This application claims priority to and benefits of Korean Patent Application No. 10-2021-0101014 under 35 U.S.C. § 119, filed on Jul. 30, 2021, in the Korean Intellectual Property Office, the entire contents of which are incorporated herein by reference.
Embodiments relate to a light-emitting device including a condensed cyclic compound, an electronic apparatus including the light-emitting device, and the condensed cyclic compound.
Organic light-emitting devices are self-emissive devices that, as compared with devices of the related art, have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of luminance, driving voltage, and response speed, while producing full-color images.
Organic light-emitting devices may include a first electrode located on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode sequentially stacked on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. These excitons transition from an excited state to a ground state to thereby generate light.
It is to be understood that this background of the technology section is, in part, intended to provide useful background for understanding the technology. However, this background of the technology section may also include ideas, concepts, or recognitions that were not part of what was known or appreciated by those skilled in the pertinent art prior to a corresponding effective filing date of the subject matter disclosed herein.
Provided are a light-emitting device including a novel condensed cyclic compound, an electronic apparatus including the light-emitting device, and the condensed cyclic compound.
Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the embodiments of the disclosure.
According to embodiments, a light-emitting device may include a first electrode, a second electrode facing the first electrode, and an interlayer disposed between the first electrode and the second electrode, wherein the interlayer may include an emission layer, and the emission layer may include a condensed cyclic compound represented by Formula 1:
In Formulae 1 and 2,
rings A1 to A3 and A21 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group,
X1 may be N(R1a) or O,
X2 may be N(R2a) or O,
X3 may be B, P(═O), or P(═S),
X21 may be C,
R1 to R3, R21, R1a, and R2a may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
T1 and T2 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
a1 to a3, a21, b1, and b2 may each independently be an integer from 0 to 10,
T3 may be a group represented by Formula 2,
* may indicate a binding site to a neighboring atom,
R10a may be:
deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group,
a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof,
a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, or a C6-C60 arylthio group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof, or
—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32),
wherein Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, or a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof, and
the condensed cyclic compound may satisfy at least one of Condition 1 to Condition 4:
[Condition 1]
Ring A1 includes a condensed ring in which two or more C1-C30 rings are condensed with each other
[Condition 2]
Ring A2 includes a condensed ring in which two or more C1-C30 rings are condensed with each other
[Condition 3]
A sum of b1 and b2 is greater than or equal to 1
[Condition 4]
Ring A21 is a C1-C60 heterocyclic group.
In an embodiment, the first electrode may be an anode, the second electrode may be a cathode, and the interlayer may further include a hole transport region between the emission layer and the first electrode, and an electron transport region between the emission layer and the second electrode. The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof. The electron transport region may include a hole blocking layer, an electron transport layer, an electron injection layer, or any combination thereof.
In an embodiment, the emission layer may include: a first compound including the condensed cyclic compound represented by Formula 1; and a second compound comprising a group represented by Formula 20, a third compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group, a fourth compound represented by Formula 401, or any combination thereof, wherein Formula 20 and Formula 401 are explained below. The first compound, the second compound, the third compound, and the fourth compound may be different from each other, and CBP and mCBP may be excluded from the second compound:
In an embodiment, the emission layer may emit light having a maximum emission wavelength in a range of about 430 nm to about 480 nm.
In an embodiment, the interlayer may further include a hole transport region between the first electrode and the emission layer, and the hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof, wherein Formulae 201 and 202 are explained below.
In an embodiment, a bond dissociation energy of a single bond connecting ring A3 in Formula 1 with X21 in Formula 2 may be greater than or equal to about 3.0 eV.
According to embodiments, an electronic apparatus may include the light-emitting device.
In an embodiment, the electronic apparatus may further include a thin-film transistor. The thin-film transistor may include a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode.
According to embodiments, a condensed cyclic compound may be represented by Formula 1.
In an embodiment, rings A1 and A2 may each independently be a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, an indole group, an indene group, a benzothiophene group, a benzofuran group, a carbazole group, a fluorene group, a dibenzothiophene group, a dibenzofuran group, a dibenzothiophene 5-oxide group, a 9H-fluorene-9-one group, or a dibenzothiophene 5,5-dioxide group, and ring A3 may be a benzene group.
In an embodiment, a group represented by
in Formula 1 may be a group represented by one of Formulae 3-1 to 3-12 and 4-1 to 4-14, which are explained below.
In an embodiment, a group represented by
in Formula 1 may be a group represented by one of Formulae 5-1 to 5-12 and 6-1 to 6-14, which are explained below.
In an embodiment, a group represented by
in Formula 1 may be a group represented by one of Formulae 3A-1 to 3A-12 and 4A-1 to 4A-10, which are explained below.
In an embodiment, a group represented by
in Formula 1 may be a group represented by one of Formulae 5A-1 to 5A-12 and 6A-1 to 6A-10, which are explained below.
In an embodiment, a group represented by
in Formula 1 may be a group represented by one of Formulae 11-1 to 11-3, which are explained below.
In an embodiment, X1 may be N(R1a), X2 may be N(R2a) or O, and R1a and R2a may respectively be the same as described in Formula 1.
In an embodiment, T1 and T2 may each independently be a group represented by one of Formulae 12-1 to 12-20, and T3 may be a group represented by one of Formulae 12-6 to 12-20, wherein Formulae 12-1 to 12-20 are explained below.
In an embodiment, T1 and T2 may each independently be a group represented by one of Formulae 13-1 to 13-5, and T3 may be a group represented by one of Formulae 13-6 to 13-20, wherein Formulae 13-1 to 13-20 are explained below.
In an embodiment, Condition 1 and Condition 4 may be satisfied, Condition 2 and Condition 4 may be satisfied, or Condition 3 and Condition 4 may be satisfied; or Condition 1, Condition 2, and Condition 4 may be satisfied.
The above and other aspects, features, and advantages of certain embodiments of the disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
The disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which embodiments are shown. This disclosure may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.
In the drawings, the sizes, thicknesses, ratios, and dimensions of the elements may be exaggerated for ease of description and for clarity. Like numbers refer to like elements throughout.
In the description, it will be understood that when an element (or region, layer, part, etc.) is referred to as being “on”, “connected to”, or “coupled to” another element, it can be directly on, connected to, or coupled to the other element, or one or more intervening elements may be present therebetween. In a similar sense, when an element (or region, layer, part, etc.) is described as “covering” another element, it can directly cover the other element, or one or more intervening elements may be present therebetween.
In the description, when an element is “directly on,” “directly connected to,” or “directly coupled to” another element, there are no intervening elements present. For example, “directly on” may mean that two layers or two elements are disposed without an additional element such as an adhesion element therebetween.
As used herein, the expressions used in the singular such as “a,” “an,” and “the,” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. For example, “A and/or B” may be understood to mean “A, B, or A and B.” The terms “and” and “or” may be used in the conjunctive or disjunctive sense and may be understood to be equivalent to “and/or”.
In the specification and the claims, the term “at least one of” is intended to include the meaning of “at least one selected from the group of” for the purpose of its meaning and interpretation. For example, “at least one of A and B” may be understood to mean “A, B, or A and B.” When preceding a list of elements, the term, “at least one of,” modifies the entire list of elements and does not modify the individual elements of the list.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element.
Thus, a first element could be termed a second element without departing from the teachings of the disclosure. Similarly, a second element could be termed a first element, without departing from the scope of the disclosure.
The spatially relative terms “below”, “beneath”, “lower”, “above”, “upper”, or the like, may be used herein for ease of description to describe the relations between one element or component and another element or component as illustrated in the drawings. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the drawings. For example, in the case where a device illustrated in the drawing is turned over, the device positioned “below” or “beneath” another device may be placed “above” another device. Accordingly, the illustrative term “below” may include both the lower and upper positions. The device may also be oriented in other directions and thus the spatially relative terms may be interpreted differently depending on the orientations.
The terms “about” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the recited value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the recited quantity (i.e., the limitations of the measurement system). For example, “about” may mean within one or more standard deviations, or within +20%, 10%, or ±5% of the stated value.
It should be understood that the terms “comprises,” “comprising,” “includes,” “including,” “have,” “having,” “contains,” “containing,” and the like are intended to specify the presence of stated features, integers, steps, operations, elements, components, or combinations thereof in the disclosure, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.
Unless otherwise defined or implied herein, all terms (including technical and scientific terms) used have the same meaning as commonly understood by those skilled in the art to which this disclosure pertains. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an ideal or excessively formal sense unless clearly defined in the specification.
A light-emitting device (for example, an organic light-emitting device) according to an embodiment may include a first electrode, a second electrode facing the first electrode, and an interlayer disposed between the first electrode and the second electrode, wherein the interlayer may include an emission layer, and the emission layer may include a condensed cyclic compound represented by Formula 1.
First, the condensed cyclic compound will be described.
The condensed cyclic compound may be represented by Formula 1:
In Formula 1, rings A1 to A3 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group.
In an embodiment, rings A1 to A3 may each independently be a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a 1,2,3,4-tetrahydronaphthalene group, a thiophene group, a furan group, an indole group, a benzoborole group, a benzophosphole group, an indene group, a benzosilole group, a benzogermole group, a benzothiophene group, a benzoselenophene group, a benzofuran group, a carbazole group, a dibenzoborole group, a dibenzophosphole group, a fluorene group, a dibenzosilole group, a dibenzogermole group, a dibenzothiophene group, a dibenzoselenophene group, a dibenzofuran group, a dibenzothiophene 5-oxide group, a 9H-fluorene-9-one group, a dibenzothiophene 5,5-dioxide group, an azaindole group, an azabenzoborole group, an azabenzophosphole group, an azaindene group, an azabenzosilole group, an azabenzogermole group, an azabenzothiophene group, an azabenzoselenophene group, an azabenzofuran group, an azacarbazole group, an azadibenzoborole group, an azadibenzophosphole group, an azafluorene group, an azadibenzosilole group, an azadibenzogermole group, an azadibenzothiophene group, an azadibenzoselenophene group, an azadibenzofuran group, an azadibenzothiophene 5-oxide group, an aza-9H-fluorene-9-one group, an azadibenzothiophene 5,5-dioxide group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, a 5,6,7,8-tetrahydroisoquinoline group, or a 5,6,7,8-tetrahydroquinoline group.
In an embodiment, rings A1 to A3 in Formula 1 may each independently be a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, an indole group, an indene group, a benzothiophene group, a benzofuran group, a carbazole group, a fluorene group, a dibenzothiophene group, a dibenzofuran group, a dibenzothiophene 5-oxide group, a 9H-fluorene-9-one group, or a dibenzothiophene 5,5-dioxide group.
In an embodiment, rings A1 and A2 in Formula 1 may each independently be a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, an indole group, an indene group, a benzothiophene group, a benzofuran group, a carbazole group, a fluorene group, a dibenzothiophene group, a dibenzofuran group, a dibenzothiophene 5-oxide group, a 9H-fluorene-9-one group, or a dibenzothiophene 5,5-dioxide group, and ring A3 in Formula 1 may be a benzene group.
In an embodiment, rings A1 and A2 in Formula 1 may each independently be a benzene group, a naphthalene group, a carbazole group, a fluorene group, a dibenzothiophene group, or a dibenzofuran group, and ring A3 in Formula 1 may be a benzene group or a naphthalene group.
In an embodiment, a group represented by
in Formula 1 may be a group represented by one of Formulae 3-1 to 3-12 and 4-1 to 4-14:
In Formulae 3-1 to 3-12 and 4-1 to 4-14,
X31 may be O or S,
R31, Z1, and Z2 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
c1 may be an integer from 0 to 2,
c2 may be an integer from 0 to 4,
* may indicate a binding site to X1 in Formula 1,
*′ may indicate a binding site to X3 in Formula 1, and
R1, T1, a1, b1, R10a, and Q1 to Q3 are respectively the same as described in Formula 1.
In an embodiment, a group represented by
in Formula 1 may be a group represented by one of Formulae 5-1 to 5-12 and 6-1 to 6-14:
In Formulae 5-1 to 5-12 and 6-1 to 6-14,
X51 may be O or S,
R51, Z1, and Z2 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
c1 may be an integer from 0 to 2,
c2 may be an integer from 0 to 4,
* may indicate a binding site to X3 in Formula 1,
*′ may indicate a binding site to X2 in in Formula 1, and
R2, T2, a2, b2, R10a, and Q1 to Q3 are respectively the same as described in Formula 1.
In an embodiment, a group represented by
in Formula 1 may be a group represented by one of Formulae 3A-1 to 3A-12 and 4A-1 to 4A-10:
In Formulae 3A-1 to 3A-12 and 4A-1 to 4A-10,
R31 may be a phenyl group, a biphenyl group, a terphenyl group, a C1-C20 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, or a chrysenyl group,
X31 may be O or S,
* may indicate a binding site to X1 in Formula 1,
*′ may indicate a binding site to X3 in Formula 1, and
T1 is the same as described in Formula 1.
