LIGHT-EMITTING DEVICE INCLUDING HETEROCYCLIC COMPOUND, ELECTRONIC APPARATUS INCLUDING THE LIGHT-EMITTING DEVICE, AND THE HETEROCYCLIC COMPOUND

Information

  • Patent Application
  • 20230270001
  • Publication Number
    20230270001
  • Date Filed
    February 08, 2023
    a year ago
  • Date Published
    August 24, 2023
    8 months ago
Abstract
A light-emitting device includes a heterocyclic compound represented by Formula 1, an electronic apparatus includes the light-emitting device, and the heterocyclic compound is represented by Formula 1:
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to and the benefit of Korean Patent Application No. 10-2022-0024573, filed on Feb. 24, 2022, in the Korean Intellectual Property Office, the entire content of which is hereby incorporated by reference.


BACKGROUND
1. Field

One or more embodiments relate to a light-emitting device including a heterocyclic compound, an electronic apparatus including the light-emitting device, and the heterocyclic compound.


2. Description of the Related Art

Self-emissive devices from among light-emitting devices have relatively wide viewing angles, high contrast ratios, short response times, and/or excellent or suitable characteristics in terms of luminance, driving voltage, and/or response speed.


In a light-emitting device, a first electrode is arranged on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode are sequentially arranged on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer region to produce excitons. These excitons transition from an excited state to a ground state to thereby generate light.


SUMMARY

Aspects according to one or more embodiments of the present disclosure are directed toward a light-emitting device including a heterocyclic compound, an electronic apparatus including the light-emitting device, and the heterocyclic compound.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments of the disclosure.


According to one or more embodiments,

    • a light-emitting device includes a first electrode,
    • a second electrode facing the first electrode, and
    • an interlayer between the first electrode and the second electrode and including an emission layer,
    • wherein the light-emitting device includes a heterocyclic compound represented by Formula 1.




embedded image


In Formula 1,

    • X1 may be C(R10aa) or N,
    • X2 may be C(R10ab) or N,
    • X3 may be C(R10ac) or N,
    • at least one of X1 to X3 may be N,
    • L1 to L3 may each independently be a C3-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • a1 to a3 may each independently be an integer from 0 to 3,
    • wherein, when a1 is 0, *-(L1)a1-*′ may be a single bond,
    • when a2 is 0, *-(L2)a2-*′ may be a single bond, and
    • when a3 is 0, *-(L3)a3-*′ may be a single bond,
    • Ar1 may be a group represented by Formula 1-1, and
    • Ar2 to Ar3 may each independently be a C3-C30 carbocyclic group that is unsubstituted or substituted with R10a or a π electron-rich C3-C60 cyclic group that is unsubstituted or substituted with R10a,




embedded image




    • wherein, in Formula 1-1,

    • Y1 and Y2 may each independently be C, Si, or Ge,

    • Ar11, Ar12, Ar13, Ar21, Ar22, Ar23, L11, L12, L13, L21, L22, L23, and L4 may each independently be a C3-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a,

    • a11, a12, a13, a21, a22, and a23 may each independently be an integer from 0 to 3,

    • wherein a sum of a11, a12, a13, a21, a22, and a23 may be 1 or more,

    • when a11 is 0, *-(L11)a11-*′ may be a single bond,

    • when a12 is 0, *-(L12)a12-*′ may be a single bond,

    • when a13 is 0, *-(L13)a13-*′ may be a single bond,

    • when a21 is 0, *-(L21)a21-*′ may be a single bond,

    • when a22 is 0, *-(L22)a22-*′ may be a single bond, and

    • when a23 is 0, *-(L23)a23-*′ may be a single bond,

    • a4 may be an integer from 1 to 3,

    • * may indicate a binding site to a neighboring atom,

    • R10a, R10aa, R10ab, and R10ac may each independently be

    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group,

    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof,

    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, or a C6-C60 arylthio group, each unsubstituted or substituted with deuterium, —F, —C1, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof, or

    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32), and

    • Q1 to Q2, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.





According to one or more embodiments, an electronic apparatus includes the light-emitting device.


According to one or more embodiments, the heterocyclic compound represented by Formula 1 is provided.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and enhancements of certain embodiments of the disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a schematic cross-sectional view of a light-emitting device according to an embodiment;



FIG. 2 is a schematic cross-sectional view of an electronic apparatus according to an embodiment; and



FIG. 3 is a cross-sectional schematic view of an electronic apparatus according to another embodiment.





DETAILED DESCRIPTION

Reference will now be made in more detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout, and duplicative descriptions thereof may not be provided the specification. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the drawings, to explain aspects of the present description. As utilized herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Throughout the disclosure, the expression “at least one of a, b or c”, “at least one selected from a, b, and c”, “at least one selected from the group consisting of a, b, and c”, “at least one of a to c”, etc., indicates only a, only b, only c, both (e.g., simultaneously) a and b, both (e.g., simultaneously) a and c, both (e.g., simultaneously) b and c, all of a, b, and c, or variations thereof. Also, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


A light-emitting device according to an embodiment of the disclosure may include: a first electrode; a second electrode facing the first electrode; an interlayer arranged between the first electrode and the second electrode and including an emission layer; and a heterocyclic compound represented by Formula 1.




embedded image


In Formula 1,

    • X1 may be C(R10aa) or N,
    • X2 may be C(R10ab) or N,
    • X3 may be C(R10ac) or N,
    • at least one of X1 to X3 may be N,
    • L1 to L3 may each independently be a C3-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • a1 to a3 may each independently be an integer from 0 to 3,
    • wherein, when a1 is 0, *-(L1)a1-*′ may be a single bond,
    • when a2 is 0, *-(L2)a2-*′ may be a single bond, and
    • when a3 is 0, *-(L3)a3*′ may be a single bond,
    • Ar1 may be a group represented by Formula 1-1, and
    • Ar2 to Ar3 may each independently be a C3-C30 carbocyclic group that is unsubstituted or substituted with R10a or a π electron-rich C3-C60 cyclic group that is unsubstituted or substituted with R10a,




embedded image




    • in Formula 1-1,

    • Y1 and Y2 may each independently be C, Si, or Ge,

    • Ar11, Ar12, Ar13, Ar21, Ar22, Ar23, L11, L12, L13, L21, L22, L23, and L4 may each independently be a C3-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a,

    • a11, a12, a13, a21, a22, and a23 may each independently be an integer from 0 to 3,

    • wherein the sum of a11, a12, a13, a21, a22, and a23 may be 1 or more,

    • when a11 is 0, *-(L11)a11-*′ may be a single bond,

    • when a12 is 0, *-(L12)a12-*′ may be a single bond,

    • when a13 is 0, *-(L13)a13-*′ may be a single bond,

    • when a21 is 0, *-(L21)a21-*′ may be a single bond,

    • when a22 is 0, *-(L22)a22-*′ may be a single bond, and

    • when a23 is 0, *-(L23)a23-*′ may be a single bond,

    • a4 may be an integer from 1 to 3,

    • * may indicate a binding site to a neighboring atom,

    • R10a, R10aa, R10ab, and R10ac may each independently be:

    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;

    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;

    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, or a C6-C60 arylthio group, each unsubstituted or substituted with deuterium, —F, —C1, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or

    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32), and

    • Q1 to Q2, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.





In the light-emitting device according to an embodiment, the interlayer may include the heterocyclic compound represented by Formula 1.


In the light-emitting device according to an embodiment, the emission layer may include the heterocyclic compound represented by Formula 1, and the emission layer may further include a fluorescent dopant or a phosphorescent dopant.


In the light-emitting device according to an embodiment, the first electrode may be an anode, the second electrode may be a cathode,


the interlayer may further include a hole transport region arranged between the first electrode and the emission layer and an electron transport region arranged between the emission layer and the second electrode,


the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, and


the electron transport region may include a hole blocking layer, an electron transport layer, an electron injection layer, or any combination thereof.


In the light-emitting device according to an embodiment, the hole transport region may include the heterocyclic compound represented by Formula 1.


In the light-emitting device according to an embodiment, the electron transport region may include the heterocyclic compound represented by Formula 1.


In the light-emitting device according to an embodiment, the emission layer may be to emit blue light.


The light-emitting device according to an embodiment may further include a first capping layer and/or a second capping layer, the first capping layer may be located on one surface of the first electrode, and the second capping layer may be located on one surface of the second electrode.


In the light-emitting device according to an embodiment, at least one of the first capping layer or the second capping layer may include the heterocyclic compound represented by Formula 1.


Also, an electronic apparatus may include the light-emitting device according to any one of embodiments.


The electronic apparatus according to an embodiment may further include

    • a thin-film transistor,
    • the thin-film transistor may include a source electrode and a drain electrode, and
    • the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode of the thin-film transistor.


The electronic apparatus according to an embodiment may further include


a color filter, a color-conversion layer, a touch screen layer, a polarizing layer, or any combination thereof.


Also, according to one or more embodiments, a heterocyclic compound represented by Formula 1 is provided.




embedded image


In Formula 1,

    • X1 may be C(R10aa) or N,
    • X2 may be C(R10ab) or N,
    • X3 may be C(R10ac) or N,
    • at least one of X1 to X3 may be N,
    • L1 to L3 may each independently be a C3-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • a1 to a3 may each independently be an integer from 0 to 3,
    • wherein, when a1 is 0, *-(L1)a1-*′ may be a single bond,
    • when a2 is 0, *-(L2)a2-*′ may be a single bond, and
    • when a3 is 0, *-(L3)a3*′ may be a single bond,
    • Ar1 may be a group represented by Formula 1-1, and
    • Ar2 to Ar3 may each independently be a C3-C30 carbocyclic group that is unsubstituted or substituted with R10a or a π electron-rich C3-C60 cyclic group that is unsubstituted or substituted with R10a,




embedded image




    • in Formula 1-1,

    • Y1 and Y2 may each independently be C, Si, or Ge,

    • Ar11, Ar12, Ar13, Ar21, Ar22, Ar23, L11, L12, L13, L21, L22, L23, and L4 may each independently be a C3-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a,

    • a11, a12, a13, a21, a22, and a23 may each independently be an integer from 0 to 3,

    • wherein the sum of a11, a12, a13, a21, a22, and a23 may be 1 or more,

    • when a11 is 0, *-(L11)a11-*′ may be a single bond,

    • when a12 is 0, *-(L12)a12-*′ may be a single bond,

    • when a13 is 0, *-(L13)a13-*′ may be a single bond,

    • when a21 is 0, *-(L21)a21-*′ may be a single bond,

    • when a22 is 0, *-(L22)a22-*′ may be a single bond, and

    • when a23 is 0, *-(L23)a23-*′ may be a single bond,

    • a4 may be an integer from 1 to 3,

    • * may indicate a binding site to a neighboring atom,

    • R10a, R10aa, R10ab, and R10ac may each independently be:

    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;

    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;

    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, or a C6-C60 arylthio group, each unsubstituted or substituted with deuterium, —F, —C1, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or

    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32), and

    • Q1 to Q2, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.





In the heterocyclic compound according to an embodiment,

    • i) each of X1 to X3 may be N;
    • ii) X1 may be C(R10aa), X2 may be N, and X3 may be N;
    • iii) X1 may be N, X2 may be C(R10ab), and X3 may be N;
    • iv) X1 may be N, X2 may be N, and X3 may be C(R10ac);
    • v) X1 may be C(R10aa), X2 may be C(R10ab), and X3 may be N;
    • vi) X1 may be C(R10aa), X2 may be N, and X3 may be C(R10ac); or
    • vii) X1 may be N, X2 may be C(R10ab), and X3 may be C(R10ac).


