This application claims priority to and the benefit of Korean Patent Application No. 10-2023-0003601, filed on Jan. 10, 2023, in the Korean Intellectual Property Office, the entire content of which is incorporated by reference herein.
One or more embodiments of the present disclosure relate to a light-emitting device including a heterocyclic compound, an electronic apparatus including the light-emitting device, and the heterocyclic compound.
Organic light-emitting devices among light-emitting devices are self-emissive devices that have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of luminance, driving voltage, and response speed, compared to other devices in the art.
In an example, an organic light-emitting device may have a structure in which a first electrode is on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode are sequentially formed on the first electrode. Holes provided from the first electrode move toward the emission layer through the hole transport region, and electrons provided from the second electrode move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. The excitons may transition (e.g., relax) from an excited state to a ground state, thereby generating light.
One or more embodiments of the present disclosure include a light-emitting device including a heterocyclic compound, an electronic apparatus including the light-emitting device, and the heterocyclic compound.
Additional aspects of embodiments will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments of the disclosure.
According to one or more embodiment, provided is a heterocyclic compound represented by Formula 1:
According to one or more embodiments, an electronic apparatus includes the light-emitting device.
According to one or more embodiments, provided is the heterocyclic compound represented by Formula 1.
The above and other aspects and features of certain embodiments of the disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
Reference will now be made in more detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects of embodiments of the present description. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Throughout the disclosure, the expression “at least one of a, b or c” indicates only a, only b, only c, both a and b, both a and c, both b and c, all of a, b, and c, or variations thereof.
According to one or more embodiments, provided is a heterocyclic compound represented by Formula 1:
In Formula 1, Sub may be a group represented by Formula 1-1.
In Formulae 1 and 1-1, Ar11, Ar12, Ar21, Ar22, Ar31, Ar32, Ar33, L1, L2, L3, and L4 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group.
In an embodiment, Ar11, Ar12, Ar21, Ar22, Ar31, Ar32, and Ar33 may each independently be: a benzene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indeno phenanthrene group, or an indenoanthracene group; or a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an iso-indole group, a benzoiso-indole group, a naphthoiso-indole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, or azadibenzofuran group.
In an embodiment, Ar11, Ar12, Ar21, Ar22, Ar31, Ar32, and Ar33 may each independently be a benzene group, a naphthalene group, an anthracene group, or a phenanthrene group.
In an embodiment, L1, L2, L3, and L4 may each independently be a benzene group, a naphthalene group, an anthracene group, or a phenanthrene group.
In an embodiment, the heterocyclic compound represented by Formula 1 may be represented by Formula 3:
wherein, in Formula 3,
In an embodiment, the compound represented by Formula 1-1 may be represented by Formula 1-1A:
wherein, in Formula 1-1A,
When n1 is an integer of 2 or more, a plurality of L1 may be identical to or different from each other, when n2 is an integer of 2 or more, a plurality of L2 may be identical to or different from each other, when n3 is an integer of 2 or more, a plurality of L3 may be identical to or different from each other, and when n4 is an integer of 2 or more, a plurality of L4 may be identical to or different from each other.
When n1 is 0, *-(L1)n1-*′ may be a direct bond (e.g., a covalent bond), when n2 is 0, *-(L2)n2-*′ may be a direct bond (e.g., a covalent bond), when n3 is 0, *-(L3)n3-*′ may be a direct bond, and when n4 is 0, *-(L4)n4-*′ may be a direct bond (e.g., a covalent bond).
In Formula 1, X11, X12, and X13 may each independently be C(R5) or N, and at least one selected from X11, X12, and X13 may be N.
In an embodiment, at least two selected from X11, X12, and X13 may be N.
For example, X11, X12, and X13 may be N.
In Formula 1, Y1, Y2, and Y3 may each independently be N or P. In an embodiment, Y1, Y2, and Y3 may be N.
In Formula 1, Z3 may be O, S, or Si. In an embodiment, Z3 may be O or S.
In Formula 1, R11, R12, R21, R22, R31, R32, R33, R41, and R5 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2).
In an embodiment, R11, R12, R21, R22, R31, R32, R33, R41, and R5 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a nitro group, a C1-C10 alkyl group unsubstituted or substituted with at least one R10a, a C2-C10 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C10 alkynyl group unsubstituted or substituted with at least one R10a, a C3-C30 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C30 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2).
In an embodiment, R11, R12, R21, and R22 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a nitro group, —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2).
In an embodiment, R41 may be hydrogen, deuterium, a C1-C10 alkyl group unsubstituted or substituted with at least one R10a, a C2-C10 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C10 alkynyl group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), or a group represented by Formula 2-1:
wherein, in Formula 2-1,
In an embodiment, the heterocyclic compound represented by Formula 1 may be represented by Formula 4:
wherein, in Formula 4, R10a may be the same as defined with respect to Formula 1,
In an embodiment, Formula 1 may be represented by Formula 2A or 2B:
wherein, in Formulae 2A and 2B,
In an embodiment, at least one selected from i) to ix) may be deuterium:
In Formulae 1 and 1-1,
In Formulae 1 and 1-1, R10a may be: deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
In an embodiment, a lowest unoccupied molecular orbital energy level of the heterocyclic compound may be less than −2.6 eV.
In an embodiment, a triplet energy level of the heterocyclic compound in an excited state (T1) may be 2.8 eV or more.
In an embodiment, the heterocyclic compound represented by Formula 1 may be one selected from Compounds 1 to 172:
The heterocyclic compound represented by Formula 1 may include, as a core, an azine-based group, such as triazine, pyrimidine, pyridine, etc. in which an electron donating group including heteroatoms is provided as a substituent of the core. For example, a carbazole group and a substituent represented by Formula 1-1 may be substituents of the core.
By having the core and the electron donating group as the substituent thereof, charge transportability may be increased. Concurrently (e.g., simultaneously), due to the introduction of the substituent represented by Formula 1-1, which has a great or large volume, the interaction between a dopant and the heterocyclic compound according to the disclosure may be suppressed or reduced.
Accordingly, by using the heterocyclic compound represented by Formula 1, luminescence efficiency and lifespan of alight-emitting device (for example, an organic light-emitting device) may be improved.
Synthesis methods of the heterocyclic compound represented by Formula 1 may be recognizable by one of ordinary skill in the art by referring to Synthesis Examples and/or Examples provided below.
According to another aspect of embodiments of the disclosure, at least one heterocyclic compound represented by Formula 1 may be used in a light-emitting device (for example, an organic light-emitting device). Therefore, provided is a light-emitting device including: a first electrode; a second electrode facing the first electrode; an interlayer between the first electrode and the second electrode and including an emission layer; and at least one heterocyclic compound represented by Formula 1 as described above.
In an embodiment, the interlayer may include the at least one heterocyclic compound.
In an embodiment, the emission layer may include the at least one heterocyclic compound.
In an embodiment, the interlayer may further include an electron transport region between the emission layer and the second electrode, and the electron transport region may include the at least one heterocyclic compound.