In an embodiment, a group represented by
in Formula 1 may be a group represented by one of Formulae 5A-1 to 5A-12 and 6A-1 to 6A-10:
In Formulae 5A-1 to 5A-12 and 6A-1 to 6A-10,
R51 may be a phenyl group, a biphenyl group, a terphenyl group, a C1-C20 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, or a chrysenyl group,
X51 may be O or S,
* may indicate a binding site to X3 in Formula 1,
*′ may indicate a binding site to X2 in Formula 1, and
T2 is the same as described in Formula 1.
In an embodiment, a group represented by
in Formula 1 may be a group represented by one of Formulae 11-1 to 11-3:
In Formulae 11-1 to 11-3,
* may indicate a binding site to X1 in Formula 1,
*′ may indicate a binding site to X3 in Formula 1,
*″ may indicate a binding site to X2 in Formula 1, and
R3, T3, and a3 are respectively the same as described in Formula 1.
In Formula 1, X1 may be N(R1a) or O.
In Formula 1, X2 may be N(R2a) or O.
In an embodiment, X1 and X2 in Formula 1 may be identical to each other.
In an embodiment, X1 may be N(R1a), and X2 may be N(R2a).
In an embodiment, X1 and X2 in Formula 1 may be different from each other.
In an embodiment, X1 may be N(R1a), and X2 may be 0.
In an embodiment, X1 may be N(R1a), and X2 may be N(R2a) or O.
In Formula 1, X3 may be B, P(═O), or P(═S).
In an embodiment, X3 may be B.
In Formula 1, R1 to R3, R1a, and R2a may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), and
R10a and Q1 to Q3 are respectively the same as described in the specification.
In an embodiment, R1 to R3, R21, R1a, and R2a may each independently be selected from:
hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a C1-C10 alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azafluorenyl group, and an azadibenzosilolyl group, each unsubstituted or substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32), and
—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), and —P(═O)(Q1)(Q2), and
Q1 to Q3 and Q31 to Q33 may each independently be selected from:
—CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, and —CD2CDH2, and
an n-propyl group, an iso-propyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, and a triazinyl group, each unsubstituted or substituted with at least one selected from deuterium, a C1-C10 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, and a triazinyl group.
In an embodiment, R1a and R2a may each independently be a phenyl group, a biphenyl group, a terphenyl group, a C1-C20 alkylphenyl group, a naphthyl group, a 1,2,3,4-tetrahydronaphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a thiophenyl group, a furanyl group, an indenyl group, an isoindolyl group, an indolyl group, a carbazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzofluorenyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphtho silolyl group, an indeno carbazolyl group, an indolocarbazolyl group, a benzofuranocarbazolyl group, a benzothienocarbazolyl group, or a benzosilolocarbazolyl group, each unsubstituted or substituted with hydrogen, deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a C1-C20 alkylphenyl group, a naphthyl group, a 1,2,3,4-tetrahydronaphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a thiophenyl group, a furanyl group, an indenyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzofluorenyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphtho silolyl group, an indeno carbazolyl group, an indolocarbazolyl group, a benzofuranocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, or any combination thereof.
In an embodiment, R1a and R2a may each independently be a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a 1,2,3,4-tetrahydronaphthyl group, a phenanthrenyl group, or an anthracenyl group, each unsubstituted or substituted with deuterium, a cyano group, a C1-C20 alkyl group, or any combination thereof.
In Formula 1, T1 and T2 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), and
R10a and Q1 to Q3 may respectively be the same as described in the specification.
In an embodiment, T1 and T2 may each independently be selected from:
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azafluorenyl group, and an azadibenzosilolyl group, each unsubstituted or substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32); and
—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), and —P(═O)(Q1)(Q2), and
Q1 to Q3 and Q31 to Q33 may each independently be selected from:
—CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, and —CD2CDH2; and
an n-propyl group, an iso-propyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, and a triazinyl group, each unsubstituted or substituted with at least one selected from deuterium, a C1-C10 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, and a triazinyl group.
In an embodiment, T1 and T2 may each independently be an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzooxazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azafluorenyl group, or an azadibenzosilolyl group, each unsubstituted or substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a C1-C20 alkyl group, and a C1-C20 alkoxy group.
In Formula 1, a1 to a3, b1, and b2 may each independently be an integer from 1 to 10.
In an embodiment, b1 and b2 may each independently be 0 or 1.
In Formula 1, T3 may be a group represented by Formula 2:
In Formula 2, ring A21 may be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group.
In an embodiment, ring A21 may be a C1-C60 heterocyclic group.
In an embodiment, ring A21 may be a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a 1,2,3,4-tetrahydronaphthalene group, a thiophene group, a furan group, an indole group, a benzoborole group, a benzophosphole group, an indene group, a benzosilole group, a benzogermole group, a benzothiophene group, a benzoselenophene group, a benzofuran group, a carbazole group, a dibenzoborole group, a dibenzophosphole group, a fluorene group, a dibenzosilole group, a dibenzogermole group, a dibenzothiophene group, a dibenzoselenophene group, a dibenzofuran group, a dibenzothiophene 5-oxide group, a 9H-fluorene-9-one group, a dibenzothiophene 5,5-dioxide group, an azaindole group, an azabenzoborole group, an azabenzophosphole group, an azaindene group, an azabenzosilole group, an azabenzogermole group, an azabenzothiophene group, an azabenzoselenophene group, an azabenzofuran group, an azacarbazole group, an azadibenzoborole group, an azadibenzophosphole group, an azafluorene group, an azadibenzosilole group, an azadibenzogermole group, an azadibenzothiophene group, an azadibenzoselenophene group, an azadibenzofuran group, an azadibenzothiophene 5-oxide group, an aza-9H-fluorene-9-one group, an azadibenzothiophene 5,5-dioxide group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzothiazole group, a benzooxadiazole group, a benzothiadiazole group, a 5,6,7,8-tetrahydroisoquinoline group, or a 5,6,7,8-tetrahydroquinoline group.
In Formula 2, X21 may be carbon.
In Formula 2, R21 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), and
R10a and Q1 to Q3 may respectively be the same as described in the specification.
In Formula 2, a21 may each independently be an integer from 0 to 10.
In Formula 2, * may indicate a binding site to a neighboring atom.
In an embodiment, T1 and T2 may each independently be a group represented by one of Formulae 12-1 to 12-20, and T3 may be a group represented by one of Formulae 12-6 to 12-20:
In Formulae 12-1 to 12-20,
Y1 may be O, S, C(Z11)(Z12), N(Z13), or Si(Z14)(Z15),
Z3, Z4, and Z11 to Z15 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
c3 may be an integer from 0 to 4,
c4 may be an integer from 0 to 6,
* may indicate a binding site to a neighboring ring, and
R10a and Q1 to Q3 are respectively the same as described in Formula 1.
In an embodiment, T1 and T2 may each independently be a group represented by one of Formulae 13-1 to 13-5, and T3 may be a group represented by one of Formulae 13-6 to 13-20:
In Formulae 13-1 to 13-20,
Z5 and Z6 may each independently be hydrogen, deuterium, a cyano group, or a C1-C10 alkyl group,
Y2 may be O, S, or N(Z21),
Z21 may be a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group,
c5 may be an integer from 0 to 3
c6 may be an integer from 0 to 6, and
* may indicate a binding site to a neighboring ring.
In Formula 1, the condensed cyclic compound may satisfy at least one of Condition 1 to Condition 4:
[Condition 1]
Ring A1 includes a condensed ring in which two or more C1-C30 rings are condensed with each other;
[Condition 2]
Ring A2 includes a condensed ring in which two or more C1-C30 rings are condensed with each other
[Condition 3]
A sum of b1 and b2 is greater than or equal to 1
[Condition 4]
Ring A21 is a C1-C60 heterocyclic group.
In an embodiment, the condensed cyclic compound may satisfy one of Condition 1 to Condition 4.
In an embodiment, the condensed cyclic compound may satisfy Condition 1 and Condition 2.
In an embodiment, the condensed cyclic compound may satisfy: Condition 1 and Condition 4; Condition 2 and Condition 4; or Condition 3 and Condition 4.
In an embodiment, the condensed cyclic compound may satisfy Condition 1, Condition 2, and Condition 4.
In an embodiment, when the condensed cyclic compound satisfies Condition 3, the sum of b1 and b2 may be 1 or 2.
In an embodiment, when the condensed cyclic compound satisfies Condition 3, b1 may be 1 and b2 may be 1.
In an embodiment, the condensed cyclic compound represented by Formula 1 may be one selected from Compounds 1 to 62.
The condensed cyclic compound represented by Formula 1 may include a core and an electron-donating group, which may be represented by T3.
The condensed cyclic compound may have characteristics of improved thermally activated delayed fluorescence (TADF) characteristics by enhancing multiple resonance of the core by including the electron-donating group. In the condensed cyclic compound, the core and the electron-donating group may be connected through a C—C bond having a strong binding energy, thereby improving stability of the compound itself. The electron-donating group may be substituted to X3 of the core, for example, at a para position of boron (B) of the core, thereby reducing electron deficiency of B and improving stability of the compound.
Because the electron-donating group (T3) connected with the core by the C—C bond has strong characteristics of a fluorophore, it may be possible to increase oscillator strength and to facilitate energy transfer within the device by increasing absorbance. In terms of light emission, it may be possible to increase a fluorescence decay rate constant (KF) so that the device may be operated efficiently.
For example, the condensed cyclic compound represented by Formula 1 may include a structure in which the electron-donating group and the core are connected through the C—C bond, and thus, stability of the compound itself, full width at half maximum (FWHM), Stokes shift, triplet exciton lifespan (Tau) characteristics, and the like may be improved. Therefore, a light-emitting device, for example, an organic light-emitting device, including the condensed cyclic compound represented by Formula 1 may have excellent luminescence efficiency and long lifespan.
In an embodiment, in the condensed cyclic compound represented by Formula 1, a bond dissociation energy (BDE) of a single bond connecting ring A3 in Formula 1 with X21 in Formula 2 may be greater than or equal to about 3.0 eV. For example, a BDE of a single bond connecting ring A3 in Formula 1 with X21 in Formula 2 may be greater than or equal to about 3.5 eV. For example, a BDE of a single bond connecting ring A3 in Formula 1 with X21 in Formula 2 may be greater than or equal to about 4.0 eV. For example, a BDE of a single bond connecting ring A3 in Formula 1 with X21 in Formula 2 may be greater than or equal to about 4.2 eV.
Methods of synthesizing the condensed cyclic compound represented by Formula 1 may be readily understood to those of ordinary skill in the art by referring to the Synthesis Examples and Examples described herein.
At least one condensed cyclic compound represented by Formula 1 may be used in a light-emitting device (for example, an organic light-emitting device). Accordingly, provided is a light-emitting device which may include a first electrode, a second electrode facing the first electrode, and an interlayer disposed between the first electrode and the second electrode. The interlayer may include an emission layer and a heterocyclic compound represented by Formula 1 as described herein.
In an embodiment, the first electrode of the light-emitting device may be an anode, the second electrode of the light-emitting device may be a cathode, and the interlayer may further include a hole transport region between the first electrode and the emission layer and an electron transport region between the emission layer and the second electrode. The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, and the electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.
In an embodiment, the condensed cyclic compound may be included between the first electrode and the second electrode of the light-emitting device. Thus, the condensed cyclic compound may be included in the interlayer of the light-emitting device. For example, in an embodiment, the emission layer of the interlayer may include the condensed cyclic compound.
In an embodiment, the condensed cyclic compound included in the emission layer may be a TADF emitter, and the emission layer may emit delayed fluorescence. The emission layer may emit red light, green light, blue light, and/or white light. For example, the emission layer may emit blue light. The blue light may have a maximum emission wavelength in a range of about 400 nm to about 490 nm. For example, the blue light may have a maximum emission wavelength in a range of about 420 nm to about 480 nm. For example, the blue light may have a maximum emission wavelength in a range of about 430 nm to about 480 nm. The emission layer may further include a host, and an amount of the host may be greater than an amount of the condensed cyclic compound represented by Formula 1.
In embodiments, the light-emitting device may include a capping layer located outside the first electrode or located outside the second electrode.
In an embodiment, the light-emitting device may further include at least one of a first capping layer located outside the first electrode and a second capping layer located outside the second electrode, and at least one of the first capping layer and the second capping layer may include the condensed cyclic compound represented by Formula 1. More details for the first capping layer and/or second capping layer are the same as described in the specification.
In an embodiment, the light-emitting device may further include a first capping layer located outside the first electrode and including the condensed cyclic compound represented by Formula 1, a second capping layer located outside the second electrode and including the condensed cyclic compound represented by Formula 1, or the first capping layer and the second capping layer.
The term “(interlayer and/or capping layer) includes a condensed cyclic compound” as used herein may be understood as “(interlayer and/or capping layer) may include one kind of condensed cyclic compound represented by Formula 1 or two different kinds of condensed cyclic compounds, each represented by Formula 1”.
In an embodiment, the interlayer and/or the capping layer may include Compound 1 only as the condensed cyclic compound. In this regard, Compound 1 may exist in the emission layer of the light-emitting device. In embodiments, the interlayer may include, as the condensed cyclic compound, Compound 1 and Compound 2. In this regard, Compound 1 and Compound 2 may exist in an identical layer (for example, Compound 1 and Compound 2 may all exist in an emission layer), or may exist in different layers (for example, Compound 1 may exist in an emission layer and Compound 2 may exist in an electron transport region).
