This invention relates to light emitting devices and more particularly to such devices having increased light output.
Light emitting packages are typically constructed using a light source (usually a light emitting diode (LED)) die surrounded by an encapsulant material which in turn is encased within a support. Often the support is a reflector cup made from, for example, polyphthalamide (PPA) or liquid crystal polymer (LCP). Light from the light source passing through the encapsulant impacts the support or reflector cup and is redirected back inside the encapsulant. Some of the light is reflected upward toward the top surface, some of the light is scattered within the encapsulant and some of the light is reflected downward away from the top surface. Thus, a portion of the light is “lost’ within the package itself.
Attempts to increase the light output of such devices have centered on increasing the light intensity of the light source. Such light intensity (Iv) or light flux (Φv) increases for a particular light source are difficult to achieve, take long periods of research and development and are costly. Another method of increasing light output from a light package is to work on the interior quantum efficiency of the light source (i.e. within the light source itself) or to work on the exterior quantum efficiency of the package (i.e. on the encapsulant or the reflector cup). Again, such light increases are difficult to achieve.
In some situations it is possible to install a lens on the device to increase the light output, or at least to focus the light so that it appears brighter in some applications.
The light intensity emitted from a package is increased by adjusting a portion of the package encapsulant so that light impacting the side walls of the adjusted encapsulant portion will encounter total internal reflection (TIR) with the reflected light directed toward the top surface of the package. The adjusted portion of the package is positioned so that air can be used as the second (exterior) medium with the critical TIR angle being such that light emitted from a light source (such as from an LED die) will be directed primarily so as to escape the package from the top surface as opposed to being scattered internal to the package. In one embodiment, a lower portion of the encapsulant is surrounded by a easing to inwardly direct light from the light source that impacts the side of the encapsulant with an angle less than the critical TIR angle.
A portion of the encapsulant (shown in the embodiment as side walls 141 and top surface 140) extend above side walls 142 of reflector 13. This arrangement then results in encapsulant 14 having at least two regions, with the lower region bounded by the support and the upper region bounded by a medium different from the medium of the support. In the embodiment shown, this upper bounding medium is air.
It is well known that when light passes through one medium into another the light tends to bend at the boundary. When the angle of incidence of the light at the boundary (angle Φ) is greater than a certain value (called the critical angle) then the light, instead of passing out of the medium reflects back into the medium at the same angle Φ. This concept is called total internal reflection (TIR) and the critical angle is dependant upon the medium through which the light is passing as well as the bounding medium. The formula is: sin Φcrit≈nair/nencapsulant where nair and nencapsulant are the indexes of refraction of the air and encapsulant, respectively.
Unbounded (actually air-bounded in the embodiment of
Light from light source 12 (characterized by dashed line 151) impacting reflector (or other encapsulant bounding material) 13 at sides 141 scatters back into the encapsulant. This light also reflects in various directions, with some light going toward top surface 140, while other light is reflected toward the bottom of the package, as shown by the dashed line at the lower right of
The TIR effect will be even more significant if the reflector cup is steeper (bigger inclination angle θ) and the refractive index of the encapsulant is higher. For example, refractive index (n) at the emission wavelength changes from a value of nepoxy≈1.5 to nair≈1.008. So the critical angle of TIR will be fc≈sin−1 (nair/nepoxy)≈42°.
For example, using the same encapsulant, if the inclination angle θ2>θ1, then the critical angle θ where TIR starts to happen will be at a higher portion of the reflector cup where H1>H2 as illustrated in
Using the concepts discussed herein, it is possible to make a light emitting package with the same or smaller foot print and size, but higher luminous intensity and flux output for a given light source. This can be accomplished by proper calculation and simulation to determine the critical angle of the package that maximizes the light output to the top opening window.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This is a divisional of co-pending application Ser. No. 11/449,088, filed Jun. 8, 2006, the entire disclosure of which is incorporated into this application by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11449088 | Jun 2006 | US |
Child | 12968917 | US |