In an embodiment, the electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof, and the electron transport layer may include the at least one heterocyclic compound.
In an embodiment, the emission layer may include a host and a dopant, and the host may include the at least one heterocyclic compound. Or, the dopant may include the at least one heterocyclic compound.
In an embodiment, a first capping layer may be outside the first electrode, and/or a second capping layer may be outside the second electrode, and at least one selected from the first capping layer and the second capping layer may include the heterocyclic compound.
The first capping layer and/or the second capping layer may each be the same as described herein.
In an embodiment, the light-emitting device may include: a first capping layer including the first compound represented by Formula 1 outside the first electrode; a second capping layer including the first compound represented by Formula 1 outside the second electrode; or the first capping layer and the second capping layer.
The expression “(an interlayer and/or a capping layer) includes at least one heterocyclic compound” as used herein may include a case in which “(an interlayer and/or a capping layer) includes identical heterocyclic compounds represented by Formula 1” and a case in which “(an interlayer and/or a capping layer) includes two or more different heterocyclic compounds represented by Formula 1.”
For example, the interlayer and/or capping layer may include Compound 1 only as the heterocyclic compound. In this regard, Compound 1 may be present in the emission layer of the light-emitting device. In one or more embodiments, the interlayer may include, as the heterocyclic compound, Compound 1 and Compound 2. In this regard, Compound 1 and Compound 2 may be present in the same layer (for example, all of Compound 1 and Compound 2 may be present in the emission layer), or may be present in different layers (for example, Compound 1 may be present in the emission layer, and Compound 2 may be present in the electron transport region).
The term “interlayer” as used herein refers to a single layer and/or all of a plurality of layers between the first electrode and the second electrode of the light-emitting device.
Another aspect of embodiments of the disclosure provides an electronic apparatus including the organic light-emitting device. The electronic apparatus may further include a thin-film transistor. For example, the electronic apparatus may further include a thin-film transistor including a source electrode and a drain electrode, wherein the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode. In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof. Further details of the electronic apparatus may be as described herein.
According to another aspect of embodiments of the disclosure, electronic equipment including the electronic apparatus may be one selected from a flat panel display, a curved display, a computer monitor, a medical monitor, a television, a billboard, a light for indoor or outdoor lighting and/or signaling, a head-up display, a fully or partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a mobile phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro display, a 3D display, a virtual or augmented reality display, a vehicle, a video wall including a plurality of displays tiled together, a theater or stadium screen, a phototherapy device, and a signboard.
Hereinafter, the structure of the light-emitting device 10 according to an embodiment and a method of manufacturing the light-emitting device 10 will be described with reference to
In
The first electrode 110 may be formed by, for example, depositing and/or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high-work function material that facilitates injection of holes.
The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. In an embodiment, when the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or any combination thereof. In one or more embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, a material for forming the first electrode 110 may include magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof.
The first electrode 110 may have a single-layer structure consisting of a single layer or a multi-layer structure including a plurality of layers. For example, the first electrode 110 may have a three-layer structure of ITO/Ag/ITO.
The interlayer 130 is on the first electrode 110. The interlayer 130 may include the emission layer.
The interlayer 130 may further include a hole transport region between the first electrode 110 and the emission layer, and an electron transport region between the emission layer and the second electrode 150.
The interlayer 130 may further include, in addition to various suitable organic materials, a metal-containing compound such as an organometallic compound, an inorganic material such as quantum dots, and/or the like.
In an embodiment, the interlayer 130 may include, i) two or more emitting units sequentially stacked between the first electrode 110 and the second electrode 150, and ii) a charge generation layer between the two or more emitting units. When the interlayer 130 includes the two or more emitting units and the charge generation layer, the light-emitting device 10 may be a tandem light-emitting device.
The hole transport region may have: i) a single-layer structure consisting of a single layer consisting of a single material, ii) a single-layer structure consisting of a single layer consisting of a plurality of materials that are different from each other, or iii) a multi-layer structure including a plurality of materials including a plurality of materials that are different from each other.
The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof.
For example, the hole transport region may have a multi-layer structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein constituent layers of each structure are stacked sequentially from the first electrode 110.
The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof:
In Formulae 201 and 202,
For example, each of Formulae 201 and 202 may include at least one selected from groups represented by Formulae CY201 to CY217:
In Formulae CY201 to CY217, R10b and R10c may each be the same as described in connection with R10a, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formulae CY201 to CY217 may be unsubstituted or substituted with R10a.
In an embodiment, in Formulae CY201 to CY217, ring CY201 to ring CY204 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.
In one or more embodiments, each of Formulae 201 and 202 may include at least one selected from the groups represented by Formulae CY201 to CY203.
In one or more embodiments, Formula 201 may include at least one selected from the groups represented by Formulae CY201 to CY203 and at least one selected from the groups represented by Formulae CY204 to CY217.
In one or more embodiments, in Formula 201, xa1 may be 1, R201 may be one selected from the groups represented by Formulae CY201 to CY203, xa2 may be 0, and R202 may be one selected from the groups represented by Formulae CY204 to CY207.
In one or more embodiments, each of Formulae 201 and 202 may not include the groups represented by Formulae CY201 to CY203.
In one or more embodiments, each of Formulae 201 and 202 may not include the groups represented by Formulae CY201 to CY203, and may include at least one selected from the groups represented by Formulae CY204 to CY217.
In one or more embodiments, each of Formulae 201 and 202 may not include the groups represented by Formulae CY201 to CY217.
In an embodiment, the hole transport region may include one selected from Compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), p-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), or any combination thereof:
A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å, for example, about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or any combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, for example, about 100 Å to about 1,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, suitable or satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.
The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by the emission layer, and the electron blocking layer may block or reduce the leakage of electrons from the emission layer to the hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron blocking layer.
p-Dopant
The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties (e.g., electrically conductive properties). The charge-generation material may be uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer consisting of a charge-generation material).
The charge-generation material may be, for example, a p-dopant.
For example, the p-dopant may have a lowest unoccupied molecular orbital (LUMO) energy level of less than or equal to about −3.5 eV.
In an embodiment, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound including element EL1 and element EL2, or any combination thereof.
Examples of the quinone derivative are TCNQ, F4-TCNQ, and the like.
Examples of the cyano group-containing compound are HAT-CN, a compound represented by Formula 221, and the like:
In Formula 221, R221 to R223 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, and
at least one selected from R221 to R223 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each substituted with: a cyano group; —F; —Cl; —Br; —I; a C1-C20 alkyl group substituted with a cyano group, —F, —Cl, —Br, —I, or any combination thereof; or any combination thereof.
In the compound including element EL1 and element EL2, element EL1 may be metal, metalloid, or any combination thereof, and element EL2 may be non-metal, metalloid, or any combination thereof.
Examples of the metal are an alkali metal (for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), etc.); and lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.).
Examples of the metalloid are silicon (Si), antimony (Sb), tellurium (Te), and the like.
Examples of the non-metal are oxygen (O), halogen (for example, F, Cl, Br, I, etc.), and the like.