The term “interlayer” as used herein may be a single layer and/or all layers located between the first electrode and the second electrode of the light-emitting device.
In an embodiment, the emission layer in the light-emitting device may include: a first compound including the condensed cyclic compound represented by Formula 1; and a second compound including a group represented by Formula 20, a third compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group, a fourth compound represented by Formula 401, or any combination thereof.
The first compound, the second compound, the third compound, and the fourth compound may be different from each other:
Ring CY71 and ring CY72 in Formula 20 may each independently be a π electron-rich C3-C60 cyclic group or a pyridine group,
X71 in Formula 20 may be: a single bond; or a linking group including O, S, N, B, C, Si, or any combination thereof,
* in Formula 20 indicates a binding site to a neighboring atom of the second compound, and
CBP and mCBP are excluded from the second compound:
M(L401)xc1(L402)xc2
In Formulae 401 and 402,
M may be transition metal (for example, iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), gold (Au)hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), rhenium (Re), or thulium (Tm)),
L401 may be a ligand represented by Formula 402, and xc1 may be 1, 2, or 3, wherein when xc1 is 2 or more, two or more of L401(s) may be identical to or different from each other,
L402 may be an organic ligand, and xc2 may be 0, 1, 2, 3, or 4, wherein when xc2 is 2 or more, two or more of L402(s) may be identical to or different from each other,
X401 and X402 may each independently be nitrogen (N) or carbon (C),
ring A401 and ring A402 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group,
T401 may be a single bond, *—O—*′, *—S*′, *—C(═O)—*′, *—N(Q411)-*′, *—C(Q411)(Q412)-*′, *—C(Q411)=C(Q412)-*′, *—C(Q411)=*′, or *=C(Q411)=*′,
X403 and X404 may each independently be a chemical bond (for example, a covalent bond or a coordinate bond), O, S, N(Q413), B(Q413), P(Q413), C(Q413)(Q414), or Si(Q413)(Q414),
Q411 to Q414 may each independently be the same as described in connection with Q1,
R401 and R402 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group unsubstituted or substituted with at least one R10a, a C1-C20 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), or —P(═O)(Q401)(Q402),
Q401 to Q403 may each independently be the same as described in connection with Q1,
R10a is the same as described in the specification,
xc11 and xc12 may each independently be an integer from 0 to 10, and
* and *′ in Formula 402 each indicate a binding site to M in Formula 401.
[Second compound to fourth compound]
In an embodiment, the emission layer may further include at least one of the second compound and the third compound, in addition to the first compound.
In an embodiment, the emission layer may further include the fourth compound, in addition to the first compound.
In an embodiment, the emission layer may include all of the first compound to the fourth compound.
In an embodiment, the second compound may include a compound represented by Formula 20-1, a compound represented by Formula 20-2, a compound represented by Formula 20-3, a compound represented by Formula 20-4, a compound represented by Formula 20-5, or any combination thereof:
In Formula 20-1 to 20-5,
ring CY71 to ring CY74 may each independently be a π electron-rich C3-C60 cyclic group or a pyridine group,
X82 may be a single bond, O, S, N-[(L82)b82-R82], C(R82a)(R82b), or Si(R82a)(R82b),
X83 may be a single bond, O, S, N-[(L83)b83-R83], C(R83a)(R83b), or Si(R83a)(R83b),
X84 may be O, S, N-[(L84)b84-R84], C(R84a)(R84b), or Si(R84a)(R84b),
X85 may be C or Si,
L81 to L85 may each independently be a single bond, *—C(Q4)(Q5)-*′, *—Si(Q4)(Q5)-*′, a π electron-rich C3-C60 cyclic group unsubstituted or substituted with at least one R10a, or a pyridine group unsubstituted or substituted with at least one R10a, wherein Q4 and Q5 may respectively be the same as described in connection with Q1 in the specification,
b81 to b85 may each independently be an integer from 1 to 5,
R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, and R84b are respectively the same as those described in the specification,
a71 to a74 may each independently be an integer from 0 to 20, and
R10a is the same as described in the specification.
The third compound may include a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or any combination thereof.
In an embodiment, the third compound may include a compound represented by Formula 30:
In Formula 30,
L51 to L53 may each independently be a single bond, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
b51 to b53 may each independently be an integer from 1 to 5,
X54 may be N or C(R54), X55 may be N or C(R55), X56 may be N or C(R56), and at least one of X54 to X56 may be N,
R51 to R56 are respectively the same as described in the specification, and
R10a and Q1 to Q3 may respectively be the same as described in the specification.
[Description of Formulae 20, 20-1 to 20-5, and 30]
In an embodiment, a group represented by
in Formulae 20-1 and 20-2 may be a group represented by one of Formulae CY71-1(1) to CY71-1(8), and/or
a group represented by
in Formulae 20-1 and 20-3 may be a group represented by one of Formulae CY71-2(1) to CY71-2(8), and/or X84
a group represented by
in Formulae 20-2 and 20-4 may be a group represented by one of Formulae CY71-3(1) to CY71-3(32), and/or
a group represented by
in Formulae 20-3 to 20-5 may be a group represented by one of Formulae CY71-4(1) to CY71-4(32), and/or
a group represented by
in Formula 20-5 may be a group represented by one of Formulae CY71-5(1) to CY71-5(8):
In Formulae CY71-1(1) to CY71-1(8), CY71-2(1) to CY71-2(8), CY71-3(1) to CY71-3(32), CY71-4(1) to CY71-4(32), and CY71-5(1) to CY71-5(8),
X82 to X85, L81, b81, R81, and R85 are respectively the same as those described in the specification,
X86 may be a single bond, O, S, N(R86), B(R86), C(R86a)(R86b), or Si(R86a)(R86b), and
X87 may be a single bond, O, S, N(R87), B(R87), C(R87a)(R87b), or Si(R87a)(R87b),
wherein in Formulae CY71-1(1) to CY71-1(8) and CY71-4(1) to CY71-4(32), X86 and X87 may not be a single bond at the same time,
X88 may be a single bond, O, S, N(R88), B(R88), C(R88a)(R88b), or Si(R88a)(R88b),
X89 may be a single bond, O, S, N(R89), B(R89), C(R89a)(R89b), or Si(R89a)(R89b),
wherein in Formulae CY71-2(1) to CY71-2(8), CY71-3(1) to CY71-3(32), and CY71-5(1) to CY71-5(8), X88 and X89 may not be a single bond at the same time, and
R86 to R89, R86a, R86b, R87a, R87b, R88a, R88b, R89a, and R89b may each independently be the same as described in connection with R81 in the specification.
In Formula 30, b51 to b53 indicate numbers of L51 to L53, respectively, and may each be an integer from 1 to 5. When b51 is 2 or more, two or more of L51(s) may be identical to or different from each other, when b52 is 2 or more, two or more of L52(s) may be identical to or different from each other, and when b53 is 2 or more, two or more of L53(s) may be identical to or different from each other. In an embodiment, b51 to b53 may each independently be 1 or 2.
L51 to L53 in Formula 30 may each independently be:
a single bond; or
a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a furan group, a thiophene group, a silole group, an indene group, a fluorene group, an indole group, a carbazole group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an azafluorene group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, a dibenzooxacilline group, a dibenzothiacilline group, a dibenzodihydroazacilline group, a dibenzodihydrodicilline group, a dibenzodihydrocilline group, a dibenzodioxane group, a dibenzooxathiene group, a dibenzooxazine group, a dibenzopyran group, a dibenzodithiine group, a dibenzothiazine group, a dibenzothiopyran group, a dibenzocyclohexadiene group, a dibenzodihydropyridine group, or a dibenzodihydropyrazine group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a fluorenyl group, a dimethylfluorenyl group, a diphenylfluorenyl group, a carbazolyl group, a phenylcarbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a dimethyldibenzosilolyl group, a diphenyldibenzosilolyl group, —O(Q31), —S(Q31), —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof,
wherein Q31 to Q33 may each independently be hydrogen, deuterium, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group.
In an embodiment, in Formula 30, a bond between L51 and R51, a bond between L52 and R52, a bond between L53 and R53, a bond between two or more L51(s), a bond between two or more L52(s), a bond between two or more L53(s), a bond between L51 and carbon between X54 and X55 in Formula 30, a bond between L52 and carbon between X54 and X56 in Formula 30, and a bond between L53 and carbon between X55 and X56 in Formula 30 may each be a carbon-carbon single bond.
In Formula 30, X54 may be N or C(R54), X55 may be N or C(R55), X56 may be N or C(R56), and at least one of X54 to X56 may be N. R54 to R56 are respectively the same as described in the specification. In an embodiment, two or three of X54 to X56 may be N.
In the specification, R41 to R45, R51 to R56, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, and R84b may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C6 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), wherein Q1 to Q3 are respectively the same as described in the specification.
In an embodiment, R41 to R45, R51 to R56, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, R84b, and R10a may each independently be:
hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, or a C1-C20 alkoxy group;
a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C10 alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, or any combination thereof;
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azafluorenyl group, an azadibenzosilolyl group, or a group represented by Formula 91, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —O(Q31), —S(Q31), —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof; or
—C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), and
Q1 to Q3 and Q31 to Q33 may each independently be:
—CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2; or
an n-propyl group, an iso-propyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group, each unsubstituted or substituted with deuterium, a C1-C10 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, a triazinyl group, or any combination thereof:
wherein in Formula 91,
ring CY91 and ring CY92 may each independently be a C5-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a,
X91 may be a single bond, O, S, N(R91), B(R91), C(R91a)(R91b), or Si(R91a)(R91b),
R91, R91a, and R91b are respectively the same as described in connection with R82, R82a, and R82b in the specification,
R10a is the same as described in the specification, and
* indicates a binding site to a neighboring atom.
In an embodiment, in Formula 91,
ring CY91 and ring CY92 may each independently be a benzene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, or a triazine group, each unsubstituted or substituted with at least one R10a,
R91, R91a, and R91b may each independently be:
hydrogen or a C1-C10 alkyl group; or
a phenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group, each unsubstituted or substituted with deuterium, a C1-C10 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, a triazinyl group, or any combination thereof.
In an embodiment, R41 to R45, R51 to R56, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, and R84b in Formulae 20-1 to 20-5, and 30, and R10a may each independently be hydrogen, deuterium, —F, a cyano group, a nitro group, —CH3, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a group represented by one of Formulae 9-1 to 9-19, a group represented by one of Formulae 10-1 to 10-246, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), or —P(═O)(Q1)(Q2), wherein Q1 to Q3 are respectively the same as described in the specification:
In Formulae 9-1 to 9-19 and 10-1 to 10-246, * indicates a binding site to an adjacent atom, “Ph” represents a phenyl group, and “TMS” represents a trimethylsilyl group.
In Formulae 20-1 to 20-5, a71 to a74 respectively indicate numbers of R71 to R74, and may each independently be an integer from 0 to 20. When a71 is 2 or more, two or more of R71(s) may be identical to or different from each other, when a72 is 2 or more, two or more of R72(s) may be identical to or different from each other, when a73 is 2 or more, two or more of R73(s) may be identical to or different from each other, and when a74 is 2 or more, two or more of R74(s) may be identical to or different from each other. In an embodiment, a71 to a74 may each independently be an integer from 0 to 8.
In Formula 30, a group represented by *-(L51)b51-R51 and a group represented by *-(L52)b52-R52 may each not be a phenyl group.
In an embodiment, in Formula 30, a group represented by *-(L51)b51-R51 and a group represented by *-(L52)b52-R52 may be identical to each other.
In an embodiment, in Formula 30, a group represented by *-(L51)b51-R51 and a group represented by *-(L52)b52-R52 may be different from each other.
In an embodiment, in Formula 30, b51 and b52 may each independently be 1, 2, or 3, and L51 and L52 may each independently be a benzene group, a pyridine group, a pyrimidine group, a pyridazine group, a pyrazine group, or a triazine group, each unsubstituted or substituted with at least one R10a.
In an embodiment, R51 and R52 in Formula 30 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —C(Q1)(Q2)(Q3), or —Si(Q1)(Q2)(Q3), and
Q1 to Q3 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.
In an embodiment,
a group represented by *-(L51)b51-R51 in Formula 30 may be a group represented by one of Formulae CY51-1 to CY51-26, and/or
a group represented by *-(L52)b52-R52 in Formula 30 may be a group represented by one of Formulae CY52-1 to CY52-26, and/or
a group represented by *-(L53)b53-R53 in Formula 30 may be a group represented by one of Formulae CY53-1 to CY53-27, —C(Q1)(Q2)(Q3), or —Si(Q1)(Q2)(Q3):
In Formulae CY51-1 to CY51-26, CY52-1 to CY52-26, and CY53-1 to CY53-27,
Y63 may be a single bond, O, S, N(R63), B(R63), C(R63a)(R63b), or Si(R63a)(R63b),
Y64 may be a single bond, O, S, N(R64), B(R64), C(R64a)(R64b), or Si(R64a)(R64b),
Y67 may be a single bond, O, S, N(R67), B(R67), C(R67a)(R67b), or Si(R67a)(R67b),
Y68 may be a single bond, O, S, N(R68), B(R68), C(R68a)(R68b), or Si(R68a)(R68b),
Y63 and Y64 in Formulae CY51-16 and CY51-17 may not both be a single bond at the same time,
Y67 and Y68 in Formulae CY52-16 and CY52-17 may not both be a single bond at the same time,
R51a to R51e, R61 to R64, R63a, R63b, R64a, and R64b may each independently be the same as described in connection with R51, and R51a to R51e may not all be hydrogen at the same time,
R52a to R52e, R65 to R68, R67a, R67b, R68a, and R68b may each independently be the same as described in connection with R52, and R52a to R52e may not all be hydrogen at the same time,
R53a to R53e, R69a, and R69b may each independently be the same as described in connection with R53, and R53a to R53e may not all be hydrogen at the same time, and
* indicates a binding site to a neighboring atom.