In the heterocyclic compound according to an embodiment,

    • L1 to L3 may each independently be a divalent linking group of a benzene group or a divalent linking group of a naphthalene group.


In the heterocyclic compound according to an embodiment,

    • L4 may be a trivalent linking group of a benzene group or a trivalent linking group of a naphthalene group.


In the heterocyclic compound according to an embodiment,

    • L1 to L3 may each independently be a group represented by one of Formulae 1-5-1 to 1-5-3,




embedded image




    • wherein, in Formulae 1-5-1 to 1-5-3,

    • * and *′ may each indicate a binding site to a neighboring atom.





In the heterocyclic compound according to an embodiment,

    • L4 may be a group represented by one of Formulae 1-5-4 to 1-5-6




embedded image




    • wherein, in Formulae 1-5-4 to 1-5-6,

    • *, *′, and *″ may each indicate a binding site to a neighboring atom.





In the heterocyclic compound according to an embodiment,

    • i) each of a1 to a3 may be 1;
    • ii) a1 may be 0, and each of a2 and a3 may be 1;
    • iii) a2 may be 0, and each of a1 and a3 may be 1;
    • iv) a3 may be 0, and each of a1 and a2 may be 1;
    • v) each of a1 and a2 may be 0, and a3 may be 1;
    • vi) each of a1 and a3 may be 0, and a2 may be 1; or
    • vii) each of a2 and a3 may be 0, and a1 may be 1.


In the heterocyclic compound according to an embodiment,

    • in Formula 1-1,
    • Ar11 to Ar13 may all be identical to each other, or two of Ar11 to Ar13 may be identical to each other.


In the heterocyclic compound according to an embodiment,

    • in Formula 1-1,
    • Ar11 to Ar13 may be different from each other.


In the heterocyclic compound according to an embodiment,

    • in Formula 1-1,
    • Ar21 to Ar23 may all be identical to each other, or two of Ar21 to Ar23 may be identical to each other.


In the heterocyclic compound according to an embodiment,

    • in Formula 1-1,
    • Ar21 to Ar23 may be different from each other.


In the heterocyclic compound according to an embodiment,

    • in Formula 1-1,
    • two or more of Ar11 to Ar13 and Ar21 to Ar23 may be identical to each other. In an embodiment, one of Ar11 to Ar13 and one of Ar21 to Ar23 may be identical to each other. In an embodiment, Ar11 and Ar21 may be identical to each other, Ar12 and Ar22 may be identical to each other, or Ar13 and Ar23 may be identical to each other.


In the heterocyclic compound according to an embodiment,

    • in Formula 1-1,
    • Ar11 to Ar13 and Ar21 to Ar23 may each independently be a benzene group, a naphthalene group, or a biphenyl group.


In the heterocyclic compound according to an embodiment,

    • in Formula 1-1,
    • i) the sum of a11 to a13 may be 1 or more, and the sum of a21 to a23 may be 0,
    • ii) the sum of a11 to a13 may be 0, and the sum of a21 to a23 may be 1 or more, or
    • iii) the sum of a11 to a13 may be 1 or more, and the sum of a21 to a23 may be 1 or more.


In the heterocyclic compound according to an embodiment,

    • in Formula 1-1


      a moiety represented by




embedded image


a moiety represented by




embedded image


a moiety represented by




embedded image


a moiety represented by




embedded image


a moiety represented by




embedded image


and a moiety represented by




embedded image


may each independently be a benzene group or a group represented by one of Formulae 1-1-1 to 1-1-19,




embedded image


embedded image


embedded image


embedded image




    • wherein, in Formulae 1-1-1 to 1-1-19,


    • custom-character may indicate a binding site to a neighboring atom.





In the heterocyclic compound according to an embodiment,

    • Ar2 or Ar3 may be a carbazole group that is unsubstituted or substituted with at least one R10a.


In the heterocyclic compound according to an embodiment,


the other one of Ar2 and Ar3 that is not the carbazole group may be a benzene group or a group represented by one of Formulae 1-6-1 to 1-6-3,




embedded image




    • wherein, in Formulae 1-6-1 to 1-6-3,

    • *″ may indicate a binding site to a neighboring atom.





In the heterocyclic compound according to an embodiment,


Ar2 and Ar3 may each independently be a carbazole group that is unsubstituted or substituted with at least one R10a.


In the heterocyclic compound according to an embodiment,

    • R10a substituted in the carbazole group may be an isopropane group, an isobutane group, a secbutane group, a tertbutane group, an isopentane group, a secpentane group, a tertpentane group, a neopentane group, or a benzene group.


The heterocyclic compound according to an embodiment may have a degree of deuteration of about 1% or more, for example, about 15% or more, or, about 25% or more. By satisfying these ranges, chemical decomposition of the heterocyclic compound may be delayed in the process of hole and/or electron transfer, and lifespan characteristics of a light-emitting device including the heterocyclic compound may be improved.


The degree of deuteration may be calculated by dividing the number of deuterium atoms chemically bonded to the heterocyclic compound by the total number of hydrogen atoms and deuterated atoms, which are bonded to the heterocyclic compound. In an embodiment, a degree of deuteration of a benzene group (CH5D) in which one deuterium is substituted is about 16.67%.


In the heterocyclic compound according to an embodiment,

    • a C3-C30 carbocyclic group may be a norbornane group, a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indeno phenanthrene group, an indenoanthracene group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, a bicyclo[2.2.2]octyl group, a (C1-C20 alkyl)bicyclo[1.1.1]pentyl group, a (C1-C20 alkyl)bicyclo[2.1.1]hexyl group, a (C1-C20 alkyl)bicyclo[2.2.2]octyl group, a mono(C1-C20 alkyl)adamantanyl group, a di(C1-C20 alkyl)adamantanyl group, a mono(C1-C20 alkyl)norbornanyl group, a di(C1-C20 alkyl)norbornanyl group, a mono(C1-C20 alkyl)norbornenyl group, a di(C1-C20 alkyl)norbornenyl group, or a biphenyl group, and
    • a C1-C30 heterocyclic group may be a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoiso-indole group, a naphthoiso-indole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, or an azadibenzofuran group.


In the heterocyclic compound according to an embodiment,


the π electron-rich C3-C60 cyclic group may be a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoiso-indole group, a naphthoiso-indole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, or a benzothienodibenzothiophene group.


In an embodiment, the heterocyclic compound represented by Formula 1 may be at least one of Compounds 1 to 210.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The heterocyclic compound represented by Formula 1 has a molecular structure with large steric hindrance by including a group represented by Formula 1-1, and the formation of an exciplex between the heterocyclic compound represented by Formula 1 and the dopant may be limited. Also, the heterocyclic compound as described above may maintain an optimal or suitable intermolecular density by including at least one biphenyl group, and chemical decomposition of the heterocyclic compound according to the movement of electrons or holes may be further delayed.


Furthermore, substituents in Formula 1-1, Ar2, and Ar3 may be identical to or different from each other, and thus, the highest occupied molecular orbital (HOMO) energy level, the lowest unoccupied molecular orbital (LUMO) energy level, and/or the energy gap between HOMO-LUMO energy levels of the heterocyclic compound represented by Formula 1 may be finely adjusted.


As a result, hole mobility and electron mobility may be improved, energy transfer efficiency to a dopant may be improved, and an electronic device, for example, an organic light-emitting device, including the heterocyclic compound may have excellent or suitable color coordinates, low driving voltage, high efficiency, and/or long lifespan.


Methods of synthesizing the heterocyclic compound represented by Formula 1 may be easily understood by those of ordinary skill in the art by referring to Synthesis Examples and Examples described herein.


At least one heterocyclic compound represented by Formula 1 may be utilized in a light-emitting device (for example, an organic light-emitting device). Accordingly, a light-emitting device may include: a first electrode; a second electrode facing the first electrode; an interlayer located between the first electrode and the second electrode and including an emission layer; and a heterocyclic compound represented by Formula 1 as described herein.


In an embodiment,

    • the first electrode of the light-emitting device may be an anode,
    • the second electrode of the light-emitting device may be a cathode,
    • the interlayer may further include a hole transport region arranged between the first electrode and the emission layer and an electron transport region arranged between the emission layer and the second electrode,
    • the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, and
    • the electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In an embodiment, the heterocyclic compound may be included between the first electrode and the second electrode of the light-emitting device. Accordingly, the heterocyclic compound may be included in the interlayer of the light-emitting device, for example, in the emission layer of the interlayer.


In an embodiment, the emission layer of the interlayer of the light-emitting device may include a dopant and a host, and the heterocyclic compound may be included in the host. In other words, the heterocyclic compound may act (e.g., serve) as a host. The emission layer may be to emit red light, green light, blue light, and/or white light. In an embodiment, the emission layer may be to emit blue light. The blue light may have a maximum emission wavelength in a range of, for example, about 400 nm to about 490 nm.


In an embodiment, the emission layer of the interlayer of the light-emitting device may include a dopant and a host, and the heterocyclic compound may be included in the host, and the dopant may be to emit blue light. In an embodiment, the dopant may include a transition metal and m ligand(s), m may be an integer from 1 to 6, the m ligand(s) may be identical to or different from each other, at least one of the m ligand(s) may be bound to the transition metal via a carbon-transition metal bond, and the carbon-transition metal bond may be a coordinate bond. For example, at least one of the m ligand(s) may be a carbene ligand (for example, the dopant may include Ir(pmp)3 and/or the like). The transition metal may be, for example, iridium, platinum, osmium, palladium, rhodium, or gold. The emission layer and the dopant may respectively be the same as described herein.




embedded image


In an embodiment, the light-emitting device may include a capping layer located outside the first electrode or located outside the second electrode.


In an embodiment, the light-emitting device may further include at least one of a first capping layer located outside the first electrode or a second capping layer located outside the second electrode, and at least one of the first capping layer or the second capping layer may include the heterocyclic compound represented by Formula 1. The first capping layer and/or the second capping layer may respectively be the same as described herein.


In an embodiment, the light-emitting device may include:

    • a first capping layer located outside the first electrode (e.g., facing away from the second electrode) and including the heterocyclic compound represented by Formula 1;
    • a second capping layer located outside the second electrode (e.g., facing away from the first electrode) and including the heterocyclic compound represented by Formula 1; or
    • both the first capping layer and the second capping layer.


The expression “(interlayer and/or capping layer) includes at least one heterocyclic compound” as utilized herein may refer to that the (interlayer and/or capping layer) may include one kind of the heterocyclic compound represented by Formula 1 or two or more different kinds of heterocyclic compounds, each represented by Formula 1.


In an embodiment, the interlayer and/or capping layer may include only Compound 1 as the heterocyclic compound. In this regard, Compound 1 may be present in the emission layer of the light-emitting device. In an embodiment, the interlayer may include, as the heterocyclic compound, Compound 1 and Compound 2. In this regard, Compound 1 and Compound 2 may be present in substantially the same layer (for example, both Compound 1 and Compound 2 may be present in the emission layer), or may be present in different layers (for example, Compound 1 may be present in the emission layer, and Compound 2 may be present in the electron transport region).


The term “interlayer” as utilized herein refers to a single layer and/or all of a plurality of layers arranged between the first electrode and the second electrode of the light-emitting device.


According to one or more embodiments, an electronic apparatus includes the light-emitting device. The electronic apparatus may further include a thin-film transistor. In an embodiment, the electronic apparatus may further include a thin-film transistor including a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode. In an embodiment, the electronic apparatus may further include a color filter, a color-conversion layer, a touch screen layer, a polarizing layer, or any combination thereof. The electronic apparatus may be the same as described in the present specification.