Examples of the compound including element EL1 and element EL2 are metal oxide, metal halide (for example, metal fluoride, metal chloride, metal bromide, metal iodide, etc.), metalloid halide (for example, metalloid fluoride, metalloid chloride, metalloid bromide, metalloid iodide, etc.), metal telluride, or any combination thereof.
Examples of the metal oxide are tungsten oxide (for example, WO, W2O3, WO2, WO3, W2O5, etc.), vanadium oxide (for example, VO, V2O3, VO2, V2O5, etc.), molybdenum oxide (MoO, Mo2O3, MoO2, MoO3, Mo2O5, etc.), rhenium oxide (for example, ReO3, etc.), and the like.
Examples of the metal halide are alkali metal halide, alkaline earth metal halide, transition metal halide, post-transition metal halide, lanthanide metal halide, and the like.
Examples of the alkali metal halide are LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, CsI, and the like.
Examples of the alkaline earth metal halide are BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2, SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, BeI2, MgI2, CaI2, SrI2, BaI2, and the like.
Examples of the transition metal halide are titanium halide (for example, TiF4, TiCl4, TiBr4, TiI4, etc.), zirconium halide (for example, ZrF4, ZrCl4, ZrBr4, ZrI4, etc.), hafnium halide (for example, HfF4, HfCl4, HfBr4, HfI4, etc.), vanadium halide (for example, VF3, VCl3, VBr3, VI3, etc.), niobium halide (for example, NbF3, NbCl3, NbBr3, NbI3, etc.), tantalum halide (for example, TaF3, TaCl3, TaBr3, TaI3, etc.), chromium halide (for example, CrF3, CrO3, CrBr3, CrI3, etc.), molybdenum halide (for example, MoF3, MoCl3, MoBr3, MoI3, etc.), tungsten halide (for example, WF3, WCl3, WBr3, WI3, etc.), manganese halide (for example, MnF2, MnCl2, MnBr2, MnI2, etc.), technetium halide (for example, TcF2, TcCl2, TcBr2, TcI2, etc.), rhenium halide (for example, ReF2, ReCl2, ReBr2, ReI2, etc.), iron halide (for example, FeF2, FeCl2, FeBr2, FeI2, etc.), ruthenium halide (for example, RuF2, RuCl2, RuBr2, RuI2, etc.), osmium halide (for example, OsF2, OsCl2, OsBr2, OsI2, etc.), cobalt halide (for example, CoF2, COCl2, CoBr2, CoI2, etc.), rhodium halide (for example, RhF2, RhCl2, RhBr2, RhI2, etc.), iridium halide (for example, IrF2, IrCl2, IrBr2, IrI2, etc.), nickel halide (for example, NiF2, NiCl2, NiBr2, NiI2, etc.), palladium halide (for example, PdF2, PdCl2, PdBr2, PdI2, etc.), platinum halide (for example, PtF2, PtCl2, PtBr2, PtI2, etc.), copper halide (for example, CuF, CuCl, CuBr, CuI, etc.), silver halide (for example, AgF, AgCl, AgBr, AgI, etc.), gold halide (for example, AuF, AuCl, AuBr, AuI, etc.), and the like.
Examples of the post-transition metal halide are zinc halide (for example, ZnF2, ZnCl2, ZnBr2, ZnI2, etc.), indium halide (for example, InI3, etc.), tin halide (for example, SnI2, etc.), and the like.
Examples of the lanthanide metal halide are YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3 SmCl3, YbBr, YbBr2, YbBr3 SmBr3, YbI, YbI2, YbI3, SmI3, and the like.
Examples of the metalloid halide are antimony halide (for example, SbCl5, etc.) and the like.
Examples of the metal telluride are alkali metal telluride (for example, Li2Te, Na2Te, K2Te, Rb2Te, Cs2Te, etc.), alkaline earth metal telluride (for example, BeTe, MgTe, CaTe, SrTe, BaTe, etc.), transition metal telluride (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), post-transition metal telluride (for example, ZnTe, etc.), lanthanide metal telluride (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.), and the like.
When the light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a sub-pixel. In an embodiment, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other, to emit white light. In one or more embodiments, the emission layer may include two or more materials of a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed together with each other in a single layer, to emit white light. For example, the emission layer may emit blue light.
In an embodiment, the emission layer may include the heterocyclic compound represented by Formula 1 as described in the present specification.
In an embodiment, the emission layer may include a host and a dopant.
In an embodiment, the dopant may include the heterocyclic compound represented by Formula 1 as described in the present specification. In this regard, the dopant may further include a phosphorescent dopant, a fluorescent dopant, or any combination thereof, in addition to the heterocyclic compound represented by Formula 1. In addition to the heterocyclic compound represented by Formula 1, the phosphorescent dopant, the fluorescent dopant, and the like that may be further included in the emission layer are each the same as described below.
The amount of the dopant in the emission layer may be in a range of about 0.01 part by weight to about 15 parts by weight based on 100 parts by weight of the host.
In one or more embodiments, the emission layer may include a quantum dot.
In one or more embodiments, the emission layer may include a delayed fluorescence material. The delayed fluorescence material may act as a host or a dopant in the emission layer 120.
The thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer is within these ranges, excellent luminescence characteristics may be obtained without a substantial increase in driving voltage.
The host may include, for example, a carbazole-containing compound, an anthracene-containing compound, or any combination thereof.
In an embodiment, the host may include a compound represented by Formula 301 below:
wherein, in Formula 301,
For example, when xb11 in Formula 301 is 2 or more, two or more of Ar301 may be linked to each other via a single bond (e.g., a covalent bond).
In one or more embodiments, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or any combination thereof:
wherein, in Formulae 301-1 and 301-2,
In one or more embodiments, the host may include an alkali earth metal complex, a post-transition metal complex, or any combination thereof. In one or more embodiments, the host may include a Be complex (for example, Compound H55), an Mg complex, a Zn complex, or any combination thereof.
In one or more embodiments, the host may include: one selected from Compounds H1 to H128; 9,10-di(2-naphthyl)anthracene (ADN); 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN); 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN); 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP); 1,3-di-9-carbazolylbenzene (mCP); 1,3,5-tri(carbazol-9-yl)benzene (TCP); or any combination thereof:
The phosphorescent dopant may include at least one transition metal as a central metal.
The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or any combination thereof.
The phosphorescent dopant may be electrically neutral.
For example, the phosphorescent dopant may include an organometallic compound represented by Formula 401:
In Formulae 401 and 402,
For example, in Formula 402, i) X401 may be nitrogen and X402 may be carbon, or ii) each of X401 and X402 may be nitrogen.
In one or more embodiments, when xc1 in Formula 402 is 2 or more, two ring A401 (s) in two or more of L401 (s) may be optionally linked to each other via T402, which is a linking group, or two ring A402(s) may be optionally linked to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 may each independently be as defined in T401.
In Formula 401, L402 may be an organic ligand. For example, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), an isonitrile group, a —CN group, a phosphorus group (for example, a phosphine group, a phosphite group, etc.), or any combination thereof.