In an embodiment,
R51a to R51e and R52a to R52e in Formulae CY51-1 to CY51-26 and Formulae CY52-1 to 52-26 may each independently be:
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azafluorenyl group, an azadibenzosilolyl group, or a group represented by Formula 91, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, or any combination thereof; or
—C(Q1)(Q2)(Q3) or —Si(Q1)(Q2)(Q3),
wherein Q1 to Q3 may each independently be a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group, each unsubstituted or substituted with deuterium, a C1-C10 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, a triazinyl group, or any combination thereof,
wherein in Formulae CY51-16 and CY51-17, Y63 may be O or S and Y64 may be Si(R64a)(R64b), or Y63 may be Si(R63a)(R63b) and Y64 may be O or S, and
wherein in Formulae CY52-16 and CY52-17, Y67 may be O or S, and Y68 may be Si(R68a)(R68b), or Y67 may be Si(R67a)(R67b) and Y68 may be O or S.
In Formulae 3-1 to 3-5, L81 to L85 may each independently be:
a single bond; or
*—C(Q4)(Q5)-*′ or *—Si(Q4)(Q5)-*′; or
a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a furan group, a thiophene group, a silole group, an indene group, a fluorene group, an indole group, a carbazole group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an azafluorene group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, or a benzothiadiazole group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a fluorenyl group, a dimethylfluorenyl group, a diphenylfluorenyl group, a carbazolyl group, a phenylcarbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a dimethyldibenzosilolyl group, a diphenyldibenzosilolyl group, —O(Q31), —S(Q31), —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof,
wherein Q4, Q5, and Q31 to Q33 may each independently be hydrogen, deuterium, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group.
In Formula 402, X401 may be nitrogen and X402 may be carbon, or X401 and X402 may each be nitrogen.
In an embodiment, when xc1 in Formula 402 is 2 or more, two ring A401 in two or more of L401(s) may be optionally linked to each other via T402, which is a linking group, and two ring A402 may optionally be linked to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 may each independently be the same as described in connection with T401.
L402 in Formula 401 may be an organic ligand. In an embodiment, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), an isonitrile group, —CN group, a phosphorus group (for example, a phosphine group, a phosphite group, etc.), or any combination thereof.
In an embodiment, the second compound may include at least one of Compounds HTH1 to HTH54:
In an embodiment, the third compound may include at least one of Compounds ETH1 to ETH85:
In an embodiment, the fourth compound may include at least one of Compounds PD1 to PD41:
In an embodiment, the light-emitting device may satisfy at least one of Condition 1 to Condition 4:
Lowest unoccupied molecular orbital (LUMO) energy level (eV) of the second compound >LUMO energy level (eV) of the fourth compound [Condition 1]
LUMO energy level (eV) of the fourth compound >LUMO energy level (eV) of the third compound [Condition 2]
Highest occupied molecular orbital (HOMO) energy level (eV) of the fourth compound >HOMO energy level (eV) of the second compound [Condition 3]
HOMO energy level (eV) of the second compound >HOMO energy level (eV) of the third compound. [Condition 4]
Each of the HOMO energy level and LUMO energy level of each of the first compound, the second compound, and the third compound may be a negative value, and may be measured according to a common method of the art.
In an embodiment, an absolute value of a difference between the LUMO energy level of the fourth compound and the LUMO energy level of the third compound may be in a range of about 0.1 eV to about 1.0 eV, an absolute value of a difference between the LUMO energy level of the fourth compound and the LUMO energy level of the second compound may be in a range of about 0.1 eV to about 1.0 eV, an absolute value of a difference between the HOMO energy level of the fourth compound and the HOMO energy level of the third compound may be equal to or less than about 1.25 eV (for example, about 1.25 eV or less and about 0.2 eV or more), and an absolute value of a difference between the HOMO energy level of the fourth compound and the HOMO energy level of the second compound may be equal to or less than about 1.25 eV (for example, about 1.25 eV or less and about 0.2 eV or more).
When the relationships between LUMO energy level and HOMO energy level satisfy the conditions as described above, a balance may be achieved between holes and electrons injected into the emission layer.
The light-emitting device may have a structure of a first embodiment or a second embodiment:
According to a first embodiment, the first compound may be included in an emission layer in an interlayer of a light-emitting device, wherein the emission layer may further include a host, wherein the first compound may be different from the host, and wherein the emission layer may emit phosphorescent or fluorescent light emitted from the first compound. For example, according to the first embodiment, the first compound may be a dopant or an emitter. In other embodiments, the first compound may be a phosphorescent dopant or a phosphorescence emitter.
The phosphorescent or fluorescent light emitted from the first compound may be blue light.
The emission layer may further include an ancillary dopant. The ancillary dopant may improve luminescence efficiency from the first compound by effectively transferring a dopant or the first compound as an emitter.
The ancillary dopant may be different from the first compound and the host.
In an embodiment, the auxiliary dopant may be a phosphorescent dopant.
According to a second embodiment, the first compound may be included in the emission layer in the interlayer of the light-emitting device, wherein the emission layer may further include a host and a dopant, wherein the first compound, the host, and the dopant may be different from one another, and wherein the emission layer may emit phosphorescent light or fluorescent light (e.g., delayed fluorescence light) emitted from the dopant.
For example, the first compound in the second embodiment may be an ancillary dopant that transfers energy to a dopant (or an emitter), and the first compound in the second embodiment may not be a dopant.
In embodiments, the first compound in the second embodiment may be an emitter and may function as an ancillary dopant that transfers energy to a dopant (or an emitter).
For example, phosphorescent or fluorescent light emitted from the dopant (or the emitter) in the second embodiment may be blue phosphorescent light or blue fluorescent light (e.g., blue delayed fluorescence light).
The dopant (or an emitter) of the second embodiment may be a phosphorescent dopant material (for example, the organometallic compound represented by Formula 401 in the specification) or a fluorescent dopant material (for example, in the specification, the condensed cyclic compound represented by Formula 1, a compound represented by Formula 501, or any combination thereof).
In the first embodiment and the second embodiment, the blue light may be blue light having a maximum emission wavelength in a range of about 390 nm to about 500 nm. For example, the blue light may have a maximum emission wavelength in a range of about 410 nm to about 490 nm. For example, the blue light may have a maximum emission wavelength in a range of about 430 nm to about 480 nm. For example, the blue light may have a maximum emission wavelength in a range of about 440 nm to about 475 nm. For example, the blue light may have a maximum emission wavelength in a range of about 455 nm to about 470 nm.
The ancillary dopant in the first embodiment may include, for example, the fourth compound.
The host in the first embodiment and the second embodiment may be any host material (e.g., the compound represented by Formula 301, the compound represented by 301-1, the compound represented by Formula 301-2, or any combination thereof).
In an embodiment, the host in the first embodiment and the second embodiment may be the second compound, the third compound, or any combination thereof.
According to another aspect, provided is an electronic apparatus which may include the light-emitting device. The electronic apparatus may further include a thin-film transistor. In embodiments, the electronic apparatus may further include a thin-film transistor, wherein the thin-film transistor may include a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode. In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof. More details on the electronic apparatus are the same as described in the specification.
[Description of
Hereinafter, a structure of the light-emitting device 10 according to an embodiment and a method of manufacturing the light-emitting device 10 will be described in connection with
[First Electrode 110]
In
The first electrode 110 may be formed by, for example, depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high work function material that facilitates injection of holes.
The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. When the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or any combinations thereof. In embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combinations thereof may be used as a material for forming a first electrode.
The first electrode 110 may have a structure consisting of a single layer or a structure including multiple layers. For example, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO.
[Interlayer 130]
The interlayer 130 may be located on the first electrode 110. The interlayer 130 may include an emission layer.
The interlayer 130 may further include a hole transport region between the first electrode 110 and the emission layer and an electron transport region between the emission layer and the second electrode 150.
The interlayer 130 may further include metal-containing compounds such as organometallic compounds, inorganic materials such as quantum dots, and the like, in addition to various organic materials.
In embodiments, the interlayer 130 may include two or more emitting units sequentially stacked between the first electrode 110 and the second electrode 150, and at least one charge generation layer between the two or more emitting units. When the interlayer 130 includes the two or more emitting units and the at least one charge generation layer as described above, the light-emitting device 10 may be a tandem light-emitting device.
[Hole Transport Region in Interlayer 130]
The hole transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer consisting of different materials, or a structure including multiple layers including different materials.
The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof.
For example, the hole transport area may have a multi-layer structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein the layers of each structure may be stacked from the first electrode 110 in its respective stated order, but the structure of the hole transport region is not limited thereto.
The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof:
In Formulae 201 and 202,
L201 to L204 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
L205 may be *—O—*′, *—S—*′, *—N(Q201)-*′, a C1-C20 alkylene group unsubstituted or substituted with at least one R10a, a C2-C20 alkenylene group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
xa1 to xa4 may each independently be an integer from 0 to 5,
xa5 may be an integer from 1 to 10,
R201 to R204 and Q201 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
R201 and R202 may optionally be linked to each other, via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a, to form a C8-C60 polycyclic group (for example, a carbazole group or the like) unsubstituted or substituted with at least one R10a (for example, Compound HT16),
R203 and R204 may optionally be linked via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a to form a C8-C60 polycyclic group unsubstituted or substituted with at least one R10a, and
na1 may be an integer from 1 to 4.
In an embodiment, each of Formulae 201 and 202 may include at least one of groups represented by Formulae CY201 to CY217.
In Formulae CY201 to CY217, R10b and R10c may each independently be the same as described in connection with R10a in the specification, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formulae CY201 to CY217 may be unsubstituted or substituted with at least one R10a as described in the specification.
In an embodiment, ring CY201 to ring CY204 in Formulae CY201 to CY217 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.
In an embodiment, each of Formulae 201 and 202 may include at least one of groups represented by Formulae CY201 to CY203.
In an embodiment, Formula 201 may include at least one of groups represented by Formulae CY201 to CY203 and at least one of groups represented by Formulae CY204 to CY217.
In an embodiment, xa1 in Formula 201 may be 1, R201 may be a group represented by one of Formulae CY201 to CY203, xa2 may be 0, and R202 may be a group represented by one of Formulae CY204 to CY207.
In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY203.
In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY203, and may include at least one of groups represented by Formulae CY204 to CY217.
In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY217.
In an embodiment, the hole transport region may include one of Compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), or any combination thereof:
A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å. For example, the thickness of the hole transport region may be in a range of about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or any combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, fand a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å. For example, the thickness of the hole injection layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the hole transport layer may be in a range of about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer and the hole transport layer are within these ranges, satisfactory hole-transporting characteristics may be obtained without a substantial increase in driving voltage.
The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to a wavelength of light emitted by an emission layer, and the electron blocking layer may block the leakage of electrons from an emission layer to a hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron blocking layer.
[p-Dopant]
The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties. The charge-generation material may be uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer consisting of a charge-generation material).
The charge-generation material may be, for example, a p-dopant.
In an embodiment, a LUMO energy level of the p-dopant may be equal to or less than about −3.5 eV.
In an embodiment, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound containing element EL1 and element EL2, or any combination thereof.
Examples of the quinone derivative may include TCNQ, F4-TCNQ, and the like.
Examples of the cyano group-containing compound may include HAT-CN, a compound represented by Formula 221, and the like:
In Formula 221,
R221 to R223 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
at least one of R221 to R223 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each substituted with: a cyano group; —F; —Cl; —Br; —I; a C1-C20 alkyl group substituted with a cyano group, —F, —Cl, —Br, —I, or any combination thereof; or any combination thereof.
In the compound containing element EL1 and element EL2, element EL1 may be a metal, a metalloid, or a combination thereof, and element EL2 may be a non-metal, a metalloid, or a combination thereof.
Examples of the metal may include an alkali metal (for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); an alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); a transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); a post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), etc.); and a lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.).
Examples of the metalloid may include silicon (Si), antimony (Sb), and tellurium (Te).
Examples of the non-metal may include oxygen (O) and a halogen (for example, F, Cl, Br, I, etc.).
In an embodiment, examples of the compound containing element EL1 and element EL2 may include a metal oxide, a metal halide (for example, a metal fluoride, a metal chloride, a metal bromide, or a metal iodide), a metalloid halide (for example, a metalloid fluoride, a metalloid chloride, a metalloid bromide, or a metalloid iodide), a metal telluride, or any combination thereof.
