mm, sonicated by using isopropyl alcohol and pure water, each for 5 minutes, washed by irradiation of ultraviolet rays and exposure of ozone thereto for 30 minutes, and then mounted on a vacuum deposition apparatus.
Compound HT3 was vacuum-deposited on the anode to form a hole injection layer having a thickness of 600 Å, and Compound HT40 was vacuum-deposited on the hole injection layer to form an emission auxiliary layer having a thickness of 250 Å.
Compound H125, Compound H126, and Compound GD-1 (first emitter) were vacuum-deposited on the emission auxiliary layer at a weight ratio of 45:45:10 to form an emission layer having a thickness of 300 Å.
The compound ET37 was vacuum-deposited on the emission layer to form a hole-blocking layer having a thickness of 50 Å, and ET-1 and LiQ were vacuum-deposited at a weight ratio of 5:5 on the hole-blocking layer to form an electron transport layer having a thickness of 310 Å. Subsequently, Yb was vacuum-deposited on the electron transport layer to form an electron injection layer having a thickness of 15 Å, and then Ag and Mg were vacuum-deposited to form a cathode having a thickness of 100 Å, thereby completing the manufacture of an organic light-emitting device.
The organic light-emitting devices of Examples and Comparative Examples listed in Tables 5 to 16 were manufactured in substantially the same manner as in Example 1, except that the compounds shown in Tables 5 to 16 were used instead of Compound GD-1 in the emission layer and/or Compound ET-1 in the electron transport layer.
The driving voltage (V), maximum power efficiency (cd/W) and color coordinates (CIEx and CIEy) of the organic light-emitting devices manufactured according to Examples and Comparative Examples using materials for the first emitter and the electron transport layer, were measured by using a Keithley MU 236 and a luminance meter PR650, and results thereof are shown in Tables 5 to 16.
From Tables 5 to 16, it can be seen that the light-emitting devices manufactured in the Examples have lower driving voltage and higher maximum power efficiency than the light-emitting devices manufactured in the Comparative Examples.
According to one or more embodiments, a light-emitting device may have a low driving voltage and high power efficiency. Accordingly, the light-emitting device may enable the manufacture of a high-quality electronic device and a high-quality consumer product.
It should be understood that embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. While one or more embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims, and equivalents thereof.
| Number | Date | Country | Kind |
|---|---|---|---|
| 10-2022-0189634 | Dec 2022 | KR | national |