The phosphorescent dopant may include, for example, one selected from Compounds PD1 to PD39, or any combination thereof:
The fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or any combination thereof.
For example, the fluorescent dopant may include a compound represented by Formula 501:
In Formula 501,
In an embodiment, Ar501 in Formula 501 may be a condensed cyclic group (for example, an anthracene group, a chrysene group, a pyrene group, etc.) in which three or more monocyclic groups are condensed together.
In an embodiment, xd4 in Formula 501 may be 2.
For example, the fluorescent dopant may include: one selected from Compounds FD1 to FD36; DPVBi; DPAVBi; or any combination thereof:
The emission layer may include a delayed fluorescence material.
In the present specification, the delayed fluorescence material may be selected from compounds capable of emitting delayed fluorescence based on a delayed fluorescence emission mechanism.
The delayed fluorescence material included in the emission layer may act as a host or a dopant depending on the type (or kind) of other materials included in the emission layer.
In an embodiment, a difference between a triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material may be greater than or equal to 0 eV and less than or equal to 0.5 eV. When the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material is satisfied within the range above, up-conversion from the triplet state to the singlet state of the delayed fluorescence materials may effectively occur, and thus, the light-emitting device 10 may have improved luminescence efficiency.
For example, the delayed fluorescence material may include: i) a material including at least one electron donor (for example, a π electron-rich C3-C60 cyclic group and the like, such as a carbazole group) and at least one electron acceptor (for example, a sulfoxide group, a cyano group, a π electron-deficient nitrogen-containing C1-C60 cyclic group, and the like), ii) a material including a C8-C60 polycyclic group including at least two cyclic groups condensed to each other while sharing boron (B), and the like.
Examples of the delayed fluorescence material may include at least one selected from Compounds DF1 to DF14:
The emission layer may include a quantum dot.
In the present specification, a quantum dot may refer to a crystal of a semiconductor compound. The quantum dot may emit light of various suitable emission wavelengths according to a size of crystal. The quantum dot may emit light of various suitable emission wavelengths by adjusting a ratio of elements in the quantum dot compound.
A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.
The quantum dot may be synthesized by a wet chemical process, a metal organic chemical vapor deposition process, a molecular beam epitaxy process, and/or any suitable process similar thereto.
The wet chemical process is a method including mixing a precursor material together with an organic solvent and then growing quantum dot particle crystals. When the crystal grows, the organic solvent may naturally act as a dispersant coordinated on the surface of the quantum dot and control the growth of the crystal. Accordingly, the wet chemical process may control the growth of quantum dot particles more easily with low cost, compared to vapor deposition methods, such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), etc.
The quantum dot may include a Group III-VI semiconductor compound; a Group II-VI semiconductor compound; a Group III-V semiconductor compound; a Group Ill-VI semiconductor compound; a Group I-III-VI semiconductor compound; a Group IV-VI semiconductor compound; a Group IV element or compound; or any combination thereof.
Examples of the Group II-VI semiconductor compound are: a binary compound, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, and the like; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, and the like; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, and the like; or any combination thereof.
Examples of the Group III-V semiconductor compound are: a binary compound, such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and/or the like; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, InPSb, GaAlNP, and/or the like; a quaternary compound, such as GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, and/or the like; or any combination thereof. In an embodiment, the Group III-V semiconductor compound may further include a Group II element. Examples of the Group III-V semiconductor compound further including the Group II element are InZnP, InGaZnP, InAlZnP, and the like.
Examples of the Group III-VI semiconductor compound are: a binary compound, such as GaS, Ga2S3, GaSe, Ga2Se3, GaTe, InS, InSe, In2Se3, InTe, and the like; a ternary compound, such as InGaS3, InGaSe3, and the like; or any combination thereof.
Examples of Group I-III-VI semiconductor compound are: a ternary compound, such as AgInS, AgInS2, AgInSe2, AgGaS, AgGaS2, AgGaSe2, CuInS, CuInS2, CuInSe2, CuGaS2, CuGaSe2, CuGaO2, AgGaO2, AgAlO2, and the like; a quaternary compound, such as AgInGaS2, AgInGaSe2, and the like; or any combination thereof.
Examples of the Group IV-VI semiconductor compound are: a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, and the like; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, and the like; a quaternary compound, such as SnPbSSe, SnPbSeTe, SnPbSTe, and the like; or any combination thereof.
Examples of the Group IV element or compound are: a single element compound, such as Si, Ge, and the like; a binary compound, such as SiC, SiGe, and the like; or any combination thereof.
Each element included in a multi-element compound, such as the binary compound, the ternary compound, and the quaternary compound, may be present at a uniform concentration or non-uniform concentration in a particle. In some embodiments, the formula indicates types (or kinds) of elements included in the compound, and a ratio of elements in the compound may vary. For example, AgInGaS2 may mean AgInxGa1-xS2 (x is a real number from 0 to 1).
In an embodiment, the quantum dot may have a single structure in which the concentration of each element in the quantum dot is uniform (e.g., substantially uniform), or may have a core-shell dual structure. For example, a material included in the core and a material included in the shell may be different from each other.
The shell of the quantum dot may act as a protective layer that prevents or reduces chemical degeneration of the core to maintain semiconductor characteristics, and/or as a charging layer that imparts electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multi-layer. The interface between the core and the shell may have a concentration gradient in which the concentration of an element existing in the shell decreases along a direction toward the center of the core.
Examples of the shell of the quantum dot may be an oxide of metal, and/or non-metal, a semiconductor compound, and any combination thereof. Examples of the oxide of metal and/or non-metal are a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, and/or NiO; a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, and/or CoMn2O4; and any combination thereof. Examples of the semiconductor compound are, as described herein, Group III-VI semiconductor compounds; Group II-VI semiconductor compounds; Group III-V semiconductor compounds; Group III-VI semiconductor compounds; Group I-III-VI semiconductor compounds; Group IV-VI semiconductor compounds; and any combination thereof. For example, the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaS, GaSe, AgGaS, AgGaS2, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, or any combination thereof.
Each element included in a multi-element compound, such as the binary compound and the ternary compound may be present at a uniform concentration or non-uniform concentration in a particle. For example, the formula indicates types (or kinds) of elements included in the compound, and a ratio of elements in the compound may vary.
The quantum dot may have an FWHM of the emission wavelength spectrum of less than or equal to about 45 nm, less than or equal to about 40 nm, or for example, less than or equal to about 30 nm. When the FWHM of the quantum dot is within these ranges, the quantum dot may have improved color purity and/or improved color reproducibility. In addition, because light emitted through the quantum dot is emitted in all (e.g., substantially all) directions, the wide viewing angle may be improved.
In addition, the quantum dot may be in the form of spherical, pyramidal, multi-arm, and/or cubic nanoparticles, nanotubes, nanowires, nanofibers, and/or nanoplate particles.