Examples of the metal oxide may include tungsten oxide (for example, WO, W2O3, WO2, WO3, W2O5, etc.), vanadium oxide (for example, VO, V2O3, VO2, V2O5, etc.), molybdenum oxide (MoO, Mo2O3, MoO2, MoO3, Mo2O5, etc.), and rhenium oxide (for example, ReO3, etc.).
Examples of the metal halide may include an alkali metal halide, an alkaline earth metal halide, a transition metal halide, a post-transition metal halide, and a lanthanide metal halide.
Examples of the alkali metal halide may include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, and CsI.
Examples of the alkaline earth metal halide may include BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2), SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, BeI2, MgI2, CaI2, SrI2, and BaI2.
Examples of the transition metal halide may include titanium halide (for example, TiF4, TiCl4, TiBr4, TiI4, etc.), zirconium halide (for example, ZrF4, ZrCl4, ZrBr4, ZrI4, etc.), hafnium halide (for example, HfF4, HfCl4, HfBr4, HfI4, etc.), vanadium halide (for example, VF3, VCl3, VBr3, VI3, etc.), niobium halide (for example, NbF3, NbCl3, NbBr3, NbI3, etc.), tantalum halide (for example, TaF3, TaCl3, TaBr3, TaI3, etc.), chromium halide (for example, CrF3, CrCl3, CrBr3, CrI3, etc.), molybdenum halide (for example, MoF3, MoCl3, MoBr3, MoI3, etc.), tungsten halide (for example, WF3, WCl3, WBr3, WI3, etc.), manganese halide (for example, MnF2, MnCl2, MnBr2, MnI2, etc.), technetium halide (for example, TcF2, TcCl2, TcBr2, TcI2, etc.), rhenium halide (for example, ReF2, ReCl2, ReBr2, ReI2, etc.), iron halide (for example, FeF2, FeCl2, FeBr2, FeI2, etc.), ruthenium halide (for example, RuF2, RuCl2, RuBr2, RuI2, etc.), osmium halide (for example, OsF2, OsCl2, OsBr2, OsI2, etc.), cobalt halide (for example, CoF2, CoCl2, CoBr2, CoI2, etc.), rhodium halide (for example, RhF2, RhCl2, RhBr2, RhI2, etc.), iridium halide (for example, IrF2, IrCl2, IrBr2, IrI2, etc.), nickel halide (for example, NiF2, NiCl2, NiBr2, NiI2, etc.), palladium halide (for example, PdF2, PdCl2, PdBr2, PdI2, etc.), platinum halide (for example, PtF2, PtCl2, PtBr2, PtI2, etc.), copper halide (for example, CuF, CuCl, CuBr, CuI, etc.), silver halide (for example, AgF, AgCl, AgBr, AgI, etc.), and gold halide (for example, AuF, AuCl, AuBr, AuI, etc.).
Examples of the post-transition metal halide may include zinc halide (for example, ZnF2, ZnCl2, ZnBr2, ZnI2, etc.), indium halide (for example, InI3, etc.), and tin halide (for example, SnI2, etc.).
Examples of the lanthanide metal halide may include YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3 SmCl3, YbBr, YbBr2, YbBr3, SmBr3, YbI, YbI2, YbI3, and SmI3.
Examples of the metalloid halide may include antimony halide (for example, SbCl5, etc.).
Examples of the metal telluride may include an alkali metal telluride (for example, Li2Te, Na2Te, K2Te, Rb2Te, Cs2Te, etc.), an alkaline earth metal telluride (for example, BeTe, MgTe, CaTe, SrTe, BaTe, etc.), a transition metal telluride (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), a post-transition metal telluride (for example, ZnTe, etc.), and a lanthanide metal telluride (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.).
[Emission Layer in Interlayer 130]
When the light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a subpixel. In an embodiment, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers may contact each other or may be separated from each other. In embodiments, the emission layer may include two or more materials selected from a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials may be mixed with each other in a single layer to emit white light. For example, the emission layer may emit blue light.
In an embodiment, the emission layer may include the condensed cyclic compound represented by Formula 1 as described in the specification.
The emission layer may include a host and a dopant.
In an embodiment, the dopant may include the condensed cyclic compound represented by Formula 1 as described in the specification. In this regard, the dopant may include, in addition to the condensed cyclic compound represented by Formula 1, a phosphorescent dopant, a fluorescent dopant, or a combination thereof. In addition to the condensed cyclic compound represented by Formula 1, a phosphorescent dopant, a fluorescent dopant, etc. may be further included in the emission layer, and the phosphorescent dopant and the fluorescent dopant will be described later.
An amount of the dopant in the emission layer may be in a range of about 0.01 parts by weight to about 15 parts by weight, based on 100 parts by weight of the host.
In an embodiment, the emission layer may include a quantum dot.
In an embodiment, the emission layer may include a delayed fluorescence material. The delayed fluorescence material may act as a host or as a dopant in the emission layer.
A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the emission layer may be in a range of about 200 Å to about 600 Å. When the thickness of the emission layer is within the range, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.
[Host]
The host in the emission layer may include the second compound or the third compound described in the specification, or any combination thereof.
The host may include a compound represented by Formula 301:
[Ar301]xb11-[(L301)xb1-R301]xb21 [Formula 301]
In Formula 301,
Ar301 and L301 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
xb11 may be 1, 2, or 3,
xb1 may be an integer from 0 to 5,
R301 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), or —P(═O)(Q301)(Q302),
xb21 may be an integer from 1 to 5, and
Q301 to Q303 may each independently be the same as described in connection with Q1.
In an embodiment, when xb11 in Formula 301 is 2 or more, two or more of Ar301(s) may be linked to each other via a single bond.
In an embodiment, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or any combination thereof:
In Formulae 301-1 and 301-2,
ring A301 to ring A304 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
X301 may be O, S, N-[(L304)xb4-R304], C(R304)(R305), or Si(R304)(R305),
xb22 and xb23 may each independently be 0, 1, or 2,
L301, xb1, and R301 may each be the same as described in the specification,
L302 to L304 may each independently be the same as described in connection with L301,
xb2 to xb4 may each independently be the same as described in connection with xb1, and
R302 to R305 and R311 to R314 may each independently be the same as described in connection with R301.
In an embodiment, the host may include an alkali earth metal complex, a post-transition metal complex, or a combination thereof. In an embodiment, the host may include a Be complex (for example, Compound H55), an Mg complex, a Zn complex, or a combination thereof.
In an embodiment, the host may include one of Compounds H1 to H124, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or any combination thereof, but embodiments of the disclosure are not limited thereto:
[Phosphorescent Dopant]
The phosphorescent dopant may include at least one transition metal as a central metal.
The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or any combination thereof.
The phosphorescent dopant may be electrically neutral.
In an embodiment, the phosphorescent dopant may include an organometallic compound represented by Formula 401:
M(L401)xc1(L402)xc2 [Formula 401]
In Formulae 401 and 402,
M may be transition metal (for example, iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), gold (Au)hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), rhenium (Re), or thulium (Tm)),
L401 may be a ligand represented by Formula 402, and xc1 may be 1, 2, or 3, wherein when xc1 is two or more, two or more of L401(s) may be identical to or different from each other,
L402 may be an organic ligand, and xc2 may be 0, 1, 2, 3, or 4, wherein when xc2 is 2 or more, two or more of L402(s) may be identical to or different from each other,
X401 and X402 may each independently be nitrogen (N) or carbon (C),
ring A401 and ring A402 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group,
T401 may be a single bond, *—O—*′, *—S*′, *—C(═O)—*′, *—N(Q411)-*′, *—C(Q411)(Q412)-*′, *—C(Q411)=C(Q412)-*′, *—C(Q411)=*′, or *═C(Q411)=*′,
X403 and X404 may each independently be a chemical bond (for example, a covalent bond or a coordinate bond), O, S, N(Q413), B(Q413), P(Q413), C(Q413)(Q414), or Si(Q413)(Q414),
Q411 to Q414 may each independently be the same as described in connection with Q1,
R401 and R402 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group unsubstituted or substituted with at least one R10a, a C1-C20 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), or —P(═O)(Q401)(Q402),
Q401 to Q403 may each independently be the same as described in connection with Q1,
xc11 and xc12 may each independently be an integer from 0 to 10, and
* and *′ in Formula 402 each indicate a binding site to M in Formula 401.
In an embodiment, in Formula 402, X401 may be nitrogen and X402 may be carbon, or each of X401 and X402 may be nitrogen.
In an embodiment, when xc1 in Formula 401 is 2 or more, two ring A401(s) in two or more of L401(s) may be optionally linked to each other via T402, which is a linking group, and two ring A402(s) may optionally be linked to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 may each independently be the same as described in connection with T401.
In Formula 401, L402 may be an organic ligand. In an embodiment, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), an isonitrile group, —CN group, a phosphorus group (for example, a phosphine group, a phosphite group, etc.), or any combination thereof.
The phosphorescent dopant may be, for example, one of Compounds PD1 to PD41, or any combination thereof:
[Fluorescent Dopant]
The fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or any combination thereof.
In an embodiment, the fluorescent dopant may include a compound represented by Formula 501:
In Formula 501,
Ar501, L501 to L503, R501, and R502 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
xd1 to xd3 may each independently be 0, 1, 2, or 3, and
xd4 may be 1, 2, 3, 4, 5, or 6.
In an embodiment, Ar501 in Formula 501 may be a condensed cyclic group (for example, an anthracene group, a chrysene group, or a pyrene group) in which three or more monocyclic groups are condensed together.
In an embodiment, xd4 in Formula 501 may be 2.
In embodiments, the fluorescent dopant may include one of Compounds FD1 to FD36, DPVBi, DPAVBi, or any combination thereof:
[Quantum Dot]
The emission layer may include a quantum dot.
In the specification, a quantum dot may be a crystal of a semiconductor compound, and may include any material capable of emitting light of various emission wavelengths according to a size of the crystal.
A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.
The quantum dot may be synthesized by a wet chemical process, a metal organic chemical vapor deposition process, a molecular beam epitaxy process, or any process similar thereto.
According to the wet chemical process, a precursor material is mixed with an organic solvent to grow a quantum dot particle crystal. When the crystal grows, the organic solvent naturally acts as a dispersant coordinated on the surface of the quantum dot crystal and controls the growth of the crystal so that the growth of quantum dot particles can be controlled through a process which may be more readily performed than vapor deposition methods, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE), and which requires low costs.
The quantum dot may include a Group II-VI semiconductor compound; a Group III-V semiconductor compound; a Group III-VI semiconductor compound; a Group I-III-VI semiconductor compound; a Group IV-VI semiconductor compound; a Group IV element or compound; or any combination thereof.
Examples of the Group II-VI semiconductor compound may include a binary compound, such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, or MgS; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, or MgZnS; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, or HgZnSTe; or any combination thereof.
Examples of the Group III-V semiconductor compound may include a binary compound, such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, or the like; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, InPSb, or the like; a quaternary compound, such as GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GalnNSb, GaInPAs, GalnPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, or the like; or any combination thereof. In an embodiment, the Group III-V semiconductor compound may further include a Group II element. Examples of the Group III-V semiconductor compound further including a Group II element may include InZnP, InGaZnP, InAlZnP, and the like.
Examples of the Group III-VI semiconductor compound may include a binary compound, such as GaS, GaSe, Ga2Se3, GaTe, InS, InSe, In2S3, In2Se3, or InTe; a ternary compound, such as InGaS3, or InGaSe3; or any combination thereof.
Examples of the Group I-III-VI semiconductor compound may include a ternary compound, such as AgInS, AgInS2, CulnS, CulnS2, CuGaO2, AgGaO2, or AgAlO2; or any combination thereof.
Examples of the Group IV-VI semiconductor compound may include a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, or the like; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, or the like; a quaternary compound, such as SnPbSSe, SnPbSeTe, SnPbSTe, or the like; or any combination thereof.
The Group IV element or compound may include a single element, such as Si or Ge; a binary compound, such as SiC or SiGe; or any combination thereof.
Each element included in a multi-element compound such as the binary compound, ternary compound, and quaternary compound, may be present in a particle at a uniform concentration or at a non-uniform concentration.
In an embodiment, the quantum dot may have a single structure or a core-shell structure. In case that the quantum dot has a single structure, the concentration of each element included in the corresponding quantum dot may be uniform. In an embodiment, in case that the quantum dot has a core-shell structure, a material included in the core and a material included in the shell may be different from each other.
The shell of the quantum dot may be a protective layer that prevents chemical degeneration of the core to maintain semiconductor characteristics and/or may be a charging layer that imparts electrophoretic characteristics to the quantum dot. The shell may be a single layer or may be multi-layered. An element that is present at an interface between the core and the shell of the quantum dot may have a concentration gradient that decreases toward the core of the quantum dot.
Examples of the shell of the quantum dot may include a metal oxide, a metalloid oxide, a non-metal oxide, a semiconductor compound, and any combination thereof. Examples of the metal oxide, the metalloid oxide, or the non-metal oxide may include a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, or NiO; a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, or CoMn2O4; or any combination thereof. Examples of the semiconductor compound may include, as described herein, a Group II-VI semiconductor compound, a Group III-V semiconductor compound, a Group III-VI semiconductor compound, a Group I-III-VI semiconductor compound, a Group IV-VI semiconductor compound, or any combination thereof. For example, the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, or any combination thereof.