Description of FIG. 1


FIG. 1 is a schematic cross-sectional view of a light-emitting device 10 according to an embodiment of the disclosure. The light-emitting device 10 includes a first electrode 110, an interlayer 130, and a second electrode 150.


Hereinafter, a structure of the light-emitting device 10 according to an embodiment and a method of manufacturing the light-emitting device 10 will be described in connection with FIG. 1.


First Electrode 110

In FIG. 1, a substrate may be additionally located under the first electrode 110 or above the second electrode 150. In an embodiment, as the substrate, a glass substrate and/or a plastic substrate may be utilized. In an embodiment, the substrate may be a flexible substrate, and may include one or more plastics with excellent or suitable heat resistance and durability, such as polyimide, polyethylene terephthalate (PET), polycarbonate, polyethylene naphthalate, polyarylate (PAR), polyetherimide, or any combination thereof.


The first electrode 110 may be formed by, for example, depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high work function material to facilitate injection of holes.


The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. When the first electrode 110 is a transmissive electrode, the material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or any combination thereof. In an embodiment, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, the material for forming the first electrode 110 may include magnesium (Mg), silver (Ag), aluminum (AI), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof.


The first electrode 110 may have a single-layered structure consisting of a single layer, or a multilayer structure including a plurality of layers. In an embodiment, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO.


Interlayer 130

The interlayer 130 is located on the first electrode 110. The interlayer 130 includes an emission layer.


The interlayer 130 may further include a hole transport region located between the first electrode 110 and the emission layer and an electron transport region located between the emission layer and the second electrode 150.


The interlayer 130 may further include a metal-containing compound such as an organometallic compound, an inorganic material such as a quantum dot, and/or the like, in addition to one or more suitable organic materials.


In an embodiment, the interlayer 130 may include, i) two or more emitting (e.g., light-emitting) units sequentially stacked between the first electrode 110 and the second electrode 150, and ii) a charge generation layer located between the two or more emitting units. When the interlayer 130 includes the two or more emitting units and the charge generation layer as described above, the light-emitting device 10 may be a tandem light-emitting device.


Hole Transport Region in Interlayer 130

The hole transport region may have: i) a single-layered structure consisting of a single layer consisting of a single material; ii) a single-layered structure consisting of a single layer including (e.g., consisting of) a plurality of different materials; or iii) a multilayer structure including a plurality of layers including different materials.


The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof.


In an embodiment, the hole transport region may have a multilayer structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, with the constituting layers of each structure being stacked sequentially from the first electrode 110 in the respective stated order.


The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof:




embedded image




    • wherein, in Formulae 201 and 202,

    • L201 to L204 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,

    • L205 may be *—O—*′, *—S—*′, *—N(Q201)-*′, a C1-C20 alkylene group that is unsubstituted or substituted with at least one R10a, a C2-C20 alkenylene group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,

    • xa1 to xa4 may each independently be an integer from 0 to 5,

    • xa5 may be an integer from 1 to 10,

    • R201 to R204 and 0201 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,

    • R201 and R202 may optionally be linked to each other via a single bond, a C1-C5 alkylene group that is unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group that is unsubstituted or substituted with at least one R10a to form a C8-C60 polycyclic group (for example, a carbazole group) that is unsubstituted or substituted with at least one R10a (for example, see Compound HT16),

    • R203 and R204 may optionally be linked to each other via a single bond, a C1-C5 alkylene group that is unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group that is unsubstituted or substituted with at least one R10a to form a C8-C60 polycyclic group that is unsubstituted or substituted with at least one R10a, and

    • na1 may be an integer from 1 to 4.





In an embodiment, Formulae 201 and 202 may each include at least one of the groups represented by Formulae CY201 to CY217:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




    • wherein, in Formulae CY201 to CY217, R10b and R10c may each independently be the same as described in connection with R10a, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formulae CY201 to CY217 may be unsubstituted or substituted with R10a.





In an embodiment, ring CY201 to ring CY204 in Formulae CY201 to CY217 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.


In an embodiment, Formulae 201 and 202 may each include at least one of the groups represented by Formulae CY201 to CY203.


In an embodiment, Formula 201 may include at least one of the groups represented by Formulae CY201 to CY203 and at least one of the groups represented by Formulae CY204 to CY217.


In an embodiment, xa1 in Formula 201 may be 1, R201 may be a group represented by one of Formulae CY201 to CY203, xa2 may be 0, and R202 may be a group represented by one of Formulae CY204 to CY207.


In an embodiment, each of Formulae 201 and 202 may not include (e.g., may exclude) any of the groups represented by Formulae CY201 to CY203.


In an embodiment, each of Formulae 201 and 202 may not include (e.g., may exclude) any of the groups represented by Formulae CY201 to CY203, and may include at least one of the groups represented by Formulae CY204 to CY217.


In an embodiment, each of Formulae 201 and 202 may not include (e.g., may exclude) any of the groups represented by Formulae CY201 to CY217.


In an embodiment, the hole transport region may include at least one of Compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzene sulfonic acid (PANI/DBSA), poly(3,4-ethylene dioxythiophene)/poly(4-styrene sulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrene sulfonate) (PANI/PSS), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å, for example, about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or any combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, for example, about 100 Å to about 1,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer and the hole transport layer are within these ranges, satisfactory hole-transporting characteristics may be obtained without a substantial increase in driving voltage.


The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by an emission layer, and the electron blocking layer may block or reduce the leakage of electrons from the emission layer to the hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron blocking layer.


p-Dopant


The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties. The charge-generation material may be uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer consisting of the charge-generation material).


The charge-generation material may be, for example, a p-dopant.


In an embodiment, the LUMO energy level of the p-dopant may be about −3.5 eV or less.


In an embodiment, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound including an element EL1 and an element EL2 (to be described in more detail below), or any combination thereof.


Examples of the quinone derivative may include TCNQ, F4-TCNQ, and/or the like.


Examples of the cyano group-containing compound may include HAT-CN, a compound represented by Formula 221, and/or the like.




embedded image


In Formula 221,


R221 to R223 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, and


at least one of R221 to R223 may each independently be: a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each substituted with: a cyano group; —F; —Cl; —Br; —I; a C1-C20 alkyl group that is substituted with a cyano group, —F, —Cl, —Br, —I, or any combination thereof; or any combination thereof.


In the compound including the element EL1 and the element EL2, the element EL1 may be a metal, a metalloid, or any combination thereof, and the element EL2 may be a non-metal, a metalloid, or any combination thereof.


Examples of the metal may include an alkali metal (for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); an alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); a transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); a post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), etc.); and a lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.).


Examples of the metalloid may include silicon (Si), antimony (Sb), and tellurium (Te).


Examples of the non-metal may include oxygen (O) and halogen (for example, F, Cl, Br, I, etc.).


In an embodiment, examples of the compound containing the element EL1 and the element EL2 may include a metal oxide, a metal halide (for example, a metal fluoride, a metal chloride, a metal bromide, or a metal iodide), a metalloid halide (for example, a metalloid fluoride, a metalloid chloride, a metalloid bromide, and/or a metalloid iodide), a metal telluride, or any combination thereof.


Examples of the metal oxide may include a tungsten oxide (for example, WO, W2O3, WO2, WO3, W2O5, etc.), a vanadium oxide (for example, VO, V2O3, VO2, V2O5, etc.), a molybdenum oxide (MoO, Mo2O3, MoO2, MoO3, Mo2O5, etc.), and a rhenium oxide (for example, ReO3, etc.).


Examples of the metal halide may include an alkali metal halide, an alkaline earth metal halide, a transition metal halide, a post-transition metal halide, and a lanthanide metal halide.


Examples of the alkali metal halide may include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, and CsI.


Examples of the alkaline earth metal halide may include BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2), SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, BeI2, MgI2, CaI2, SrI2, and BaI2.


Examples of the transition metal halide may include a titanium halide (for example, TiF4, TiCl4, TiBr4, Til4, etc.), a zirconium halide (for example, ZrF4, ZrCl4, ZrBr4, ZrI4, etc.), a hafnium halide (for example, HfF4, HfCl4, HfBr4, Hfl4, etc.), a vanadium halide (for example, VF3, VCl3, VBr3, VI3, etc.), a niobium halide (for example, NbF3, NbCl3, NbBr3, NbI3, etc.), a tantalum halide (for example, TaF3, TaCl3, TaBr3, TaI3, etc.), a chromium halide (for example, CrF3, CrCl3, CrBr3, CrI3, etc.), a molybdenum halide (for example, MoF3, MoCl3, MoBr3, MoI3, etc.), a tungsten halide (for example, WF3, WCl3, WBr3, WI3, etc.), a manganese halide (for example, MnF2, MnCl2, MnBr2, MnI2, etc.), a technetium halide (for example, TcF2, TcCl2, TcBr2, TcI2, etc.), a rhenium halide (for example, ReF2, ReCl2, ReBr2, ReI2, etc.), an iron halide (for example, FeF2, FeCl2, FeBr2, FeI2, etc.), a ruthenium halide (for example, RuF2, RuCl2, RuBr2, Rul2, etc.), an osmium halide (for example, OsF2, OsCl2, OsBr2, OsI2, etc.), a cobalt halide (for example, CoF2, CoCl2, CoBr2, CoI2, etc.), a rhodium halide (for example, RhF2, RhCl2, RhBr2, Rhl2, etc.), an iridium halide (for example, IrF2, IrCl2, IrBr2, IrI2, etc.), a nickel halide (for example, NiF2, NiCl2, NiBr2, Nil2, etc.), a palladium halide (for example, PdF2, PdCl2, PdBr2, PdI2, etc.), a platinum halide (for example, PtF2, PtCl2, PtBr2, PtI2, etc.), a copper halide (for example, CuF, CuCl, CuBr, CuI, etc.), a silver halide (for example, AgF, AgCl, AgBr, AgI, etc.), and a gold halide (for example, AuF, AuCl, AuBr, AuI, etc.).


Examples of the post-transition metal halide may include a zinc halide (for example, ZnF2, ZnCl2, ZnBr2, ZnI2, etc.), an indium halide (for example, InI3, etc.), and a tin halide (for example, SnI2, etc.).


Examples of the lanthanide metal halide may include YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3, SmC13, YbBr, YbBr2, YbBr3, SmBr3, YbI, YbI2, YbI3, and SmI3.


Examples of the metalloid halide may include an antimony halide (for example, SbCl5, etc.).


Examples of the metal telluride may include an alkali metal telluride (for example, Li2Te, Na2Te, K2Te, Rb2Te, Cs2Te, etc.), an alkaline earth metal telluride (for example, BeTe, MgTe, CaTe, SrTe, BaTe, etc.), a transition metal telluride (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), a post-transition metal telluride (for example, ZnTe, etc.), and a lanthanide metal telluride (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.).


Emission layer in interlayer 130


When the light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a sub-pixel. In an embodiment, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers may contact each other or may be separated from each other. In an embodiment, the emission layer may include two or more materials of a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials may be mixed with each other in a single layer to emit white light.


The emission layer may include a host and a dopant. The dopant may include a phosphorescent dopant, a fluorescent dopant, or any combination thereof.


An amount of the dopant in the emission layer may be about 0.01 wt % to about 15 wt % based on 100 wt % of the host.


In an embodiment, the emission layer may include a quantum dot.


In an embodiment, the emission layer may include a delayed fluorescence material. The delayed fluorescence material may act (e.g., serve) as a host or as a dopant in the emission layer.


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer is within these ranges, excellent or suitable light-emission characteristics may be obtained without a substantial increase in driving voltage.