As an energy band gap may be adjusted by adjusting the size of the quantum dot or ratio of elements in a quantum dot compound, light of various suitable wavelengths may be obtained from a quantum dot emission layer. Accordingly, by using the quantum dot described above (e.g., using quantum dots having different sizes from each other or quantum dot with adjusted ratio of elements included therein), a light-emitting device emitting light of various suitable wavelengths may be implemented. For example, the adjustment of the size of the quantum dot or the ratio of elements included in the quantum dot compound may be selected such that red light, green light, and/or blue light may be emitted. In addition, the quantum dots may be configured to emit white light by combination of light of various suitable colors.
The electron transport region may have: i) a single-layer structure consisting of a single layer consisting of a single material, ii) a single-layer structure consisting of a single layer consisting of a plurality of different materials, or iii) a multi-layer structure including a plurality of layers including different materials.
The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.
For example, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein constituent layers of each structure are sequentially stacked from the emission layer.
In an embodiment, the electron transport region (for example, the buffer layer, the hole blocking layer, the electron control layer, or the electron transport layer in the electron transport region) may include a metal-free compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group.
For example, the electron transport region may include a compound represented by Formula 601:
In Formula 601, Ar601 and L601 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
In an embodiment, when xe11 in Formula 601 is 2 or more, two or more of Ar601, may be linked to each other via a single bond.
In an embodiment, Ar601 in Formula 601 may be a substituted or unsubstituted anthracene group.
In one or more embodiments, the electron transport region may include a compound represented by Formula 601-1:
In Formula 601-1, X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one selected from X614 to X616 may be N,
For example, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.
The electron transport region may include one selected from Compounds ET1 to ET45, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, TAZ, NTAZ, TSPO1, TPBI, or any combination thereof:
A thickness of the electron transport region may be from about 160 Å to about 5,000 Å, for example, from about 100 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, or any combination thereof, the thickness of the buffer layer, the hole blocking layer, or the electron control layer may be in a range of about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å, and the thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. When the thickness of the buffer layer, the hole-blocking layer, the electron control layer, the electron transport layer, and/or the electron transport layer are within these ranges, suitable or satisfactory electron transporting characteristics may be obtained without a substantial increase in driving voltage.
The electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.
The metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or any combination thereof. The metal ion of an alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, and/or a Cs ion, and the metal ion of an alkaline earth metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, and/or a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may include a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenylbenzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.
For example, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (LiQ) and/or ET-D2:
The electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode 150. The electron injection layer may directly contact the second electrode 150.
The electron injection layer may have: i) a single-layer structure consisting of a single layer consisting of a single material, ii) a single-layer structure consisting of a single layer consisting of a plurality of different materials, or iii) a multi-layer structure including a plurality of layers including different materials.
The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof.
The alkali metal may include Li, Na, K, Rb, Cs, or any combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.
The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may be oxides, halides (for example, fluorides, chlorides, bromides, iodides, etc.), and/or tellurides of the alkali metal, the alkaline earth metal, and the rare earth metal, or any combination thereof.
The alkali metal-containing compound may include: an alkali metal oxide, such as Li2O, Cs2O, K2O, and the like; alkali metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, KI, and the like; or any combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal compound, such as BaO, SrO, CaO, BaxSr1-xO (wherein x is a real number satisfying 0<x<1), BaxCa1-xO (wherein x is a real number satisfying 0<x<1), and the like. The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or any combination thereof. In an embodiment, the rare earth metal-containing compound may include lanthanide metal telluride. Examples of the lanthanide metal telluride are LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, Lu2Te3, and the like.
The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include i) one selected from ions of the alkali metal, the alkaline earth metal, and the rare earth metal and ii), as a ligand bonded to the metal ion, for example, hydroxyquinoline, hydroxyisoquinoline, hydroxybenzoquinoline, hydroxyacridine, hydroxyphenanthridine, hydroxyphenyloxazole, hydroxyphenylthiazole, hydroxyphenyloxadiazole, hydroxyphenylthiadiazole, hydroxyphenylpyridine, hydroxyphenyl benzimidazole, hydroxyphenylbenzothiazole, bipyridine, phenanthroline, cyclopentadiene, or any combination thereof.
In an embodiment, the electron injection layer may include (e.g., consist of) an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof, as described above. In one or more embodiments, the electron injection layer may further include an organic material (for example, a compound represented by Formula 601).
In an embodiment, the electron injection layer may include (e.g., consist of) i) an alkali metal-containing compound (for example, alkali metal halide), ii) a) an alkali metal-containing compound (for example, alkali metal halide); and b) an alkali metal, an alkaline earth metal, a rare earth metal, or any combination thereof. For example, the electron injection layer may be a KI:Yb co-deposited layer, an RbI:Yb co-deposited layer, and/or the like.
When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof may be uniformly or non-uniformly dispersed in a matrix including the organic material.
The thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, and, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the ranges above, suitable or satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.
The second electrode 150 may be on the interlayer 130 having a structure as described above. The second electrode 150 may be a cathode, which is an electron injection electrode, and as a material for forming the second electrode 150, a metal, an alloy, an electrically conductive compound, or any combination thereof, each having a low-work function, may be used.
The second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, IZO, or any combination thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
The second electrode 150 may have a single-layer structure or a multi-layer structure including a plurality of layers.
The first capping layer may be outside the first electrode 110, and/or the second capping layer may be outside the second electrode 150. In some embodiments, the light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are sequentially stacked in the stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in the stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are sequentially stacked in the stated order.
Light generated in the emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the first electrode 110 which is a semi-transmissive electrode or a transmissive electrode, and the first capping layer. Light generated in the emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the second electrode 150 which is a semi-transmissive electrode or a transmissive electrode, and the second capping layer.
The first capping layer and the second capping layer may increase external emission efficiency according to the principle of constructive interference. Accordingly, the light extraction efficiency of the light-emitting device 10 is increased, so that the luminescence efficiency of the light-emitting device 10 may be improved.
Each of the first capping layer and the second capping layer may include a material having a refractive index of greater than or equal to 1.6 (at a wavelength of 589 nm).
The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.
At least one selected from the first capping layer and the second capping layer may each independently include a carbocyclic compound, a heterocyclic compound, an amine group-containing compound, a porphine derivative, a phthalocyanine derivative, a naphthalocyanine derivative, an alkali metal complex, an alkaline earth metal complex, or any combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may optionally be substituted with a substituent including O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof. In an embodiment, at least one selected from the first capping layer and the second capping layer may each independently include an amine group-containing compound.
In one or more embodiments, at least one selected from the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof.
In one or more embodiments, at least one selected from the first capping layer and the second capping layer may each independently include: one selected from Compounds HT28 to HT33; one selected from Compounds CP1 to CP6; β-NPB; or any combination thereof:
The organometallic compound represented by Formula 1 may be included in various suitable films. Accordingly, another aspect of embodiments of the disclosure provides a film including an organometallic compound represented by Formula 1. The film may be, for example, an optical member (and/or a light control means) (for example, a color filter, a color conversion member, a capping layer, a light extraction efficiency enhancement layer, a selective light absorbing layer, a polarizing layer, a quantum dot-containing layer, and/or the like), a light-blocking member (for example, a light reflective layer, a light absorbing layer, and/or the like), a protective member (for example, an insulating layer, a dielectric layer, and/or the like).