A full width at half maximum (FWHM) of an emission wavelength spectrum of the quantum dot may be equal to or less than about 45 nm. For example, a FWHM of an emission wavelength spectrum of the quantum dot may be equal to or less than about 40 nm. For example, a FWHM of an emission wavelength spectrum of the quantum dot may be equal to or less than about 30 nm. Within these ranges, color purity or color reproducibility may be increased. Light emitted through the quantum dot may be emitted in all directions, and a wide viewing angle can be improved.
The quantum dot may be a spherical particle, a pyramidal particle, a multi-arm particle, a cubic nanoparticle, a nanotube, a nanowire, a nanofiber, or a nanoplate.
Since the energy band gap can be adjusted by controlling the size of the quantum dot, light having various wavelength bands can be obtained from the quantum dot emission layer. Therefore, by using quantum dots of different sizes, a light-emitting device that emits light of various wavelengths may be implemented. In an embodiment, the size of the quantum dot may be selected to emit red, green, and/or blue light. The size of the quantum dot may be configured to emit white light by combining light of various colors.
[Electron Transport Region in Interlayer 130]
The electron transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer consisting of different materials, or a structure including multiple layers including different materials.
The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.
For example, the electron transport area may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein the layers for each structure may be stacked from an emission layer in its respective stated order, but the structure of the electron transport layer is not limited thereto.
In an embodiment, the electron transport area (for example, the buffer layer, the hole blocking layer, the electron control layer, or the electron transport layer in the electron transport area) may include a metal-free compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group.
In an embodiment, the electron transport region may include a compound represented by Formula 601:
[Ar601]xe11-[(L601)xe1-R601]xe21 [Formula 601]
In Formula 601,
Ar601 and L601 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
xe11 may be 1, 2, or 3,
xe1 may be 0, 1, 2, 3, 4, or 5,
R601 may be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Q601), or —P(═O)(Q601)(Q602),
Q601 to Q603 may each independently be the same as described in connection with Q1,
xe21 may be 1, 2, 3, 4, or 5, and
at least one of Ar601, L601, and R601 may each independently be a π electron-deficient nitrogen-containing C1-C60 cyclic group unsubstituted or substituted with at least one R10a.
In an embodiment, when xe11 in Formula 601 is 2 or more, two or more of Ar601(s) may be linked via a single bond.
In an embodiment, Ar601 in Formula 601 may be a substituted or unsubstituted anthracene group.
In an embodiment, the electron transport region may include a compound represented by Formula 601-1:
In Formula 601-1,
X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one of X614 to X616 may be N,
L611 to L613 may each independently be the same as described in connection with L601,
xe611 to xe613 may each independently be the same as described in connection with xe1,
R611 to R613 may each independently be the same as described in connection with R601, and
R614 to R616 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.
In an embodiment, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.
The electron transport region may include one of Compounds ET1 to ET45, 2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, TAZ, NTAZ, or any combination thereof:
A thickness of the electron transport region may be in a range of about 160 Å to about 5,000 Å. For example, the thickness of the electron transport region may be in a range of about 100 Å to about 4,000 Å. When the electron transport area includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, or any combination thereof, a thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 20 Å to about 1,000 Å, and a thickness of the electron transport layer may be from about 100 Å to about 1000 Å. For example, the thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 30 Å to about 300 Å. For example, the thickness of the electron transport layer may be in a range of about 150 Å to about 500 Å. When the thickness of the buffer layer, the hole blocking layer, the electron control layer, the electron transport layer, and/or the electron transport region are within these ranges, satisfactory electron transporting characteristics may be obtained without a substantial increase in driving voltage.
The electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.
The metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or any combination thereof. A metal ion of the alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and a metal ion of the alkaline earth metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the metal ion of the alkaline earth-metal complex may each independently include a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenylbenzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.
In an embodiment, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (LiQ) or Compound ET-D2:
The electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode 150. The electron injection layer may directly contact the second electrode 150.
The electron injection layer may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer consisting of different materials, or a structure including multiple layers including different materials.
The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof.
The alkali metal may include Li, Na, K, Rb, Cs, or any combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.
The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may include oxides, halides (for example, fluorides, chlorides, bromides, or iodides), or tellurides of the alkali metal, the alkaline earth metal, and the rare earth metal, or any combination thereof.
The alkali metal-containing compound may include alkali metal oxides, such as Li2O, Cs2O, or K2O; alkali metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, or KI; or any combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal compound, such as BaO, SrO, CaO, BaxSr1-xO (x is a real number satisfying the condition of 0<x<1), BaxCa1-xO (x is a real number satisfying the condition of 0<x<1), or the like. The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or any combination thereof. In an embodiment, the rare earth metal-containing compound may include a lanthanide metal telluride. Examples of the lanthanide metal telluride may include LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, and Lu2Te3.
The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include one of ions of the alkali metal, ions of the alkaline earth metal, and ions of the rare earth metal, and a ligand bonded to the metal ion, for example, a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenyl benzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.
The electron injection layer may consist of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof, as described above. In an embodiment, the electron injection layer may further include an organic material (for example, a compound represented by Formula 601).
In an embodiment, the electron injection layer may consist of an alkali metal-containing compound (for example, an alkali metal halide); or the electron injection layer may consist of an alkali metal-containing compound (for example, an alkali metal halide), and an alkali metal, an alkaline earth metal, a rare earth metal, or any combination thereof. In an embodiment, the electron injection layer may be a KI:Yb co-deposited layer, an RbI:Yb co-deposited layer, or the like.
When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.
A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å. For example, the thickness of the electron injection layer may be in a range of about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the ranges described above, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.
[Second Electrode 150]
The second electrode 150 may be on the interlayer 130 having such a structure. The second electrode 150 may be a cathode, which is an electron injection electrode, and as the material for the second electrode 150, a metal, an alloy, an electrically conductive compound, or any combination thereof, each having a low work function, may be used.
In an embodiment, the second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, IZO, or a combination thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
The second electrode 150 may have a single-layered structure or a multi-layered structure including two or more layers.
[Capping Layer]
A first capping layer may be located outside the first electrode 110, and/or a second capping layer may be located outside the second electrode 150. For example, the light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are stacked in this stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order.
Light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the first electrode 110 (which may be a semi-transmissive electrode or a transmissive electrode) and through the first capping layer. Light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the second electrode 150 (which may be a semi-transmissive electrode or a transmissive electrode) and through the second capping layer.
The first capping layer and the second capping layer may each increase external emission efficiency according to the principle of constructive interference.
Accordingly, the light extraction efficiency of the light-emitting device 10 may be increased, so that the emission efficiency of the light-emitting device 10 may be improved.
Each of the first capping layer and second capping layer may include a material having a refractive index (at a wavelength of about 589 nm) equal to or greater than about 1.6.
The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.
At least one of the first capping layer and the second capping layer may each independently include carbocyclic compounds, heterocyclic compounds, amine group-containing compounds, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, alkali metal complexes, alkaline earth metal complexes, or any combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may be optionally substituted with a substituent containing O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof. In an embodiment, at least one of the first capping layer and the second capping layer may each independently include an amine group-containing compound.
In an embodiment, at least one of the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof.
In an embodiment, at least one of the first capping layer and the second capping layer may each independently include one of Compounds HT28 to HT33, one of Compounds CP1 to CP6, β-NPB, or any combination thereof:
[Film]
The condensed cyclic compound represented by Formula 1 may be included in various films. Accordingly, another aspect provides a film which may include the condensed cyclic compound represented by Formula 1. The film may be, for example, an optical member (or a light control means) (for example, a color filter, a color conversion member, a capping layer, a light extraction efficiency improvement layer, a selective light absorption layer, a polarizing layer, a quantum dot-containing layer, etc.), a light-shielding member (for example, a light reflecting layer, a light absorbing layer, etc.), a protective member (for example, an insulating layer, a dielectric layer, etc.), or the like.
[Electronic Apparatus]
The light-emitting device may be included in various electronic apparatuses. In an embodiment, the electronic apparatus including the light-emitting device may be a light-emitting apparatus, an authentication apparatus, or the like.
The electronic apparatus (for example, light-emitting apparatus) may further include, in addition to the light-emitting device, a color filter, a color conversion layer, or a color filter and a color conversion layer. The color filter and/or the color conversion layer may be located in at least one traveling direction of light emitted from the light-emitting device. In embodiments, the light emitted from the light-emitting device may be blue light or white light. The light-emitting device may be the same as described above. In an embodiment, the color conversion layer may include quantum dots. The quantum dot may be, for example, a quantum dot as described herein.
The electronic apparatus may include a first substrate. The first substrate may include subpixels, the color filter may include color filter areas respectively corresponding to the subpixels, and the color conversion layer may include color conversion areas respectively corresponding to the subpixels.
A pixel-defining film may be located between the subpixels to define each subpixel.
The color filter may further include color filter areas and light-shielding patterns located between the color filter areas, and the color conversion layer may include color conversion areas and light-shielding patterns located between the color conversion areas.
The color filter areas (or the color conversion areas) may include a first area emitting first color light, a second area emitting second color light, and/or a third area emitting third color light, and the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths from one another. In an embodiment, the first color light may be red light, the second color light may be green light, and the third color light may be blue light. In an embodiment, the color filter areas (or the color conversion areas) may include quantum dots. For example, the first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may not include a quantum dot. The quantum dot may be the same as described in the specification. The first area, the second area, and/or the third area may each further include a scatterer.
In an embodiment, the light-emitting device may emit first light, the first area may absorb the first light to emit first first-color light, the second area may absorb the first light to emit second first-color light, and the third area may absorb the first light to emit third first-color light. The first first-color light, the second first-color light, and the third first-color light may have different maximum emission wavelengths from one another. For example, the first light may be blue light, the first first-color light may be red light, the second first-color light may be green light, and the third first-color light may be blue light.
The electronic apparatus may further include a thin-film transistor in addition to the light-emitting device as described above. The thin-film transistor may include a source electrode, a drain electrode, and an active layer, wherein any one of the source electrode and the drain electrode may be electrically connected to any one of the first electrode and the second electrode of the light-emitting device.
The thin-film transistor may further include a gate electrode, a gate insulating film, etc.
The active layer may include crystalline silicon, amorphous silicon, organic semiconductor, oxide semiconductor, or the like.
The electronic apparatus may further include a sealing portion for sealing the light-emitting device. The sealing portion and/or the color conversion layer may be located between the color filter and the light-emitting device. The sealing portion may allow light from the light-emitting device to be extracted to the outside, and may simultaneously prevent ambient air and/or moisture from penetrating into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including at least one layer of an organic layer and/or an inorganic layer. When the sealing portion is a thin film encapsulation layer, the electronic apparatus may be flexible.
Various functional layers may be further included on the sealing portion, in addition to the color filter and/or the color conversion layer, according to the use of the electronic apparatus. The functional layers may include a touch screen layer, a polarizing layer, an authentication apparatus, and the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by using biometric information of a living body (for example, fingertips, pupils, etc.).
The authentication apparatus may further include, in addition to the light-emitting device, a biometric information collector.
The electronic apparatus may be applied to various displays, such as light sources, lighting, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic diaries, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, or endoscope displays), fish finders, various measuring instruments, meters (for example, meters for a vehicle, an aircraft, and a vessel), projectors, and the like.
[Description of
The electronic apparatus of
The substrate 100 may be a flexible substrate, a glass substrate, or a metal substrate. A buffer layer 210 may be formed on the substrate 100. The buffer layer 210 may prevent penetration of impurities through the substrate 100 and may provide a flat surface on the substrate 100.
A TFT may be located on the buffer layer 210. The TFT may include an active layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.
The active layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region, and a channel region.
A gate insulating film 230 for insulating the active layer 220 from the gate electrode 240 may be located on the active layer 220, and the gate electrode 240 may be located on the gate insulating film 230.
An interlayer insulating film 250 is located on the gate electrode 240. The interlayer insulating film 250 may be placed between the gate electrode 240 and the source electrode 260 to insulate the gate electrode 240 from the source electrode 260 and between the gate electrode 240 and the drain electrode 270 to insulate the gate electrode 240 from the drain electrode 270.
The source electrode 260 and the drain electrode 270 may be located on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the active layer 220, and the source electrode 260 and the drain electrode 270 may contact exposed portions of the source region and the drain region of the active layer 220.
The TFT is electrically connected to a light-emitting device to drive the light-emitting device, and may be covered by a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or a combination thereof. A light-emitting device is provided on the passivation layer 280.
The light-emitting device may include a first electrode 110, an interlayer 130, and a second electrode 150.
The first electrode 110 may be formed on the passivation layer 280. The passivation layer 280 may not completely cover the drain electrode 270 and may expose a portion of the drain electrode 270, and the first electrode 110 may be electrically connected to the exposed portion of the drain electrode 270.