Host

The host may include a compound represented by Formula 301:





[Ar301]xb11-[(L301)xb1-R301]xb21  Formula 301

    • wherein, in Formula 301,
    • Ar301 and L301 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • xb11 may be 1, 2, or 3,
    • xb1 may be an integer from 0 to 5,
    • R301 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group that is unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)(Q301), or —P(═O)(Q301)(Q302),
    • xb21 may be an integer from 1 to 5, and
    • Q301 to Q303 may each independently be the same as described in connection with Q1.


In an embodiment, when xb11 in Formula 301 is 2 or more, two or more Ar301(s) may be linked to each other via a single bond.


In an embodiment, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or any combination thereof:




embedded image




    • wherein, in Formulae 301-1 and 301-2,

    • ring A301 to ring A304 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,

    • X301 may be O, S, N-[(L304)xb4-R304], C(R304)(R305), or Si(R304)(R305),

    • xb22 and xb23 may each independently be 0, 1, or 2,

    • L301, xb1, and R301 may each independently be the same as respectively described in the present specification,

    • L302 to L304 may each independently be the same as described in connection with L301,

    • xb2 to xb4 may each independently be the same as described in connection with xb1, and

    • R302 to R305 and R311 to R314 may each independently be the same as described in connection with R301.





In an embodiment, the host may include an alkaline earth metal complex, a post-transition metal complex, or any combination thereof. In an embodiment, the host may include a Be complex (for example, Compound H55), an Mg complex, a Zn complex, or any combination thereof.


In an embodiment, the host may include at least one of Compounds H1 to H124, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Phosphorescent Dopant

The phosphorescent dopant may include at least one transition metal as a central metal (e.g., a central metal atom).


The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or any combination thereof.


The phosphorescent dopant may be electrically neutral.


In an embodiment, the phosphorescent dopant may include an organometallic compound represented by Formula 401:





M(L401)xc1(L402)xc2  Formula 401




embedded image




    • wherein, in Formulae 401 and 402,

    • M may be a transition metal (for example, iridium (Ir), palladium (Pd), osmium (Os), titanium (Ti), gold (Au), hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), rhenium (Re), or thulium (Tm)),

    • L401 may be a ligand represented by Formula 402, and xc1 may be 1, 2, or 3, wherein, when xc1 is two or more, two or more L401(s) may be identical to or different from each other,

    • L402 may be an organic ligand, and xc2 may be 0, 1, 2, 3, or 4, wherein, when xc2 is 2 or more, two or more L402(s) may be identical to or different from each other,

    • X401 and X402 may each independently be nitrogen or carbon,

    • ring A401 and ring A402 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group,

    • T401 may be a single bond, *—O—*′, *—S—*′, *—C(═O)—*′, *—N(Q411)-*′ *—C(Q411)(Q412)-*′, *—C(Q411)=C(Q412)-*′, *—C(Q411)=*′, or *═C═*′,

    • X403 and X404 may each independently be a chemical bond (for example, a covalent bond or a coordinate bond), O, S, N(Q413), B(Q413), P(Q413), C(Q413)(0414), or Si(Q413)(Q414),

    • Q411 to Q414 may each independently be the same as described in connection with Q1,

    • R401 and R402 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group that is unsubstituted or substituted with at least one R10a, a C1-C20 alkoxy group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, —Si(Q401)(0402)(0403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), or —P(═O)(Q401)(Q402),

    • Q401 to Q403 may each independently be the same as described in connection with Q1,

    • xc11 and xc12 may each independently be an integer from 0 to 10, and

    • * and *′ in Formula 402 may each indicate a binding site to M in Formula 401.





In an embodiment, in Formula 402, i) X401 may be nitrogen, and X402 may be carbon, or ii) each of X401 and X402 may be nitrogen.


In an embodiment, when xc1 in Formula 402 is 2 or more, two ring A401 in two or more L401(s) may be optionally linked to each other via T402, which is a linking group, and/or two ring A402 may optionally be linked to each other via T403, which is a linking group. T402 and T403 may each independently be the same as described in connection with T401.


L402 in Formula 401 may be an organic ligand. In an embodiment, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), an isonitrile group, —CN group, a phosphorus group (for example, a phosphine group, a phosphite group, etc.), or any combination thereof.


The phosphorescent dopant may include, for example, at least one of compounds PD1 to PD25 or any combination thereof:




embedded image


embedded image


embedded image


embedded image


Fluorescent Dopant

The fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or any combination thereof.


In an embodiment, the fluorescent dopant may include a compound represented by Formula 501:




embedded image




    • wherein, in Formula 501,

    • Ar501, L501 to L503, R501, and R502 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,

    • xd1 to xd3 may each independently be 0, 1, 2, or 3, and

    • xd4 may be 1, 2, 3, 4, 5, or 6.





In an embodiment, Ar501 in Formula 501 may be a condensed cyclic group (for example, an anthracene group, a chrysene group, or a pyrene group) in which three or more monocyclic groups are condensed together.


In an embodiment, xd4 in Formula 501 may be 2.


In an embodiment, the fluorescent dopant may include: at least one of Compounds FD1 to FD36; DPVBi; DPAVBi; or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Delayed Fluorescence Material

The emission layer may include a delayed fluorescence material.


In the present specification, the delayed fluorescence material may be selected from compounds capable of emitting delayed fluorescence based on a delayed fluorescence emission mechanism.


The delayed fluorescence material included in the emission layer may act (e.g., serve) as a host or a dopant depending on the type or kind of other materials included in the emission layer.


In an embodiment, the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material may be greater than or equal to about 0 eV and less than or equal to about 0.5 eV. When the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material satisfies the above-described range, up-conversion from the triplet state to the singlet state of the delayed fluorescence materials may occur effectively, and thus, the luminescence efficiency of the light-emitting device 10 may be improved.


In an embodiment, the delayed fluorescence material may include i) a material including at least one electron donor (for example, a π electron-rich C3-C60 cyclic group, such as a carbazole group) and at least one electron acceptor (for example, a sulfoxide group, a cyano group, and/or a π electron-deficient nitrogen-containing C1-C60 cyclic group), and/or ii) a material including a C8-C60 polycyclic group in which two or more cyclic groups are condensed (e.g., fused to each other) while sharing boron (B).


Examples of the delayed fluorescence material may include at least one of Compounds DF1 to DF9:




embedded image


embedded image


embedded image


Quantum Dot

The emission layer may include a quantum dot.


In the present specification, a quantum dot refers to a crystal of a semiconductor compound, and may include any suitable material capable of emitting light of various emission wavelengths according to the size of the crystal.


A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.


The quantum dot may be synthesized by a wet chemical process, a metal organic (e.g., organometallic) chemical vapor deposition process, a molecular beam epitaxy process, or any process similar thereto.


In the wet chemical process, a precursor material is mixed with an organic solvent to grow a quantum dot particle crystal. As the crystal grows, the organic solvent naturally acts (e.g., serves) as a dispersant coordinated on the surface of the quantum dot crystal and controls the growth of the crystal so that the growth of quantum dot particles may be controlled or selected through a process which is more easily performed than vapor deposition methods, such as metal organic chemical vapor deposition (MOCVD) and/or molecular beam epitaxy (MBE), and which has a lower cost.


The quantum dot may include: a Group II-VI semiconductor compound; a Group III-V semiconductor compound; a Group III-VI semiconductor compound; a Group I—III-VI semiconductor compound; a Group IV-VI semiconductor compound; a Group IV element or compound; or any combination thereof.


Examples of the Group II-VI semiconductor compound may include: a binary compound, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, and/or MgS; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, and/or MgZnS; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, and/or HgZnSTe; or any combination thereof.


Examples of the Group III-V semiconductor compound may include: a binary compound, such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, and/or InSb; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, and/or InPSb; a quaternary compound, such as GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, and/or InAlPSb; or any combination thereof. In an embodiment, the Group III-V semiconductor compound may further include Group II elements. Examples of the Group III-V semiconductor compound further including Group II elements may include InZnP, InGaZnP, InAlZnP, and/or the like.


Examples of the Group III-VI semiconductor compound may include: a binary compound, such as GaS, GaSe, Ga2Se3, GaTe, InS, InSe, In2S3, In2Se3, and/or InTe; a ternary compound, such as InGaS3, and/or InGaSe3; or any combination thereof.


Examples of the Group I—III-VI semiconductor compound may include: a ternary compound, such as AgInS, AgInS2, CulnS, CulnS2, CuGaO2, AgGaO2, AgAIO2, or any combination thereof.


Examples of the Group IV-VI semiconductor compound may include: a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, and/or the like; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, and/or the like; a quaternary compound, such as SnPbSSe, SnPbSeTe, SnPbSTe, and/or the like; or any combination thereof.


The Group IV element or compound may include: a single element compound, such as Si and/or Ge; a binary compound, such as SiC and/or SiGe; or any combination thereof.


Each element included in a multi-element compound such as the binary compound, ternary compound and/or quaternary compound, may exist in a particle thereof with a substantially uniform concentration or non-uniform concentration.


In an embodiment, the quantum dot may have a single structure or a dual core-shell structure. In the case of the quantum dot having a single structure, the concentration of each element included in the corresponding quantum dot may be substantially uniform. In an embodiment, in a quantum dot with a core-shell structure, the material contained in the core and the material contained in the shell may be different from each other.


The shell of the quantum dot may act (e.g., serve) as a protective layer to prevent or reduce chemical degeneration of the core to maintain semiconductor characteristics and/or as a charging layer to impart electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multi-layer. The element presented in the interface between the core and the shell of the quantum dot may have a concentration gradient with its concentration decreases toward the center of the quantum dot.


Examples of the material for forming the shell of the quantum dot may include an oxide of metal, metalloid, or non-metal, a semiconductor compound, or any combination thereof. Examples of the oxide of metal, metalloid, or non-metal may include: a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, and/or NiO; a ternary compound, such as MgA12O4, CoFe2O4, NiFe2O4, and/or CoMn2O4; or any combination thereof. Examples of the semiconductor compound may include, as described herein, a Group II-VI semiconductor compound, a Group III-V semiconductor compound, a Group III-VI semiconductor compound, a Group I—III-VI semiconductor compound, a Group IV-VI semiconductor compound, or any combination thereof. In some embodiments, the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, or any combination thereof.


A full width at half maximum (FWHM) of an emission wavelength spectrum of the quantum dot may be about 45 nm or less, for example, about 40 nm or less, or, about 30 nm or less, and within these ranges, color purity or color reproducibility may be increased. In some embodiments, because the light emitted through the quantum dot is emitted in all directions, the wide viewing angle may be improved.


In some embodiments, the quantum dot may be a spherical particle, a pyramidal particle, a multi-arm particle, a cubic nanoparticle, a nanotube particle, a nanowire particle, a nanofiber particle, or a nanoplate particle. Also, the diameter of the quantum dot may be, for example, a quantum dot particle size.


Because the energy band gap may be adjusted by controlling the size of the quantum dot, light having one or more suitable wavelength bands may be obtained from the quantum dot emission layer. Therefore, by utilizing quantum dots of different sizes, a light-emitting device that emits light of one or more suitable wavelengths may be implemented. In an embodiment, the size of the quantum dot may be selected to emit red, green and/or blue light. In some embodiments, the size of the quantum dot may be configured to emit white light by combining light of one or more suitable colors.


Electron Transport Region in Interlayer 130

The electron transport region may have: i) a single-layered structure consisting of a single layer consisting of a single material, ii) a single-layered structure consisting of a single layer including (e.g., consisting of) a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.