The light-emitting device may be included in various suitable electronic apparatuses. For example, the electronic apparatus including the light-emitting device may be a light-emitting apparatus, an authentication apparatus, and/or the like.
The electronic apparatus (for example, a light-emitting apparatus) may further include, in addition to the light-emitting device, i) a color filter, ii) a color conversion layer, or iii) a color filter and a color conversion layer. The color filter and/or the color conversion layer may be in at least one traveling direction of light emitted from the light-emitting device. For example, the light emitted from the light-emitting device may be blue light and/or white light. Further details of the light-emitting device may be as described herein. In an embodiment, the color conversion layer may include a quantum dot. The quantum dot may be, for example, the quantum dot as described herein.
The electronic apparatus may include a first substrate. The first substrate may include a plurality of subpixel areas, the color filter may include a plurality of color filter areas respectively corresponding to the subpixel areas, and the color conversion layer may include a plurality of color conversion areas respectively corresponding to the subpixel areas.
A pixel-defining film may be arranged among the subpixel areas to define each of the subpixel areas.
The color filter may further include a plurality of color filter areas and light-shielding patterns arranged among the color filter areas, and the color conversion layer may further include a plurality of color conversion areas and light-shielding patterns arranged among the color conversion areas.
The plurality of color filter areas (or the plurality of color conversion areas) may include a first area that emits a first color light, a second area that emits a second color light, and/or a third area that emits a third color light, wherein the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths from one another. For example, the first color light may be red light, the second color light may be green light, and the third color light may be blue light. For example, the plurality of color filter areas (or the plurality of color conversion areas) may include quantum dots. In some embodiments, the first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may not include a quantum dot. Further details of the quantum dot may be as described herein. The first area, the second area, and/or the third area may each further include a light scatterer.
For example, the light-emitting device may emit a first light, the first area may absorb the first light to emit a first-first color light, the second area may absorb the first light to emit a second-first color light, and the third area may absorb the first light to emit a third-first color light. Here, the first-first color light, the second-first color light, and the third-first color light may have different maximum emission wavelengths. In some embodiments, the first light may be blue light, the first-first color light may be red light, the second-first color light may be green light, and the third-first color light may be blue light.
The electronic apparatus may further include a thin-film transistor, in addition to the light-emitting device as described above. The thin-film transistor may include a source electrode, a drain electrode, and an activation layer, wherein any one selected from the source electrode and the drain electrode may be electrically connected to the other of the first electrode and the second electrode of the light-emitting device.
The thin-film transistor may further include a gate electrode, a gate insulating film, and/or the like.
The activation layer may include crystalline silicon, amorphous silicon, an organic semiconductor, an oxide semiconductor, and/or the like.
The electronic apparatus may further include a sealing portion for sealing the light-emitting device. The sealing portion may be between the color filter and/or the color conversion layer and the light-emitting device. The sealing portion allows light from the light-emitting device to be extracted to the outside, and concurrently (e.g., simultaneously) prevents or reduces penetration of ambient air and/or moisture into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate and/or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including at least one layer of an organic layer and/or an inorganic layer. When the sealing portion is a thin film encapsulation layer, the electronic apparatus may be flexible.
Various suitable functional layers may be additionally on the sealing portion, in addition to the color filter and/or the color conversion layer, according to the use of the electronic apparatus. Examples of the functional layers may include a touch screen layer, a polarizing layer, and the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, and/or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by using biometric information of a living body (for example, fingertips, pupils, etc.).
The authentication apparatus may further include, in addition to the light-emitting device as described above, a biometric information collector.
The electronic apparatus may be applied to various suitable displays, light sources, lighting, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic organizers, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, and/or endoscope displays), fish finders, various suitable measuring instruments, meters (for example, meters for a vehicle, an aircraft, and/or a vessel), projectors, and/or the like.
The light-emitting device may be included in various suitable electronic equipment.
For example, the electronic equipment including the light-emitting device may be a flat panel display, a curved display, a computer monitor, a medical monitor, a television, a billboard, a light for indoor and/or outdoor lighting and/or signaling, a head-up display, a fully or partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a mobile phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro display, a 3D display, a virtual or augmented reality display, a vehicle, a video wall including a plurality of displays tiled together, a theater or stadium screen, a phototherapy device, and/or a signboard.
The light-emitting device may have excellent effects in terms of luminescence efficiency long lifespan, and thus the electronic equipment including the light-emitting device may have characteristics, such as high luminance, high resolution, and low power consumption.
The light-emitting apparatus of
The substrate 100 may be a flexible substrate, a glass substrate, and/or a metal substrate. A buffer layer 210 may be on the substrate 100. The buffer layer 210 may prevent or reduce penetration of impurities through the substrate 100 and may provide a flat surface on the substrate 100.
A TFT may be on the buffer layer 210. The TFT may include an activation layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.
The activation layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region, and a channel region.
A gate insulating film 230 for insulating the activation layer 220 from the gate electrode 240 may be on the activation layer 220, and the gate electrode 240 may be on the gate insulating film 230.
An interlayer insulating film 250 may be on the gate electrode 240. The interlayer insulating film 250 may be between the gate electrode 240 and the source electrode 260 and between the gate electrode 240 and the drain electrode 270, to insulate from one another.
The source electrode 260 and the drain electrode 270 may be on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may expose the source region and the drain region of the activation layer 220, and the source electrode 260 and the drain electrode 270 may be in contact with the exposed portions of the source region and the drain region of the activation layer 220.
The TFT may be electrically connected to a light-emitting device to drive the light-emitting device, and may be covered and protected by a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or any combination thereof. A light-emitting device may be provided on the passivation layer 280. The light-emitting device may include the first electrode 110, the interlayer 130, and the second electrode 150.
The first electrode 110 may be on the passivation layer 280. The passivation layer 280 may expose a portion of the drain electrode 270, not fully covering the drain electrode 270, and the first electrode 110 may be connected to the exposed portion of the drain electrode 270.
A pixel defining layer 290 including an insulating material may be on the first electrode 110. The pixel defining layer 290 may expose a certain region of the first electrode 110, and an interlayer 130 may be in the exposed region of the first electrode 110. The pixel defining layer 290 may be a polyimide-based organic film and/or a polyacrylic-based organic film. In some embodiments, at least some layers of the interlayer 130 may extend beyond the upper portion of the pixel defining layer 290 in the form of a common layer.
The second electrode 150 may be on the interlayer 130, and a capping layer 170 may be additionally on the second electrode 150. The capping layer 170 may cover the second electrode 150.
The encapsulation portion 300 may be on the capping layer 170. The encapsulation portion 300 may be on a light-emitting device to protect the light-emitting device from moisture and/or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or any combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (for example, polymethyl methacrylate, polyacrylic acid, and/or the like), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE), and/or the like), or any combination thereof; or any combination of the inorganic films and the organic films.