A pixel-defining layer 290 containing an insulating material may be located on the first electrode 110. The pixel-defining layer 290 may expose a region of the first electrode 110, and an interlayer 130 may be formed in the exposed region of the first electrode 110. The pixel-defining layer 290 may be a polyimide or polyacrylic organic film. Although not shown in
The second electrode 150 may be on the interlayer 130, and a capping layer 170 may be additionally formed on the second electrode 150. The capping layer 170 may be formed to cover the second electrode 150.
The encapsulation portion 300 may be on the capping layer 170. The encapsulation portion 300 may be located on a light-emitting device to protect the light-emitting device from moisture and/or oxygen. The encapsulation portion 300 may include an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or any combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (for example, polymethyl methacrylate, polyacrylic acid, or the like), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE), or the like), or a combination thereof; or a combination of the inorganic film and the organic film.
The electronic apparatus of
[Manufacture Method]
Respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging.
When layers constituting the hole transport area, an emission layer, and layers constituting the electron transport area are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10-8 torr to about 10-3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, depending on a material to be included in a layer to be formed and the structure of a layer to be formed.
The term “C3-C60 carbocyclic group” as used herein may be a cyclic group consisting of carbon as the only ring-forming atoms and having three to sixty carbon atoms, and the term “C1-C60 heterocyclic group” as used herein may be a cyclic group that has one to sixty carbon atoms and further has, in addition to carbon, at least one heteroatom as ring-forming atoms. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed with each other. In an embodiment, the C1-C60 heterocyclic group may have 3 to 61 ring-forming atoms.
The term “cyclic group” as used herein may include the C3-C60 carbocyclic group and the C1-C60 heterocyclic group.
The term “π electron-rich C3-C60 cyclic group” as used herein may be a cyclic group that has three to sixty carbon atoms and may not include *—N=*′ as a ring-forming moiety, and the term “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein may be a heterocyclic group that has one to sixty carbon atoms and may include *—N=*′ as a ring-forming moiety.
In embodiments,
the C3-C60 carbocyclic group may be a T1 group or a condensed cyclic group in which two or more T1 groups are condensed with each other (for example, a cyclopentadiene group, an adamantane group, a norbornane group, a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indenophenanthrene group, or an indenoanthracene group),
the C1-C60 heterocyclic group may be a T2 group, a condensed cyclic group in which two or more T2 groups are condensed with each other, or a condensed cyclic group in which at least one T2 group and at least one T1 group are condensed with each other (for example, a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),
the π electron-rich C3-C60 cyclic group may be a T1 group, a condensed cyclic group in which two or more T1 groups are condensed with each other, a T3 group, a condensed cyclic group in which two or more T3 groups are condensed with each other, or a condensed cyclic group in which at least one T3 group and at least one T1 group are condensed with each other (for example, a C3-C60 carbocyclic group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, etc.),
the π electron-deficient nitrogen-containing C1-C60 cyclic group may be a T4 group, a condensed cyclic group in which two or more T4 groups are condensed with each other, a condensed cyclic group in which at least one T4 group and at least one T1 group are condensed with each other, a condensed cyclic group in which at least one T4 group T4 and at least one T3 group are condensed with each other, or a condensed cyclic group in which at least one T4 group, at least one T1 group, and at least one T3 group are condensed with one another (for example, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),
wherein the T1 group may be a cyclopropane group, a cyclobutane group, a cyclopentane group, a cyclohexane group, a cycloheptane group, a cyclooctane group, a cyclobutene group, a cyclopentene group, a cyclopentadiene group, a cyclohexene group, a cyclohexadiene group, a cycloheptene group, an adamantane group, a norbornane (or a bicyclo[2.2.1]heptane) group, a norbornene group, a bicyclo[1.1.1]pentane group, a bicyclo[2.1.1]hexane group, a bicyclo[2.2.2]octane group, or a benzene group,
the T2 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a tetrazine group, a pyrrolidine group, an imidazolidine group, a dihydropyrrole group, a piperidine group, a tetrahydropyridine group, a dihydropyridine group, a hexahydropyrimidine group, a tetrahydropyrimidine group, a dihydropyrimidine group, a piperazine group, a tetrahydropyrazine group, a dihydropyrazine group, a tetrahydropyridazine group, or a dihydropyridazine group,
the T3 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, or a borole group, and
the T4 group may be a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or a tetrazine group.
The terms “cyclic group”, “C3-C60 carbocyclic group”, “C1-C60 heterocyclic group”, “π electron-rich C3-C60 cyclic group”, or “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein may each be a group condensed to any cyclic group or a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, etc.), depending on the structure of a formula in connection with which the terms are used. For example, “a benzene group” may be a benzo group, a phenyl group, a phenylene group, or the like, which may be readily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”
Examples of the monovalent C3-C60 carbocyclic group and the monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, and examples of the divalent C3-C60 carbocyclic group and the divalent C1-C60 heterocyclic group may include a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.
The term “C1-C60 alkyl group” as used herein may be a linear or branched aliphatic hydrocarbon monovalent group that has one to sixty carbon atoms, and examples thereof may include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as used herein may be a divalent group having a same structure as the C1-C60 alkyl group.
The term “C2-C60 alkenyl group” as used herein may be a monovalent hydrocarbon group having at least one carbon-carbon double bond in the middle or at the terminus of a C2-C60 alkyl group, and examples thereof may include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as used herein may be a divalent group having a same structure as the C2-C60 alkenyl group.
The term “C2-C60 alkynyl group” as used herein may be a monovalent hydrocarbon group having at least one carbon-carbon triple bond in the middle or at the terminus of the C2-C60 alkyl group, and examples thereof may include an ethynyl group and a propynyl group. The term “C2-C60 alkynylene group” as used herein may be a divalent group having a same structure as the C2-C60 alkynyl group.
The term “C1-C60 alkoxy group” as used herein may be a monovalent group represented by —O(A101) (wherein A101 is a C1-C60 alkyl group), and examples thereof may include a methoxy group, an ethoxy group, and an isopropyloxy group.
The term “C3-C10 cycloalkyl group” as used herein may be a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof may include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or a bicyclo[2.2.1]heptyl group), a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, and a bicyclo[2.2.2]octyl group. The term “C3-C10 cycloalkylene group” as used herein may be a divalent group having a same structure as the C3-C10 cycloalkyl group.
The term “C1-C10 heterocycloalkyl group” as used herein may be a monovalent cyclic group that further includes, in addition to a carbon atom, at least one heteroatom as a ring-forming atom and has 1 to 10 carbon atoms, and examples thereof may include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as used herein may be a divalent group having a same structure as the C1-C10 heterocycloalkyl group.
The term “C3-C10 cycloalkenyl group” as used herein may be a monovalent cyclic group that has three to ten carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof may include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group” as used herein may be a divalent group having a same structure as the C3-C10 cycloalkenyl group.
The term “C1-C10 heterocycloalkenyl group” as used herein may be a monovalent cyclic group that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, 1 to 10 carbon atoms, and at least one carbon-carbon double bond in the cyclic structure thereof. Examples of the C1-C10 heterocycloalkenyl group may include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group” as used herein may be a divalent group having a same structure as the C1-C10 heterocycloalkenyl group.
The term “C6-C60 aryl group” as used herein may be a monovalent group having a carbocyclic aromatic system having six to sixty carbon atoms, and the term “C6-C60 arylene group” as used herein may be a divalent group having a carbocyclic aromatic system having six to sixty carbon atoms. Examples of the C6-C60 aryl group may include a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, and an ovalenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the rings may be condensed with each other.
The term “C1-C60 heteroaryl group” as used herein may be a monovalent group having a heterocyclic aromatic system that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, and 1 to 60 carbon atoms. The term “C1-C60 heteroarylene group” as used herein may be a divalent group having a heterocyclic aromatic system that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, and 1 to 60 carbon atoms. Examples of the C1-C60 heteroaryl group may include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, and a naphthyridinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the rings may be condensed with each other.
The term “monovalent non-aromatic condensed polycyclic group” as used herein may be a monovalent group having two or more rings condensed to each other, only carbon atoms (for example, having 8 to 60 carbon atoms) as ring-forming atoms, and non-aromaticity in its molecular structure when considered as a whole. Examples of the monovalent non-aromatic condensed polycyclic group may include an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, and an indeno anthracenyl group. The term “divalent non-aromatic condensed polycyclic group” as used herein may be a divalent group having a same structure as a monovalent non-aromatic condensed polycyclic group.
The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein may be a monovalent group having two or more rings condensed to each other, at least one heteroatom in addition to carbon atoms (for example, having 1 to 60 carbon atoms) as a ring-forming atom, and non-aromaticity in its molecular structure when considered as a whole. Examples of the monovalent non-aromatic condensed heteropolycyclic group may include a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphthoindolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, and a benzothienodibenzothiophenyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein may be a divalent group having a same structure as a monovalent non-aromatic condensed heteropolycyclic group.
The term “C6-C60 aryloxy group” as used herein may be represented by —O(A102) (wherein A102 is a C6-C60 aryl group), and the term “C6-C60 arylthio group” as used herein may be represented by —S(A103) (wherein A103 is a C6-C60 aryl group).
The term “C7-C60 aryl alkyl group” as used herein may be represented by -(A104)(A105) (where A104 may be a C1-C54 alkylene group, and A105 may be a C6-C59 aryl group), and the term “C2-C60 heteroaryl alkyl group” as used herein may be represented by -(A106)(A107) (where A106 may be a C1-C59 alkylene group, and A107 may be a C1-C59 heteroaryl group).
In the specification, the substituent R10a may be:
deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32).
wherein Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 as used herein may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof; a C7-C60 aryl alkyl group; or a C2-C60 heteroaryl alkyl group.
The term “heteroatom” as used herein may be any atom other than a carbon atom or a hydrogen atom. Examples of the heteroatom may include O, S, N, P, Si, B, Ge, Se, or any combination thereof.
The term “the third-row transition metal” as used herein may include hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), and the like.
The term “Ph” as used herein refers to a phenyl group, the term “Me” as used herein refers to a methyl group, the term “Et” as used herein refers to an ethyl group, the term “ter-Bu” or “But” as used herein refers to a tert-butyl group, and the term “OMe” as used herein refers to a methoxy group.
The term “biphenyl group” as used herein may be “a phenyl group substituted with a phenyl group.” For example, the “biphenyl group” may be a substituted phenyl group having a C6-C60 aryl group as a substituent.
The term “terphenyl group” as used herein may be “a phenyl group substituted with a biphenyl group”. For example, the “terphenyl group” may be a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.
In the specification, the symbols *, *′, and *″, as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula or moiety.
Hereinafter, a compound and light-emitting device according to an embodiment of the disclosure will be described in detail with reference to the Synthesis Examples and Examples. The wording “B was used instead of A” used in describing Synthesis Examples means that an identical molar equivalent of B was used in place of A.
Synthesis of Intermediate 2-1
(9-phenyl-9H-carbazol-3-yl)boronic acid (1 eq), 1-bromo-3,5-dichlorobenzene (1 eq), Pd(PPh3)4 (0.05 eq), and K2CO3 (3 eq) were dissolved in a 2:1 mixed solution of water and THF, and stirred at 80° C. for 12 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure. The resulting product was purified by column chromatography with methylene chloride (MC) and n-hexane to obtain Intermediate 2-1. (Yield: 81%)
Synthesis of Intermediate 2-2
Intermediate 2-1 (1 eq), 9-phenyl-N-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-9H-carbazol-2-amine (2 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), tri-tert-butylphosphine (0.1 eq), and sodium tert-butoxide (3 eq) were dissolved in o-xylene, and stirred at 150° C. for 24 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure.