The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In an embodiment, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, with the constituting layers of each structure being sequentially stacked from an emission layer in the respective stated order.


In an embodiment, the electron transport region (for example, the buffer layer, the hole blocking layer, the electron control layer, and/or the electron transport layer in the electron transport region) may include a metal-free compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group.


In an embodiment, the electron transport region may include a compound represented by Formula 601:





[Ar601]xe11-[(L601)xe1-R601]xe21  Formula 601


wherein, in Formula 601,


Ar601 and L601 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,


xe11 may be 1, 2, or 3,


xe1 may be 0, 1, 2, 3, 4, or 5,


R601 may be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Q601), or —P(═O)(Q601)(Q602),


Q601 to Q603 may each independently be the same as described in connection with Q1,


xe21 may be 1, 2, 3, 4, or 5, and


at least one of Ar601, L601, or R601 may each independently be a π electron-deficient nitrogen-containing C1-C60 cyclic group that is unsubstituted or substituted with at least one R10a.


In an embodiment, when xe11 in Formula 601 is 2 or more, two or more Ar601 (s) may be linked to each other via a single bond.


In an embodiment, Ar601 in Formula 601 may be a substituted or unsubstituted anthracene group.


In an embodiment, the electron transport region may include a compound represented by Formula 601-1:




embedded image


wherein, in Formula 601-1,


X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one of X614 to X616 may be N,


L611 to L613 may each independently be the same as described in connection with L601,


xe611 to xe613 may each independently be the same as described in connection with xe1,


R611 to R613 may each independently be the same as described in connection with R601, and


R614 to R616 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a.


In an embodiment, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.


The electron transport region may include at least one of Compounds ET1 to ET45, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAIq, TAZ, NTAZ, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the electron transport region may be about 100 Å to about 5,000 Å, for example, about 160 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, or any combination thereof, the thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be from about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å, and the thickness of the electron transport layer may be from about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. When the thicknesses of the buffer layer, the hole blocking layer, the electron control layer, the electron transport layer and/or the electron transport region are within these ranges, satisfactory electron-transporting characteristics may be obtained without a substantial increase in driving voltage.


The electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or any combination thereof. A metal ion of the alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and a metal ion of the alkaline earth metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may include a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenylbenzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.


In an embodiment, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (LiQ) or ET-D2:




embedded image


The electron transport region may include an electron injection layer to facilitate the injection of electrons from the second electrode 150. The electron injection layer may be in direct contact with the second electrode 150.


The electron injection layer may have: i) a single-layered structure consisting of a single layer consisting of a single material, ii) a single-layered structure consisting of a single layer including (e.g., consisting of) a plurality of different materials, or iii) a multilayer structure including a plurality of layers including different materials.


The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof.


The alkali metal may include L1, Na, K, Rb, Cs, or any combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.


The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may include one or more oxides, halides (for example, fluorides, chlorides, bromides, and/or iodides), and/or tellurides of the alkali metal, the alkaline earth metal, and/or the rare earth metal, or any combination thereof.


The alkali metal-containing compound may include one or more alkali metal oxides (such as Li2O, Cs2O, and/or K2O), alkali metal halides (such as LiF, NaF, CsF, KF, LiI, NaI, CsI, and/or KI), or any combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal compound, such as BaO, SrO, CaO, BaxSri-xO (x is a real number satisfying the condition of 0<x<1), BaxCa1-xO (x is a real number satisfying the condition of 0<x<1), and/or the like. The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or any combination thereof. In an embodiment, the rare earth metal-containing compound may include lanthanide metal telluride. Examples of the lanthanide metal telluride may include LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, and Lu2Te3.


The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include i) one of an ion of the alkali metal, the alkaline earth metal, and the rare earth metal and ii), as a ligand bonded to the metal ion, for example, a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenyl benzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.


The electron injection layer may include (e.g., consist of) an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof, as described above. In an embodiment, the electron injection layer may further include an organic material (for example, a compound represented by Formula 601).


In an embodiment, the electron injection layer may include (e.g., consist of) i) an alkali metal-containing compound (for example, an alkali metal halide), ii) a) an alkali metal-containing compound (for example, an alkali metal halide); and b) an alkali metal, an alkaline earth metal, a rare earth metal, or any combination thereof. For example, the electron injection layer may be a KI:Yb co-deposited layer, a RbI:Yb co-deposited layer, a LiF:Yb co-deposited layer, and/or the like.


When the electron injection layer further includes an organic material, the alkali metal, the alkaline earth metal, the rare earth metal, the alkali metal-containing compound, the alkaline earth metal-containing compound, the rare earth metal-containing compound, the alkali metal complex, the alkaline earth-metal complex, the rare earth metal complex, or any combination thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.


A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, and, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the ranges described above, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.


Second Electrode 150

The second electrode 150 may be located on the interlayer 130 having such a structure. The second electrode 150 may be a cathode, which is an electron injection electrode, and as the material for the second electrode 150, a metal, an alloy, an electrically conductive compound, or any combination thereof, each having a low work function, may be utilized.


In an embodiment, the second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (AI), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, IZO, or any combination thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.


The second electrode 150 may have a single-layered structure or a multilayer structure including two or more layers.


Capping Layer

A first capping layer may be located outside the first electrode 110 (e.g., on the side of the first electrode 110 facing oppositely away from the second electrode 150), and/or a second capping layer may be located outside the second electrode 150 (e.g., on the side of the second electrode 150 facing oppositely away from the first electrode 110). In an embodiment, the light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are sequentially stacked in this stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in this stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in this stated order.


Light generated in the emission layer of the interlayer 130 of the light-emitting device 10 may be extracted (e.g., emitted) toward the outside through the first electrode 110, which may be a semi-transmissive electrode or a transmissive electrode, and the first capping layer or light generated in the emission layer of the interlayer 130 of the light-emitting device 10 may be extracted (e.g., emitted) toward the outside through the second electrode 150, which may be a semi-transmissive electrode or a transmissive electrode, and the second capping layer.


The first capping layer and the second capping layer may increase external emission efficiency according to the principle of constructive interference. Accordingly, the light extraction efficiency of the light-emitting device 10 may be increased, so that the luminescence efficiency of the light-emitting device 10 may be improved.


Each of the first capping layer and second capping layer may include a material having a refractive index (at a wavelength of 589 nm) of 1.6 or more.


The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.


At least one of the first capping layer or the second capping layer may each independently include one or more carbocyclic compounds, heterocyclic compounds, amine group-containing compounds, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, alkali metal complexes, alkaline earth metal complexes, or any combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may be optionally substituted with a substituent containing O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof. In an embodiment, at least one of the first capping layer or the second capping layer may each independently include an amine group-containing compound.


In an embodiment, at least one of the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof.


In an embodiment, at least one of the first capping layer and the second capping layer may each independently include at least one of Compounds HT28 to HT33, at least one of Compounds CP1 to CP6, β-NPB, or any combination thereof:




embedded image


embedded image


Film

The heterocyclic compound represented by Formula 1 may be included in one or more suitable films. Accordingly, according to one or more embodiments, a film including the heterocyclic compound represented by Formula 1 may be provided. The film may be, for example, an optical member (or a light control member) (for example, a color filter, a color-conversion member, a capping layer, a light extraction efficiency enhancement layer, a selective light absorbing layer, a polarizing layer, a quantum dot-containing layer, and/or the like), a light-blocking member (for example, a light reflective layer, a light absorbing layer, and/or the like), and/or a protective member (for example, an insulating layer, a dielectric layer, and/or the like).


Electronic Apparatus

The light-emitting device may be included in one or more suitable electronic apparatuses. In an embodiment, the electronic apparatus including the light-emitting device may be a light-emitting apparatus, an authentication apparatus, and/or the like.


The electronic apparatus (for example, a light-emitting apparatus) may further include, in addition to the light-emitting device, i) a color filter, ii) a color-conversion layer, or iii) a color filter and a color-conversion layer. The color filter and/or the color-conversion layer may be located in at least one traveling direction of light emitted from the light-emitting device. In an embodiment, the light emitted from the light-emitting device may be blue light or white light. The light-emitting device may be the same as described above. In an embodiment, the color-conversion layer may include quantum dots. The quantum dot may be, for example, a quantum dot as described herein.


The electronic apparatus may include a first substrate. The first substrate may include a plurality of subpixel areas, the color filter may include a plurality of color filter areas respectively corresponding to the plurality of subpixel areas, and the color-conversion layer may include a plurality of color-conversion areas respectively corresponding to the plurality of subpixel areas.


A pixel-defining layer may be located among the plurality of subpixel areas to define each of the subpixel areas.


The color filter may further include a plurality of color filter areas and light-shielding patterns located among the plurality of color filter areas, and the color-conversion layer may include a plurality of color-conversion areas and light-shielding patterns located among the plurality of color-conversion areas.


The plurality of color filter areas (or the plurality of color-conversion areas) may include a first area emitting a first color light, a second area emitting a second color light, and/or a third area emitting a third color light, and the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths from one another. In an embodiment, the first color light may be red light, the second color light may be green light, and the third color light may be blue light. In an embodiment, the plurality of color filter areas (or the plurality of color-conversion areas) may include quantum dots. In an embodiment, the first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may not include (e.g., may exclude) any quantum dot. The quantum dot may be the same as described in the present specification. The first area, the second area, and/or the third area may each further include a scatterer.


In an embodiment, the light-emitting device may be to emit a first light, the first area may be to absorb the first light to emit a first first-color light, the second area may be to absorb the first light to emit a second first-color light, and the third area may be to absorb the first light to emit a third first-color light. In this regard, the first first-color light, the second first-color light, and the third first-color light may each have different maximum emission wavelengths. In an embodiment, the first light may be blue light, the first first-color light may be red light, the second first-color light may be green light, and the third first-color light may be blue light.


The electronic apparatus may further include a thin-film transistor in addition to the light-emitting device as described above. The thin-film transistor may include a source electrode, a drain electrode, and an activation layer, wherein the source electrode or the drain electrode may be electrically connected to the first electrode or the second electrode of the light-emitting device.


The thin-film transistor may further include a gate electrode, a gate insulating film, etc.


The activation layer may include a crystalline silicon, an amorphous silicon, an organic semiconductor, an oxide semiconductor, and/or the like.


The electronic apparatus may further include a sealing portion for sealing the light-emitting device. The sealing portion may be located between the color filter and/or the color-conversion layer and the light-emitting device. The sealing portion allows light from the light-emitting device to be extracted to the outside, while concurrently (e.g., simultaneously) preventing or reducing penetration of ambient air and/or moisture into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate and/or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including at least one layer of an organic layer and/or an inorganic layer. When the sealing portion is a thin film encapsulation layer, the electronic apparatus may be flexible.


Various suitable functional layers may be additionally located on the sealing portion, in addition to the color filter and/or the color-conversion layer, according to the intended usage of the electronic apparatus. The functional layers may include a touch screen layer, a polarizing layer, and/or the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by utilizing biometric information of a living body (for example, fingertips, pupils, etc.).


The authentication apparatus may further include, in addition to the light-emitting device, a biometric information collector.


The electronic apparatus may be applied to one or more suitable displays, light sources, lighting apparatuses, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic diaries, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, and/or endoscope displays), fish finders, one or more suitable measuring instruments, meters (for example, meters for a vehicle, an aircraft, and/or a vessel), projectors, and/or the like.


Description of FIGS. 2 and 3


FIG. 2 is a cross-sectional view of a light-emitting apparatus according to an embodiment of the present disclosure.