The light-emitting apparatus of
The electronic equipment 1 may include a display area DA and a non-display area NDA outside the display area DA. A display device may implement an image through an array of a plurality of pixels that are two-dimensionally in the display area DA.
The non-display area NDA is an area that does not display an image, and may entirely surround the display area DA. On the non-display area NDA, a driver for providing electrical signals or power to display devices on the display area DA may be provided. On the non-display area NDA, a pad, which is an area to which an electronic element or a printing circuit board, may be electrically connected may be provided.
In the electronic equipment 1, a length in the x-axis direction and a length in the y-axis direction may be different from each other. In an embodiment, as shown in
Referring to
The vehicle 1000 may travel on a road and/or a track. The vehicle 1000 may move in a set or predetermined direction according to rotation of at least one wheel. For example, the vehicle 1000 may include a three-wheeled or four-wheeled vehicle, a construction machine, a two-wheeled vehicle, a prime mover device, a bicycle, and a train running on a track.
The vehicle 1000 may include a body having an interior and an exterior, and a chassis in which mechanical apparatuses necessary for driving are installed as other parts except for the body. The exterior of the body may include a front panel, a bonnet, a roof panel, a rear panel, a trunk, a pillar provided at a boundary between doors, and/or the like. The chassis of the vehicle 1000 may include a power generating device, a power transmitting device, a driving device, a steering device, a braking device, a suspension device, a transmission device, a fuel device, front and/or rear left and/or right wheels, and/or the like.
The vehicle 1000 may include a side window glass 1100, a front window glass 1200, a side mirror 1300, a cluster 1400, a center fascia 1500, a passenger seat dashboard 1600, and a display device 2.
The side window glass 1100 and the front window glass 1200 may be partitioned by a pillar between the side window glass 1100 and the front window glass 1200.
The side window glass 1100 may be installed on the side of the vehicle 1000. In an embodiment, the side window glass 1100 may be installed on a door of the vehicle 1000. A plurality of side window glasses 1100 may be provided and may face each other. In an embodiment, the side window glass 1100 may include a first side window glass 1110 and a second side window glass 1120. In an embodiment, the first side window glass 1110 may be adjacent to the cluster 1400. The second side window glass 1120 may be adjacent to the passenger seat dashboard 1600.
In an embodiment, the side window glasses 1100 may be spaced apart from each other in the x-direction or the −x-direction. For example, the first side window glass 1110 and the second side window glass 1120 may be spaced apart from each other in the x direction or the −x direction. In other words, an imaginary straight line L connecting the side window glasses 1100 may extend in the x-direction or the −x-direction. For example, an imaginary straight line L connecting the first side window glass 1110 and the second side window glass 1120 to each other may extend in the x direction or the −x direction.
The front window glass 1200 may be installed in front of the vehicle 1000. The front window glass 1200 may be between the side window glasses 1100 facing each other.
The side mirror 1300 may provide a rear view of the vehicle 1000. The side mirror 1300 may be installed on the exterior of the vehicle body. In one embodiment, a plurality of side mirrors 1300 may be provided. Any one of the plurality of side mirrors 1300 may be outside the first side window glass 1110. The other one of the plurality of side mirrors 1300 may be outside the second side window glass 1120.
The cluster 1400 may be in front of the steering wheel. The cluster 1400 may include a tachometer, a speedometer, a coolant thermometer, a fuel gauge turn indicator, a high beam indicator, a warning lamp, a seat belt warning lamp, an odometer, an odometer, an automatic shift selector indicator lamp, a door open warning lamp, an engine oil warning lamp, and/or a low fuel warning light.
The center fascia 1500 may include a control panel on which a plurality of buttons for adjusting an audio device, an air conditioning device, and a heater of a seat are provided. The center fascia 1500 may be on one side of the cluster 1400.
A passenger seat dashboard 1600 may be spaced apart from the cluster 1400 with the center fascia 1500 therebetween. In an embodiment, the cluster 1400 may correspond to a driver seat, and the passenger seat dashboard 1600 may correspond to a passenger seat. In an embodiment, the cluster 1400 may be adjacent to the first side window glass 1110, and the passenger seat dashboard 1600 may be adjacent to the second side window glass 1120.
In an embodiment, the display device 2 may include a display panel 3, and the display panel 3 may display an image. The display device 2 may be inside the vehicle 1000. In an embodiment, the display device 2 may be between the side window glasses 1100 facing each other. The display device 2 may be on at least one selected from the cluster 1400, the center fascia 1500, and the passenger seat dashboard 1600.
The display device 2 may include an organic light-emitting display device, an inorganic EL display device, a quantum dot display device, and/or the like. Hereinafter, as the display device 2 according to an embodiment of the disclosure, an organic light-emitting display device including the light-emitting device according to the disclosure will be described as an example, but various suitable types (or kinds) of display devices as described above may be used in embodiments of the disclosure.
Referring to
Referring to
Referring to
Respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, laser-induced thermal imaging, and the like.
When respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10−8 torr to about 10−3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, depending on a material to be included in a layer to be formed and the structure of a layer to be formed.
The term “C3-C60 carbocyclic group” as used herein refers to a cyclic group consisting of carbon only as a ring-forming atom and having three to sixty carbon atoms, and the term “C1-C60 heterocyclic group” as used herein refers to a cyclic group that has one to sixty carbon atoms and further has, in addition to carbon, a heteroatom as a ring-forming atom. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed together with each other. For example, the number of ring-forming atoms of the C1-C60 heterocyclic group may be from 3 to 61.
The “cyclic group” as used herein may include both the C3-C60 carbocyclic group and the C1-C60 heterocyclic group.
The term “π electron-rich C3-C60 cyclic group” as used herein refers to a cyclic group that has three to sixty carbon atoms and does not include *—N═*′ as a ring-forming moiety, and the term “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein refers to a heterocyclic group that has one to sixty carbon atoms and includes *—N═*′ as a ring-forming moiety.
For example,
The terms “the cyclic group, the C3-C60 carbocyclic group, the C1-C60 heterocyclic group, the π electron-rich C3-C60 cyclic group, or the π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein refer to a group condensed to any suitable cyclic group, a monovalent group, or a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, etc.) according to the structure of a formula for which the corresponding term is used. For example, the “benzene group” may be a benzo group, a phenyl group, a phenylene group, or the like, which may be easily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”
Examples of the monovalent C3-C60 carbocyclic group and monovalent C1-C60 heterocyclic group are a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, and examples of the divalent C3-C60 carbocyclic group and the monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C1 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.
The term “C1-C60 alkyl group” as used herein refers to a linear or branched aliphatic hydrocarbon monovalent group that has one to sixty carbon atoms, and examples thereof are a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as used herein refers to a divalent group having substantially the same structure as the C1-C60 alkyl group.
The term “C2-C60 alkenyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon double bond at a main chain (e.g., in the middle) and/or at a terminal end (e.g., the terminus) of the C2-C60 alkyl group, and examples thereof are an ethenyl group, a propenyl group, a butenyl group, and the like. The term “C2-C60 alkenylene group” as used herein refers to a divalent group having substantially the same structure as the C2-C60 alkenyl group.