The resulting product was purified by column chromatography with MC and n-hexane to obtain Intermediate 2-2. (Yield: 62%)
Synthesis of Compound 2
After Intermediate 2-2 (1 eq) was dissolved in ortho-dichlorobenzene and cooled down to 0° C., BBr3 (3 eq) was slowly injected thereinto under a nitrogen atmosphere. After termination of the dropwise addition, the temperature was raised to 180° C., followed by stirring for 24 hours. After cooling, triethylamine was slowly dropwise added into the flask containing the reactant to terminate reaction, and ethyl alcohol was added into the reactant to cause precipitation, thereby obtaining a reaction product. The obtained solid was purified by column chromatography with MC and n-hexane, and recrystallized with toluene and acetone to obtain Compound 2. (Yield: 21%)
Synthesis of Intermediate 17-1
2-fluoro-1,1′-biphenyl (1 eq), 2-bromo-9H-carbazole (1 eq), and K3PO4 (2 eq) were dissolved in DMF, and stirred at 160° C. for 12 hours. After cooling, the solvent was removed therefrom under reduced pressure, and the resulting product was washed three times with ethyl acetate and water, and the organic layer obtained by separation was dried using MgSO4 and dried under reduced pressure. The resulting product was purified by column chromatography with MC and n-hexane to obtain Intermediate 17-1. (Yield: 69%)
Synthesis of Intermediate 17-2
Intermediate 17-1 (1 eq), [1,1′-biphenyl]-2-amine (1.2 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), tri-tert-butylphosphine (0.1 eq), and sodium tert-butoxide (3 eq) were dissolved in toluene, and stirred at 90° C. for 6 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure. The resulting product was purified by column chromatography with MC and n-hexane to obtain Intermediate 17-2. (Yield: 70%)
Synthesis of Intermediate 17-3
2-(3,5-dichlorophenyl)dibenzo[b,d]furan (1 eq), Intermediate 17-2 (2.2 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), SPhos (0.1 eq), and sodium tert-butoxide (3 eq) were dissolved in toluene, and stirred at 110° C. for 12 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure. The resulting product was purified by column chromatography with MC and n-hexane to obtain Intermediate 17-3. (Yield: 61%)
Synthesis of Compound 17
After Intermediate 17-3 (1 eq) was dissolved in ortho-dichlorobenzene and cooled down to 0° C., BBr3 (3 eq) was slowly injected thereinto under a nitrogen atmosphere. After completion of adding dropwise, the temperature was raised to 180° C., followed by stirring for 24 hours. After cooling, triethylamine was slowly dropwise added into the flask containing the reactant to terminate reaction, and ethyl alcohol was added into the reactant to cause precipitation, thereby obtaining a reaction product. The obtained solid was purified through column chromatography with MC and n-hexane, and Compound 17 was obtained by recrystallization using toluene and acetone. (Yield: 15%)
Synthesis of Intermediate 22-1
Intermediate 22-1 was synthesized in the same manner as used to synthesize Intermediate 17-2, except that 4′-(t-butyl)-[1,1′-biphenyl]-2-amine was used instead of [1,1′-biphenyl]-2-amine. (Yield: 73%)
Synthesis of Intermediate 22-2
Intermediate 22-2 was synthesized in the same manner as used to synthesize Intermediate 17-3, except that 2-(3,5-dichlorophenyl)dibenzo[b,d]thiophene was used instead of 2-(3,5-dichlorophenyl)dibenzo[b,d]furan, and Intermediate 22-1 was used instead of Intermediate 17-2. (Yield: 68%).
Synthesis of Compound 22
Compound 22 was synthesized in the same manner as used to synthesize Compound 17, except that Intermediate 22-2 was used instead of Intermediate 17-3. (Yield: 20%)
Synthesis of Intermediate 33-1
9-(3-bromophenyl)-9H-carbazole (1 eq), [1,1:3′,1″-terphenyl]-2′-ame (1 eq), tris(dibenzylideneacetone)dipalladium(0) (0.1 eq), tri-tert-butylphosphine (0.2 eq), and sodium tert-butoxide (4 eq) were dissolved in o-xylene, and stirred at 150° C. for 24 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure. The resulting product was purified by column chromatography with MC and n-hexane to obtain Intermediate 33-1. (Yield: 75%)
Synthesis of Intermediate 33-2
Intermediate 2-1 (1 eq), Intermediate 33-1 (2 eq), tris(dibenzylideneacetone)dipalladium(0) (0.2 eq), tri-tert-butylphosphine (0.4 eq), and sodium tert-butoxide (4 eq) were dissolved in o-xylene, and stirred at 150° C. for 48 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure. The resulting product was purified by column chromatography with MC and n-hexane to obtain Intermediate 33-2. (Yield: 41%)
Synthesis of Compound 33
Compound 33 was synthesized in the same manner as used to synthesize Compound 17, except that Intermediate 33-2 was used instead of Intermediate 17-3. (Yield: 17%)
Synthesis of Intermediate 51-1
9-(3-bromophenyl)-3,6-di-tert-butyl-9H-carbazole (1 eq), 5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-amine (1 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), tri-tert-butylphosphine (0.1 eq), and sodium tert-butoxide (3 eq) were dissolved in toluene, and stirred at 100° C. for 12 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure. The resulting product was purified by column chromatography with MC and n-hexane to obtain Intermediate 51-1. (Yield: 77%)
Synthesis of Intermediate 51-2
2-(3,5-dichlorophenyl)dibenzo[b,d]thiophene (1 eq), Intermediate 51-1 (2 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), tri-tert-butylphosphine (0.1 eq), and sodium tert-butoxide (3 eq) were dissolved in toluene, and stirred at 100° C. for 12 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure. The resulting product was purified by column chromatography with MC and n-hexane to obtain Intermediate 51-2. (Yield: 56%)
Synthesis of Compound 51
Compound 51 was synthesized in the same manner as used to synthesize Compound 17, except that Intermediate 51-2 was used instead of Intermediate 17-3. (Yield: 26%)
Synthesis of Intermediate 56-1
1-bromo-3-chlorobenzene (1 eq), [1,1′:3′,1″-terphenyl]-2′-amine (1.2 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), tri-tert-butylphosphine (0.1 eq), and sodium tert-butoxide (3 eq) were dissolved in toluene, and stirred at 100° C. for 4 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure. The resulting product was purified by column chromatography with MC and n-hexane to obtain Intermediate 56-1. (Yield: 50%)
Synthesis of Intermediate 56-2
2-(3,5-dichlorophenyl)dibenzo[b,d]furan (1 eq) and Intermediate 56-1 (2 eq) were
dissolved in toluene, and stirred at 100° C. for 12 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure. The resulting product was purified by column chromatography with MC and n-hexane to obtain Intermediate 56-2. (Yield: 41%)
Synthesis of Intermediate 56-3
After Intermediate 56-2 (1 eq) was dissolved in ortho-dichlorobenzene and cooled down to 0° C., BBr3 (5 eq) was slowly injected thereinto under a nitrogen atmosphere. After completion of adding dropwise, the temperature was raised to 180° C., followed by stirring for 24 hours. After cooling, triethylamine was slowly dropwise added into the flask containing the reactant to terminate reaction, and ethyl alcohol was added into the reactant to cause precipitation, thereby obtaining a reaction product. The obtained solid was purified through column chromatography with MC and n-hexane, and Intermediate 56-3 was obtained by recrystallization using toluene and acetone. (Yield: 19%)
Synthesis of Compound 56
Intermediate 56-3 (1 eq), 9H-carbazole-3-carbonitrile (2 eq), tris(dibenzylideneacetone)dipalladium(0) (0.1 eq), tri-tert-butylphosphine (0.2 eq), and sodium tert-butoxide (3 eq) were dissolved in o-xylene, and stirred at 150° C. for 16 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure. The resulting product was purified by column chromatography with MC and n-hexane to obtain Compound 56. (Yield: 45%)
Synthesis of Intermediate 61-1
9-(3-chlorophenyl)-9H-carbazole-1,2,3,4,5,6,7,8-d8(Compound 57-1) (1 eq), 5′-(4-(tert-butyl)phenyl)-[1,1′-3,1″-terphenyl]-2′-amine (1 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), tri-tert-butylphosphine (0.1 eq), and sodium tert-butoxide (3 eq) were dissolved in o-xylene, and stirred at 150° C. for 24 hours. After cooling and washing with ethyl acetate and water three times, the organic layer was separated therefrom, and dried over MgSO4 and under reduced pressure. The resulting product was purified by column chromatography with MC and n-hexane to obtain Intermediate 61-1. (Yield: 47%)
Synthesis of Intermediate 61-2
Intermediate 61-2 was synthesized in the same manner as used to synthesize Intermediate 2-2, except that 2-(3,5-dichlorophenyl)dibenzo[b,d]furan was used instead of Intermediate 2-1, and Intermediate 61-1 was used instead of 9-phenyl-N-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-9H-carbazol-2-amine. (Yield: 55%)
Synthesis of Compound 61
Compound 61 was synthesized in the same manner as used to synthesize Compound 17, except that Intermediate 61-2 was used instead of Intermediate 17-3. (Yield: 24%)
Evaluation Example 1
According to a method of Table 2, HOMO and LUMO energy levels of each of Compounds 2, 17, 22, 33, 51, 56, and 61 were evaluated, a singlet energy level (Si) and a triplet energy level (T1) of each compound were measured, and results thereof are shown in Table 3.
Bond dissociation energy (BDE) of an anionic state for single bonds indicated by a dotted line such as Compounds 2, 17, 22, 33, 51, 56, and 61 below was calculated and are shown in Table 4.
As an anode, a 15 Ohms per square centimeter (Ω/cm2) (1,200 Å) ITO glass substrate (available from Corning Co., Ltd) was cut to a size of 50 millimeters (mm)×50 mm×0.7 mm, sonicated in isopropyl alcohol and pure water for 5 minutes in each solvent, cleaned by irradiation of ultraviolet rays and exposure of ozone thereto for 30 minutes, and was mounted on a vacuum deposition apparatus.
NPD was deposited on the anode to form a hole injection layer having a thickness of 300 Å, and HT3 was deposited on the hole injection layer to form a hole transport layer having a thickness of 200 Å, and CzSi was deposited on the hole transport layer to form an emission auxiliary layer having a thickness of 100 Å.
A host compound in which a first host (HTH41) and a second host (ETH66) are mixed in a ratio of 1:1, a phosphorescent sensitizer (PD41), and Compound 2 were co-deposited on the emission auxiliary layer at a weight ratio of 85:14:1 to form an emission layer having a thickness of 200 Å, TSPO1 was deposited on the emission layer to form a hole blocking layer having a thickness of 200 Å, TPBI was deposited on the hole blocking layer to form an electron transport layer having a thickness of 300 Å, LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å, and Al was deposited on the electron injection layer to form a cathode having a thickness of 3,000 Å, thereby completing manufacture of a light-emitting device.
Organic electroluminescent devices of Examples 2 to 18 and Comparative Examples 1 to 4 were manufactured in the same manner as in Example 1, except that compounds described in Table 1 were used in forming an emission layer.
To evaluate characteristics of the light-emitting devices manufactured according to Examples 1 to 18 and Comparative Examples 1 to 4, the driving voltage at a current density of 50 mA/cm2, luminescence efficiency, and lifespan (T95) thereof were measured. The driving voltage of the light-emitting devices was measured using a source meter (Keithley Instrument Inc., 2400 series). The evaluation results of the characteristics of the light-emitting devices were shown in Table 5 below. The lifespan ratio in Table 5 shows the ratio relative to lifespan of Comparative Example 3 as 1
From Table 5, it was confirmed that the organic light-emitting devices according to Examples 1 to 18 had superior driving voltage, luminescence efficiency, and lifespan characteristics to those of the organic light-emitting devices according to Comparative Examples 1 to 4.
As an anode, a 15 Ω/cm2 (1,200 Å) ITO glass substrate (available from Corning Co., Ltd) was cut to a size of 50 mm×50 mm×0.7 mm, sonicated in isopropyl alcohol and pure water for 5 minutes in each solvent, and cleaned by irradiation of ultraviolet rays and exposure of ozone thereto for 30 minutes, and the glass substrate was loaded onto a vacuum deposition apparatus.
Compound N,N-di(1-naphthyl)-N,N-diphenylbenzidine (NPD) was vacuum-deposited on the substrate to form a hole injection layer having a thickness of 300 Å, HT3 was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 200 Å, and a hole transport compound CzSi was vacuum-deposited on the hole transport layer to form an emission auxiliary layer having a thickness of 200 Å.
mCP (host) and Compound 2 (dopant) were co-deposited on the emission auxiliary layer at a weight ratio of 99:1 to form an emission layer having a thickness of 200 Å.
TSPO1 was deposited on the emission layer to form an electron transport layer having a thickness of 200 Å, TPBI as an electron transport compound was deposited thereon to form a buffer layer having a thickness of 300 Å, LiF, which is an alkali metal halide, was deposited on the buffer layer to form an electron injection layer having a thickness of 10 Å, and Al was vacuum-deposited thereon to form an LiF/Al electrode having a thickness of 3,000 Å, thereby completing manufacture of an organic electroluminescent device.
Organic electroluminescent devices were manufactured in the same manner as in Example 19, except that, for use as a dopant, compounds described in Table 1 were used instead of Compound 1 in forming an emission layer.
Organic electroluminescent devices were manufactured in the same manner as in Example 19, except that TCTA was used instead of HT3 in forming a hole transport layer, and for use as a dopant, compounds described in Table 1 were used instead of Compound 1 in forming an emission layer.
To evaluate characteristics of the light-emitting devices manufactured according to Examples 19 to 25 and Comparative Examples 5 to 10, the driving voltage at a current density of 50 mA/cm2, luminescence efficiency, and maximum external quantum efficiency (EQE) thereof were measured. The driving voltage of the light-emitting devices was measured using a source meter (Keithley Instrument Inc., 2400 series).
The evaluation results of the characteristics of the light-emitting devices were shown in Table 6 below.
From Table 6, it was confirmed that the organic light-emitting devices according to Examples 19 to 25 had superior driving voltage, luminescence efficiency, and maximum external quantum efficiency to those of the organic light-emitting devices according to Comparative Examples 5 to 10.
According to embodiments, a light-emitting device may have excellent luminescence efficiency by including a condensed cyclic compound represented by Formula 1, and a high-quality electronic apparatus may be manufactured using the same.
Embodiments have been disclosed herein, and although terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. In some instances, as would be apparent by one of ordinary skill in the art, features, characteristics, and/or elements described in connection with an embodiment may be used singly or in combination with features, characteristics, and/or elements described in connection with other embodiments unless otherwise specifically indicated. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the disclosure as set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0101014 | Jul 2021 | KR | national |