The light-emitting apparatus of FIG. 2 includes a substrate 100, a thin-film transistor (TFT), a light-emitting device, and an encapsulation portion 300 that seals the light-emitting device.


The substrate 100 may be a flexible substrate, a glass substrate, and/or a metal substrate. A buffer layer 210 may be formed on the substrate 100. The buffer layer 210 may prevent or reduce penetration of impurities through the substrate 100 and may provide a flat surface on the substrate 100.


A TFT may be located on the buffer layer 210. The TFT may include an activation layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.


The activation layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, and/or an oxide semiconductor, and may include a source region, a drain region and a channel region.


A gate insulating film 230 for insulating the activation layer 220 from the gate electrode 240 may be located on the activation layer 220, and the gate electrode 240 may be located on the gate insulating film 230.


An interlayer insulating film 250 may be located on the gate electrode 240. The interlayer insulating film 250 may be placed between the gate electrode 240 and the source electrode 260 to insulate the gate electrode 240 from the source electrode 260 and between the gate electrode 240 and the drain electrode 270 to insulate the gate electrode 240 from the drain electrode 270.


The source electrode 260 and the drain electrode 270 may be located on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the activation layer 220, and the source electrode 260 and the drain electrode 270 may be in contact with the exposed portions of the source region and the drain region of the activation layer 220.


The TFT is electrically connected to a light-emitting device to drive the light-emitting device, and is covered by a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or any combination thereof. A light-emitting device may be provided on the passivation layer 280. The light-emitting device may include a first electrode 110, an interlayer 130, and a second electrode 150.


The first electrode 110 may be formed on the passivation layer 280. The passivation layer 280 may not completely cover the drain electrode 270 and may expose a portion of the drain electrode 270, and the first electrode 110 may be connected to the exposed portion of the drain electrode 270.


A pixel-defining layer 290 containing an insulating material may be located on the first electrode 110. The pixel-defining layer 290 may expose a region of the first electrode 110, and an interlayer 130 may be formed in the exposed region of the first electrode 110. The pixel-defining layer 290 may be a polyimide or polyacrylic organic film. In one embodiment, one or more layers of the interlayer 130 may extend beyond the upper portion of the pixel-defining layer 290 in the form of a common layer.


The second electrode 150 may be located on the interlayer 130, and a capping layer 170 may be additionally formed on the second electrode 150. The capping layer 170 may be formed to cover the second electrode 150.


The encapsulation portion 300 may be located on the capping layer 170. The encapsulation portion 300 may be located on a light-emitting device to protect the light-emitting device from moisture and/or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or any combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (for example, polymethyl methacrylate, polyacrylic acid, and/or the like), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE), and/or the like), or any combination thereof; or a combination of the inorganic film and the organic film.



FIG. 3 is a cross-sectional view of a light-emitting apparatus according to another embodiment of the present disclosure.


The light-emitting apparatus of FIG. 3 is the same as the light-emitting apparatus of FIG. 2, except that a light-shielding pattern 500 and a functional region 400 are additionally arranged on the encapsulation portion 300. The functional region 400 may be a combination of i) a color filter area, ii) a color-conversion area, or iii) a combination of the color filter area and the color-conversion area. In an embodiment, the light-emitting device included in the light-emitting apparatus of FIG. 3 may be a tandem light-emitting device.


Manufacture Method

Respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region may be formed in a certain region by utilizing one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging.


When layers constituting the hole transport region, the emission layer, and layers constituting the electron transport region are formed by vacuum deposition, the vacuum deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10-8 torr to about 10−3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, depending on a material to be included in a layer to be formed and the structure of a layer to be formed.


Definition of Terms

The term “C3-C60 carbocyclic group” as utilized herein refers to a cyclic group consisting of only carbon atoms as ring-forming atoms and having three to sixty carbon atoms, and the term “C1-C60 heterocyclic group” as utilized herein refers to a cyclic group that has, in addition to one to sixty carbon atoms, a heteroatom as a ring-forming atom. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed with each other. In an embodiment, the C1-C60 heterocyclic group has 3 to 61 ring-forming atoms.


The term “cyclic group” as utilized herein may include the C3-C60 carbocyclic group and the C1-C60 heterocyclic group.


The term “π electron-rich C3-C60 cyclic group” as utilized herein refers to a cyclic group that has three to sixty carbon atoms and does not include *—N═*′ as a ring-forming moiety, and the term “π electron-deficient nitrogen-containing C1-C60 cyclic group” as utilized herein refers to a heterocyclic group that has one to sixty carbon atoms and includes *—N═*′ as a ring-forming moiety.


In an embodiment,

    • the C3-C60 carbocyclic group may be i) a group T1 or ii) a condensed cyclic group in which two or more groups T1 are condensed with each other (for example, the C3-C60 carbocyclic group may be a cyclopentadiene group, an adamantane group, a norbornane group, a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indenophenanthrene group, or an indenoanthracene group),
    • the C1-C60 heterocyclic group may be i) a group T2, ii) a condensed cyclic group in which two or more groups T2 are condensed with each other, or iii) a condensed cyclic group in which at least one group T2 and at least one group T1 are condensed with each other (for example, the C1-C60 heterocyclic group may be a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),
    • the π electron-rich C3-C60 cyclic group may be i) a group T1, ii) a condensed cyclic group in which two or more groups T1 are condensed with each other, iii) a group T3, iv) a condensed cyclic group in which two or more groups T3 are condensed with each other, or v) a condensed cyclic group in which at least one group T3 and at least one group T1 are condensed with each other (for example, the π electron-rich C3-C60 cyclic group may be the C3-C60 carbocyclic group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, etc.), and
    • the π electron-deficient nitrogen-containing C1-C60 cyclic group may be i) a group T4, ii) a condensed cyclic group in which two or more group T4 are condensed with each other, iii) a condensed cyclic group in which at least one group T4 and at least one group T1 are condensed with each other, iv) a condensed cyclic group in which at least one group T4 and at least one group T3 are condensed with each other, or v) a condensed cyclic group in which at least one group T4, at least one group T1, and at least one group T3 are condensed with one another (for example, the π electron-deficient nitrogen-containing C1-C60 cyclic group may be a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),
    • the group T1 may be a cyclopropane group, a cyclobutane group, a cyclopentane group, a cyclohexane group, a cycloheptane group, a cyclooctane group, a cyclobutene group, a cyclopentene group, a cyclopentadiene group, a cyclohexene group, a cyclohexadiene group, a cycloheptene group, an adamantane group, a norbornane (or a bicyclo[2.2.1]heptane) group, a norbornene group, a bicyclo[1.1.1]pentane group, a bicyclo[2.1.1]hexane group, a bicyclo[2.2.2]octane group, or a benzene group,
    • the group T2 may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a tetrazine group, a pyrrolidine group, an imidazolidine group, a dihydropyrrole group, a piperidine group, a tetrahydropyridine group, a dihydropyridine group, a hexahydropyrimidine group, a tetrahydropyrimidine group, a dihydropyrimidine group, a piperazine group, a tetrahydropyrazine group, a dihydropyrazine group, a tetrahydropyridazine group, or a dihydropyridazine group,
    • the group T3 may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, or a borole group, and
    • the group T4 may be a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or a tetrazine group.


The terms “cyclic group”, “C3-C60 carbocyclic group”, “C1-C60 heterocyclic group”, “π electron-rich C3-C60 cyclic group”, or “π electron-deficient nitrogen-containing C1-C60 cyclic group” as utilized herein refers to a group condensed to any cyclic group, a monovalent group, or a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, etc.), depending on the structure of a formula in connection with which the terms are utilized. In an embodiment, “a benzene group” may be a benzo group, a phenyl group, a phenylene group, and/or the like, which may be easily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”


In an embodiment, examples of the monovalent C3-C60 carbocyclic group and the monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, and examples of a divalent C3-C60 carbocyclic group and a divalent C1-C60 heterocyclic group may include a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.


The term “C1-C60 alkyl group” as utilized herein refers to a linear or branched aliphatic hydrocarbon monovalent group that has one to sixty carbon atoms, and examples thereof may include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as utilized herein refers to a divalent group having substantially the same structure as the C1-C60 alkyl group.


The term “C2-C60 alkenyl group” as utilized herein refers to a monovalent hydrocarbon group having at least one carbon-carbon double bond at a main chain (e.g., in the middle) and/or at a terminal end (e.g., the terminus) of the C2-C60 alkyl group, and examples thereof may include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as utilized herein refers to a divalent group having substantially the same structure as the C2-C60 alkenyl group.


The term “C2-C60 alkynyl group” as utilized herein refers to a monovalent hydrocarbon group having at least one carbon-carbon triple bond at a main chain (e.g., in the middle) and/or at a terminal end (e.g., the terminus) of the C2-C60 alkyl group, and examples thereof may include an ethynyl group and a propynyl group. The term “C2-C60 alkynylene group” as utilized herein refers to a divalent group having substantially the same structure as the C2-C60 alkynyl group.


The term “C1-C60 alkoxy group” as utilized herein refers to a monovalent group represented by —OA101 (wherein A11 is the C1-C60 alkyl group), and examples thereof may include a methoxy group, an ethoxy group, and an isopropyloxy group.


The term “C3-C10 cycloalkyl group” as utilized herein refers to a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof may include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or a bicyclo[2.2.1]heptyl group), a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, and a bicyclo[2.2.2]octyl group. The term “C3-C10 cycloalkylene group” as utilized herein refers to a divalent group having substantially the same structure as the C3-C10 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group” as utilized herein refers to a monovalent saturated monocyclic group that further includes, in addition to 1 to 10 carbon atom(s), at least one heteroatom as a ring-forming atom, and examples thereof may include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as utilized herein refers to a divalent group having substantially the same structure as the C1-C10 heterocycloalkyl group.


The term “C3-C10 cycloalkenyl group” utilized herein refers to a monovalent cyclic group that has three to ten carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof may include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group” as utilized herein refers to a divalent group having substantially the same structure as the C3-C10 cycloalkenyl group.


The term “C1-C10 heterocycloalkenyl group” as utilized herein refers to a monovalent cyclic group that has, in addition to 1 to 10 carbon atoms, at least one heteroatom as a ring-forming atom, and at least one carbon-carbon double bond in the cyclic structure thereof. Examples of the C1-C10 heterocycloalkenyl group may include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group” as utilized herein refers to a divalent group having substantially the same structure as the C1-C10 heterocycloalkenyl group.


The term “C6-C60 aryl group” as utilized herein refers to a monovalent group having a carbocyclic aromatic system having six to sixty carbon atoms, and the term “C6-C6 arylene group” as utilized herein refers to a divalent group having a carbocyclic aromatic system having six to sixty carbon atoms. Examples of the C6-C60 aryl group may include a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, a fluorenyl group, and an ovalenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the two or more rings may be condensed with each other.


The term “C1-C60 heteroaryl group” as utilized herein refers to a monovalent group having a heterocyclic aromatic system that has, in addition to 1 to 60 carbon atoms, at least one heteroatom as a ring-forming atom. The term “C1-C60 heteroarylene group” as utilized herein refers to a divalent group having a heterocyclic aromatic system that has, in addition to 1 to 60 carbon atoms, at least one heteroatom as a ring-forming atom. Examples of the C1-C60 heteroaryl group may include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiofuranyl group, and a naphthyridinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the two or more rings may be condensed with each other.


The term “monovalent non-aromatic condensed polycyclic group” as utilized herein refers to a monovalent group having two or more rings condensed to each other, only carbon atoms (for example, having 8 to 60 carbon atoms) as ring-forming atoms, and non-aromaticity in its molecular structure when considered as a whole. Examples of the monovalent non-aromatic condensed polycyclic group may include an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, an adamantyl group, and an indeno anthracenyl group. The term “divalent non-aromatic condensed polycyclic group” as utilized herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed polycyclic group.


The term “monovalent non-aromatic condensed heteropolycyclic group” as utilized herein refers to a monovalent group having two or more rings condensed to each other, at least one heteroatom other than 1 to 60 carbon atoms as a ring-forming atom, and non-aromaticity in its molecular structure when considered as a whole. Examples of the monovalent non-aromatic condensed heteropolycyclic group may include a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphtho indolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, an azaadamantyl group, and a benzothienodibenzothiophenyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as utilized herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed heteropolycyclic group.


The term “C6-C60 aryloxy group” as utilized herein refers to a monovalent group represented by —OA102 (wherein A102 is the C6-C60 aryl group), and the term “C6-C60 arylthio group” as utilized herein refers to a monovalent group represented by —SA103 (wherein A103 is the C6-C60 aryl group).


The term “C7-C60 aryl alkyl group” utilized herein refers to a monovalent group represented by -A104A105 (where A104 may be a C1-C54 alkylene group, and A105 may be a C6-C59 aryl group), and the term “C2-C6 heteroaryl alkyl group” utilized herein refers to a monovalent group represented by -A106A107 (where A106 may be a C1-C59 alkylene group, and A107 may be a C1-C59 heteroaryl group).

    • R10a may be:
    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C06 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32).
    • Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


The term “hetero atom” as utilized herein refers to any atom other than a carbon atom. Examples of the heteroatom may include O, S, N, P, Si, B, Ge, Se, or any combination thereof.


The term “the third-row transition metal” as utilized herein includes hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), and/or the like.


The term “Ph” as utilized herein refers to a phenyl group, the term “Me” as utilized herein refers to a methyl group, the term “Et” as utilized herein refers to an ethyl group, the term “tert-Bu” or “But” as utilized herein refers to a tert-butyl group, and the term “OMe” as utilized herein refers to a methoxy group.


The term “biphenyl group” as utilized herein refers to “a phenyl group substituted with a phenyl group.” In other words, the “biphenyl group” is a substituted phenyl group having a C6-C60 aryl group as a substituent.


The term “terphenyl group” as utilized herein refers to “a phenyl group substituted with a biphenyl group”. The “terphenyl group” is a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.


* and *′ as utilized herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula or moiety.


Hereinafter, a compound and light-emitting device according to an embodiment of the present disclosure will be described in more detail with reference to the following Synthesis example and Examples. The expression “B was utilized instead of A,” utilized in describing Synthesis Examples, indicates that an identical molar equivalent of B was utilized in place of A.


EXAMPLES
Synthesis Example 1: Synthesis of Compound 6

Compound 6 according to an embodiment may be synthesized according to, for example, Reaction Scheme 1.




embedded image


1) Synthesis of Intermediate 1-1

1,3,5-tribromobenzene (1 eq), 4-bromo-1,1′-biphenyl (2 eq), and dichlorodiphenylsilane (2 eq) were reacted in the presence of n-BuLi (4 eq) to obtain Intermediate 1-1. Intermediate 1-1 was confirmed by LC/MS.


C54H41BrSi2 M+1: 825.27


2) Synthesis of Intermediate 1-2

Intermediate 1-1 (1 eq) and bispinacolatodiboron (1.5 eq) were reacted in the presence of Pd2dba3 (0.1 eq) to obtain Intermediate 1-2. Intermediate 1-2 was confirmed by LC/MS.


C60H53BO2Si2 M+1: 874.15


3) Synthesis of Compound 6

2.15 g of Intermediate 1-2, 1 g of 9,9′-(6-chloro-1,3,5-triazine-2,4-diyl)bis(9H-carbazole), 0.62 g of potassium carbonate, and 0.11 g of tetrakis(triphenylphosphine)palladium(0) were added to RB and then dissolved in 24 mL of THF and 6 mL of DW, followed by refluxing for 12 hours. After the reaction is completed, the reaction solution was extracted by utilizing ethylacetate to collect an organic layer. The organic layer was dried by utilizing magnesium sulfate to obtain a residue. The residue was separated and purified by silica gel column chromatography to obtain 2.26 g (yield: 87%) of Compound 6. Compound 6 was confirmed by LC-MS and 1H-NMR.


C81H57N5Si2 M+1: 1156.48


Synthesis Example 2: Synthesis of Compound 9

Compound 9 according to an embodiment may be synthesized according to, for example, Reaction Scheme 2.




embedded image


1) Synthesis of Intermediate 2-1

1,3,5-tribromobenzene-2,4,6-d3 (1 eq), 3-bromo-1,1′-biphenyl-2′,3′,4′,5′,6′-d5 (CAS No.: 51624-39-6) (2 eq), and dichlorodiphenylsilane (2 eq) were reacted in the presence of n-BuLi (4 eq) to obtain Intermediate 2-1. Intermediate 2-1 was identified by LC/MS.


C54H28D13BrSi2 M+1: 838.51


2) Synthesis of Intermediate 2-2

Intermediate 2-1 (1 eq) and bispinacolatodiboron (1.5 eq) were reacted in the presence of Pd2dba3 (0.1 eq) to obtain Intermediate 2-2. Intermediate 2-2 was confirmed by LC/MS.


C60H40D13BO2Si2 M+1: 886.63


3) Synthesis of Compound 9

2.19 g of Intermediate 2-2, 1 g of 9,9′-(6-chloro-1,3,5-triazine-2,4-diyl)bis(9H-carbazole), 0.62 g of potassium carbonate, and 0.11 g of tetrakis(triphenylphosphine)palladium(0) were added to RB and then dissolved in 24 mL of THF and 6 mL of DW, followed by refluxing for 12 hours. After the reaction is completed, the reaction solution was extracted by utilizing ethylacetate to collect an organic layer. The organic layer was dried by utilizing magnesium sulfate to obtain a residue. The residue was separated and purified by silica gel column chromatography to obtain 2.12 g (yield: 81%) of Compound 9. Compound 9 was confirmed by LC-MS and 1H-NMR.


C81H44D13N5Si2 M+1: 1169.79


Synthesis Example 3: Synthesis of Compound 22

Compound 22 according to an embodiment may be synthesized according to, for example, Reaction Scheme 3.




embedded image


1) Synthesis of Intermediate 3-1

1,3,5-tribromobenzene-2,4,6-d3 (1 eq), 3-bromo-1,1′-biphenyl (2 eq), and dichlorodiphenylsilane (2 eq) were reacted in the presence of n-BuLi (4 eq) to obtain Intermediate 3-1. Intermediate 3-1 was identified by LC/MS.


C54H38D3BrSi2 M+1: 828.30


2) Synthesis of Intermediate 3-2

Intermediate 3-1 (1 eq) and bispinacolatodiboron (1.5 eq) were reacted in the presence of Pd2dba3 (0.1 eq) to obtain Intermediate 3-2. Intermediate 3-2 was confirmed by LC/MS.


C60H53BO2Si2 M+1: 873.44


3) Synthesis of Compound 22

3.59 g of Intermediate 3-2, 1 g of 2-chloro-4,6-diphenyl-1,3,5-triazine, 1.03 g of potassium carbonate, and 0.19 g of tetrakis(triphenylphosphine)palladium(0) were added to RB and then dissolved in 40 mL of THF and 10 mL of DW, followed by refluxing for 12 hours. After the reaction is completed, the reaction solution was extracted by utilizing ethylacetate to collect an organic layer. The organic layer was dried by utilizing magnesium sulfate to obtain a residue. The residue was separated and purified by silica gel column chromatography to obtain 3.18 g (yield: 87%) of Compound 22. Compound 22 was confirmed by LC-MS and 1H-NMR.


C69H51N3Si2 M+1: 978.59


Synthesis Example 4: Synthesis of Compound 126

Compound 126 according to an embodiment may be synthesized according to, for example, Reaction Scheme 4.




embedded image


2.29 g of Intermediate 1-2, 1 g of 4,6-di([1,1′-biphenyl]-3-yl)-2-chloropyrimidine (CAS No.: 1384480-16-3), 0.66 g of potassium carbonate, and 0.12 g of tetrakis(triphenylphosphine)palladium(0) were added to RB and then dissolved in 24 mL of THF and 6 mL of DW, followed by refluxing for 12 hours. After the reaction is completed, the reaction solution was extracted by utilizing ethylacetate to collect an organic layer. The organic layer was dried by utilizing magnesium sulfate to obtain a residue. The residue was separated and purified by silica gel column chromatography to obtain 1.94 g (yield: 72%) of Compound 126. Compound 126 was confirmed by LC-MS and 1H-NMR.


C82H60N2Si2 M+1: 1129.54


Synthesis Example 5: Synthesis of Compound 129

Compound 129 according to an embodiment may be synthesized according to, for example, Reaction Scheme 5.




embedded image


2.33 g of Intermediate 2-2, 1 g of 4,6-di([1,1′-biphenyl]-3-yl)-2-chloropyrimidine (CAS No.: 1384480-16-3), 0.66 g of potassium carbonate, and 0.12 g of tetrakis(triphenylphosphine)palladium(0) were added to RB and then dissolved in 24 mL of THF and 6 mL of DW, followed by refluxing for 12 hours. After the reaction is completed, the reaction solution was extracted by utilizing ethylacetate to collect an organic layer. The organic layer was dried by utilizing magnesium sulfate to obtain a residue. The residue was separated and purified by silica gel column chromatography to obtain 1.96 g (yield: 72%) of Compound 129. Compound 129 was confirmed by LC-MS and 1H-NMR.


C82H47D13N2Si2 M+1: 1142.75


Synthesis Example 6: Synthesis of Compound 156

Compound 156 according to an embodiment may be synthesized according to, for example, Reaction Scheme 6.




embedded image


1) Synthesis of Intermediate 4-1

4,6-dichloro-2-phenylpyrimidine (GAS No.: 3740-92-9) (1 eq) and 9H-carbazole (0.9 eq) were reacted in the presence of Pd2dba3 (0.1 eq) to obtain Intermediate 4-1. Intermediate 4-1 was confirmed by LC/MS.


C22H14ClN3M+1: 356.90


2) Synthesis of Compound 156

1 g of Intermediate 4-1, 2.7 g of Intermediate 1-2, 0.78 g of potassium carbonate, and 0.14 g of tetrakis(triphenylphosphine)palladium(0) were added to RB and then dissolved in 28 mL of THF and 7 mL of DW, followed by refluxing for 12 hours. After the reaction is completed, the reaction solution was extracted by utilizing ethylacetate to collect an organic layer. The organic layer was dried by utilizing magnesium sulfate to obtain a residue. The residue was separated and purified by silica gel column chromatography to obtain 2.22 g (yield: 74%) of Compound 156. Compound 156 was confirmed by LC-MS and 1H-NMR.


C76H55N3Si2 M+1: 1066.82


Synthesis Example 7: Synthesis of Compound 189

Compound 189 according to an embodiment may be synthesized according to, for example, Reaction Scheme 7.




embedded image


1) Synthesis of Intermediate 5-1

2-([1,1′-biphenyl]-3-yl)-4,6-dichloropyrimidine (CAS No.: 2414988-40-0) (1 eq) and 9H-carbazole (0.9 eq) were reacted in the presence of Pd2dba3 (0.1 eq) to obtain Intermediate 5-1. Intermediate 5-1 was confirmed by LC/MS.


C28H18ClN3 M+1: 432.29


2) Synthesis of Compound 189

1 g of Intermediate 5-1, 2.26 g of Intermediate 2-1, 0.64 g of potassium carbonate, and 0.12 g of tetrakis(triphenylphosphine)palladium(0) were added to RB and then dissolved in 28 mL of THF and 7 mL of DW, followed by refluxing for 12 hours. After the reaction is completed, the reaction solution was extracted by utilizing ethylacetate to collect an organic layer. The organic layer was dried by utilizing magnesium sulfate to obtain a residue. The residue was separated and purified by silica gel column chromatography to obtain 2.01 g (yield: 75%) of Compound 189. Compound 189 was confirmed by LC-MS and 1H-NMR.


C82H46D13N3Si2 M+1: 1155.63


1H-NMR and MS observation data of Compounds 6, 9, 22, 126, 129, 156, and 189 synthesized as described above are shown in Table 1.










TABLE 1







Measured
MS/FAB










compound
H NMR (δ)
Calc.
Found













Compound
8.55(d, 2H), 8.19(d, 2H), 7.94-7.35(m,
1155.42
1156.48


6
49H), 7.20-7.16(t, 4H)


Compound
8.55(d, 2H), 8.19(d, 2H), 7.94-7.88(m,
1168.50
1169.79


9
4H), 7.64-7.35(m, 32H), 7.20-7.16(t,



4H)


Compound
8.36(d, 4H), 7.98(s, 2H), 7.92(s, 1H),
977.36
978.59


22
7.88(s, 2H), 7.75(d, 4H), 7.64-7.38(m,



38H)


Compound
8.23(s, 1H), 7.94-7.38(m, 59H)
1128.43
1129.54


126


Compound
8.23(s, 1H), 7.94-7.88(m, 6H), 7.75-
1141.51
1142.75


129
7.38(m, 40H)


Compound
8.55(d, 1H), 8.19(d, 3H), 7.98-7.16(m,
1065.39
1066.82


156
51H)


Compound
8.55(d, 1H), 8.38(d, 1H), 8.19(d, 1H),
1154.51
1155.63


189
7.94-7.16(m, 43H)









Example 1

As an anode, ITO-deposited substrate was cut to a size of 50 mm×50 mm×0.7 mm, sonicated by utilizing isopropyl alcohol and pure water for 5 minutes each, and then washed by irradiation of ultraviolet rays and exposure of ozone thereto for 30 minutes, and the substrate was loaded onto a vacuum deposition apparatus.


N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine (NPB) was vacuum-deposited on the ITO substrate to form a hole injection layer having a thickness of 300 Å, and 1,3-di-9-carbazolylbenzene (mCP) was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 200 Å.


Compound 6 and Ir(pmp)3, which is a suitable compound as a blue phosphorescent dopant, were co-deposited on the hole transport layer at a weight ratio of 92:8 to form an emission layer having a thickness of 250 Å.


3-(4-biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole (TAZ) was deposited on the emission layer to form an electron transport layer having a thickness of 200 Å, and LiF, which is a halogenated alkaline metal, was deposited on the electron transport layer to a thickness of 10 Å, and Al was vacuum-deposited thereon to a thickness of 100 Å, to thereby form a LiF/AI cathode electrode, thereby completing manufacture of a light-emitting device.




embedded image


Examples 2 to 7

Light-emitting devices were manufactured in substantially the same manner as in Example 1, except that the host of the emission layer was changed as shown in Table 4.


Comparative Examples 1 to 2

Light-emitting devices were manufactured in substantially the same manner as in Example 1, except that the host of the emission layer was changed as shown in Table 4.


Evaluation Example 1

Each of light-emitting devices manufactured according to Examples 1 to 7 and Comparative Examples 1 and 2 had a voltage supplied to have a current density of 10 mA/cm2. Driving voltage (V), luminance (cd/m2), luminescence efficiency (cd/A), maximum quantum efficiency (%), T1 (eV), and emission color were measured. The driving voltage and current density were measured by utilizing a source meter (Keithley Instrument, 2400 series), and the maximum quantum efficiency was measured by utilizing an external quantum efficiency measurement apparatus 09920-2-12 of Hamamatsu Photonics Inc. In evaluating the maximum quantum efficiency, the luminance/current density was measured utilizing a luminance meter that was calibrated for wavelength sensitivity, and the maximum quantum efficiency was converted by assuming an angular luminance distribution (Lambertian) which introduced a perfect reflecting diffuser. The results are shown in Table 2.
















TABLE 2










Maximum







Driving

quantum






Host of
voltage
Efficiency
efficiency

Emission




emission layer
(V)
(cd/A)
(%)
T1 (eV)
color






















Example
1
Compound 6 
4.8
19.2
28.0
3.04
Blue



2
Compound 9 
4.6
20.1
29.3
3.03
Blue



3
Compound 22 
4.3
18.9
28.4
3.00
Blue



4
Compound 126
4.5
18.5
28.1
3.02
Blue



5
Compound
4.4
19.6
29.2
3.01
Blue




129








6
Compound
4.2
18.8
28.8
3.03
Blue




156








7
Compound
4.4
19.3
29.2
3.01
Blue




189







Comparative
1
Comparative
5.8
15.2
26.2
2.82
Blue


Example

Compound 1








2
Comparative
5.4
18.0
27.9
3.01
Blue




Compound 2














1) Structure Formula of Comparative Compound 1



embedded image


2) Structure Formula of Comparative Compound 2



embedded image


From Table 4, it may be confirmed that the light-emitting device according to each Example had excellent or suitable characteristics in terms of driving voltage (V), efficiency (cd/A), and maximum quantum efficiency (%), as compared to the light-emitting devices of Comparative Examples 1 and 2.


By utilizing the heterocyclic compound, a light-emitting device having high efficiency and long lifespan and a high-quality electronic apparatus including the same may be manufactured.


The use of “may” when describing embodiments of the present disclosure refers to “one or more embodiments of the present disclosure”.


As used herein, the terms “substantially”, “about”, and similar terms are used as terms of approximation and not as terms of degree, and are intended to account for the inherent deviations in measured or calculated values that would be recognized by those of ordinary skill in the art. “About” or “approximately,” as used herein, is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” may mean within one or more standard deviations, or within ±30%, 20%, 10%, 5% of the stated value.


Any numerical range recited herein is intended to include all sub-ranges of the same numerical precision subsumed within the recited range. For example, a range of “1.0 to 10.0” is intended to include all subranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicant reserves the right to amend this specification, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein.


The electronic apparatus, the display device, and/or any other relevant devices or components according to embodiments of the present invention described herein may be implemented utilizing any suitable hardware, firmware (e.g. an application-specific integrated circuit), software, or a combination of software, firmware, and hardware. For example, the various components of the device may be formed on one integrated circuit (IC) chip or on separate IC chips. Further, the various components of the device may be implemented on a flexible printed circuit film, a tape carrier package (TCP), a printed circuit board (PCB), or formed on one substrate. Further, the various components of the device may be a process or thread, running on one or more processors, in one or more computing devices, executing computer program instructions and interacting with other system components for performing the various functionalities described herein. The computer program instructions are stored in a memory which may be implemented in a computing device using a standard memory device, such as, for example, a random access memory (RAM). The computer program instructions may also be stored in other non-transitory computer readable media such as, for example, a CD-ROM, flash drive, or the like. Also, a person of skill in the art should recognize that the functionality of various computing devices may be combined or integrated into a single computing device, or the functionality of a particular computing device may be distributed across one or more other computing devices without departing from the scope of the embodiments of the present disclosure.


It should be understood that embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. While one or more embodiments have been described with reference to the drawings, it will be understood by those of ordinary skill in the art that one or more suitable changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims and equivalents thereof.

Claims
  • 1. A light-emitting device comprising: a first electrode;a second electrode facing the first electrode; andan interlayer between the first electrode and the second electrode and comprising an emission layer,wherein the light-emitting device comprises a heterocyclic compound represented by Formula 1:
  • 2. The light-emitting device of claim 1, wherein the interlayer comprises the heterocyclic compound represented by Formula 1.
  • 3. The light-emitting device of claim 1, wherein the emission layer comprises the heterocyclic compound represented by Formula 1, andthe emission layer further comprises a fluorescent dopant or a phosphorescent dopant.
  • 4. The light-emitting device of claim 1, wherein the first electrode is an anode,the second electrode is a cathode,the interlayer further comprises a hole transport region between the first electrode and the emission layer and an electron transport region between the emission layer and the second electrode,the hole transport region comprises a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, andthe electron transport region comprises a hole blocking layer, an electron transport layer, an electron injection layer, or any combination thereof.
  • 5. The light-emitting device of claim 3, wherein the emission layer is to emit blue light.
  • 6. The light-emitting device of claim 4, further comprising at least one of a first capping layer or a second capping layer, wherein the first capping layer is on one surface of the first electrode, and/orthe second capping layer is on one surface of the second electrode.
  • 7. The light-emitting device of claim 6, wherein the at least one of the first capping layer or the second capping layer comprises the heterocyclic compound represented by Formula 1.
  • 8. An electronic apparatus comprising the light-emitting device according to claim 1.
  • 9. The electronic apparatus of claim 8, further comprising a thin-film transistor, wherein the thin-film transistor comprises a source electrode and a drain electrode, andthe first electrode of the light-emitting device is electrically connected to the source electrode or the drain electrode of the thin-film transistor.
  • 10. The light-emitting device of claim 8, further comprising a color filter, a color-conversion layer, a touch screen layer, a polarizing layer, or any combination thereof.
  • 11. A heterocyclic compound represented by Formula 1:
  • 12. The heterocyclic compound of claim 11, wherein i) each of X1 to X3 is N;ii) X1 is C(R10aa), X2 is N, and X3 is N;iii) X1 is N, X2 is C(R10ab), and X3 is N;iv) X1 is N, X2 is N, and X3 is C(R10ac);v) X1 is C(R10aa), X2 is C(R10ab), and X3 is N;vi) X1 is C(R10aa), X2 is N, and X3 is C(R10ac); orvii) X1 is N, X2 is C(R10ab), and X3 is C(R10ac).
  • 13. The heterocyclic compound of claim 11, wherein L1 to L3 are each independently a group represented by one of Formulae 1-5-1 to Formula 1-5-3:
  • 14. The heterocyclic compound of claim 11, wherein L4 is a group represented by one of Formulae 1-5-4 to 1-5-6:
  • 15. The heterocyclic compound of claim 11, wherein i) each of a1 to a3 is 1;ii) a1 is 0, and each of a2 and a3 is 1;iii) a2 is 0, and each of a1 and a3 is 1;iv) a3 is 0, and each of a1 and a2 is 1;v) each of a1 and a2 is 0, and a3 is 1;vi) each of a1 and a3 is 0, and a2 is 1; orvii) each of a2 and a3 is 0, and a1 is 1.
  • 16. The heterocyclic compound of claim 11, wherein, in Formula 1-1, a moiety represented by
  • 17. The heterocyclic compound of claim 11, wherein Ar2 or Ar3 is a carbazole group that is unsubstituted or substituted with at least one R10a.
  • 18. The heterocyclic compound of claim 17, wherein the other one of Ar2 and Ar3 that is not the carbazole group is a benzene group or a group represented by one of Formulae 1-6-1 to 1-6-3:
  • 19. The heterocyclic compound of claim 11, wherein Ar2 and Ar3 are each independently a carbazole group that is unsubstituted or substituted with at least one R10a.
  • 20. The heterocyclic compound of claim 11, wherein a degree of deuteration of the heterocyclic compound is 1% or more.
Priority Claims (1)
Number Date Country Kind
10-2022-0024573 Feb 2022 KR national