The term “C2-C60 alkynyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon triple bond at a main chain (e.g., in the middle) and/or at a terminal end (e.g., the terminus) of the C2-C60 alkyl group, and examples thereof are an ethynyl group, a propynyl group, and the like. The term “C2-C60 alkynylene group” as used herein refers to a divalent group having substantially the same structure as the C2-C60 alkynyl group.
The term “C1-C60 alkoxy group” as used herein refers to a monovalent group represented by —OA101 (wherein A101 is the C1-C60 alkyl group), and examples thereof are a methoxy group, an ethoxy group, an isopropyloxy group, and the like.
The term “C3-C10 cycloalkyl group” as used herein refers to a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof are a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or bicyclo[2.2.1]heptyl group), a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, a bicyclo[2.2.2]octyl group, and the like. The term “C3-C10 cycloalkylene group” as used herein refers to a divalent group having substantially the same structure as the C3-C10 cycloalkyl group.
The term “C1-C10 heterocycloalkyl group” as used herein refers to a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and examples thereof are a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, a tetrahydrothiophenyl group, and the like. The term “C1-C10 heterocycloalkylene group” as used herein refers to a divalent group having substantially the same structure as the C1-C10 heterocycloalkyl group.
The term “C3-C10 cycloalkenyl group” as used herein refers to a monovalent cyclic group that has three to ten carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity (e.g., is not aromatic), and examples thereof are a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, and the like. The term “C3-C10 cycloalkenylene group” as used herein refers to a divalent group having substantially the same structure as the C3-C10 cycloalkenyl group.
The term “C1-C10 heterocycloalkenyl group” as used herein refers to a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having at least one carbon-carbon double bond in the cyclic structure thereof. Examples of the C1-C10 heterocycloalkenyl group are a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, a 2,3-dihydrothiophenyl group, and the like. The term “C1-C10 heterocycloalkenylene group” as used herein refers to a divalent group having substantially the same structure as the C1-C10 heterocycloalkenyl group.
The term “C6-C60 aryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms, and the term “C6-C60 arylene group” as used herein refers to a divalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms. Examples of the C6-C60 aryl group are a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, and the like. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the rings may be condensed together with each other.
The term “C1-C60 heteroaryl group” as used herein refers to a monovalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. The term “C1-C60 heteroarylene group” as used herein refers to a divalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. Examples of the C1-C60 heteroaryl group are a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, and a naphthyridinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the rings may be condensed together with each other.
The term “monovalent non-aromatic condensed polycyclic group” as used herein refers to a monovalent group (for example, having 8 to 60 carbon atoms) having two or more rings condensed to each other, only carbon atoms as ring-forming atoms, and no aromaticity in its entire molecular structure (e.g., is not aromatic when considered as a whole). Examples of the monovalent non-aromatic condensed polycyclic group are an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, an indeno anthracenyl group, and the like. The term “divalent non-aromatic condensed polycyclic group” as used herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed polycyclic group described above.
The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein refers to a monovalent group (for example, having 1 to 60 carbon atoms) having two or more rings condensed to each other, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having non-aromaticity in its entire molecular structure (e.g., is not aromatic when considered as a whole). Examples of the monovalent non-aromatic condensed heteropolycyclic group are a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphthoindolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indeno carbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, and a benzothienodibenzothiophenyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed heteropolycyclic group described above.
The term “C6-C60 aryloxy group” as used herein indicates —OA102 (wherein A102 is the C6-C60 aryl group), and the term “C6-C60 arylthio group” as used herein indicates —SA103 (wherein A103 is the C6-C60 aryl group).
The term “C7-C60 arylalkyl group” as used herein refers to -A104A105 (wherein A104 is a C1-C54 alkylene group, and A105 is a C6-C59 aryl group), and the term “C2-C60 heteroarylalkyl group” as used herein refers to -A106A107 (wherein A106 is a C1-C59 alkylene group, and A107 is a C1-C59 heteroaryl group).
The term “R10a” as used herein may be:
In the present specification, Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof; a C7-C60 arylalkyl group; or a C2-C60 heteroarylalkyl group.
The term “heteroatom” as used herein refers to any suitable atom other than a carbon atom. Examples of the heteroatom are O, S, N, P, Si, B, Ge, Se, and any combination thereof.
In the present specification, the third-row transition metal may include hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), and the like.
In the present specification, “Ph” refers to a phenyl group, “Me” refers to a methyl group, “Et” refers to an ethyl group, “tert-Bu” or “But” refers to a tert-butyl group, and “OMe” refers to a methoxy group.
The term “biphenyl group” as used herein refers to “a phenyl group substituted with a phenyl group.” In other words, the “biphenyl group” may be a substituted phenyl group having a C6-C60 aryl group as a substituent.
The term “terphenyl group” as used herein refers to “a phenyl group substituted with a biphenyl group.” In other words, the “terphenyl group” may be a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.
* and *′ as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula or moiety.
In the present specification, the x-axis, y-axis, and z-axis are not limited to three axes in an orthogonal coordinate system, and may be interpreted in a broad sense including these axes. For example, the x-axis, y-axis, and z-axis may refer to those orthogonal to each other, or may refer to those in different directions that are not orthogonal to each other.
Hereinafter, compounds according to embodiments and light-emitting devices according to embodiments will be described in more detail with reference to the following synthesis examples and examples. The wording “B was used instead of A” used in describing Synthesis Examples refers to that an identical molar equivalent of B was used in place of A.
12H-benzofuro[3,2-a]carbazole, 1-bromo-2-fluorobenzene and cesium carbonate were dissolved in DMF, and then heated at 160° C. to obtain Intermediate 1-1. Intermediate 1-1 was confirmed by liquid chromatography/mass spectrometry (LC/MS).
C24H14BrNO M+1: 413.02
After Intermediate 1-1 was dissolved in THF and reacted with n-BuLi at −78° C., trimethyl borate was added dropwise thereto to obtain Intermediate 1-2. Intermediate 1-2 was confirmed by LC/MS.
C24H16BNO3 M+1: 378.13
After 2.6 g of Intermediate 1-2 and 3.07 g of 9,9′-(6-chloro-1,3,5-triazine-2,4-diyl)bis(9H-carbazole) were dissolved in toluene, 2.38 g of K2CO3, 0.40 g of Pd(PPh3)4, H2O, and ethanol were added dropwise thereto, followed by reaction at 120° C. for 12 hours. After the reaction was completed, an extraction process using methylene chloride (MC) and column purification were performed thereon to obtain 3.86 g of Compound 1 (yield: 75%). Compound 1 was identified by LC/MS and proton nuclear magnetic resonance spectroscopy (1H-NMR).
Intermediate 2-1 was synthesized in substantially the same manner as used to synthesize Intermediate 1-1, except that 1-bromo-2-fluorobenzene-3,4,5,6-d4 was used instead of 1-bromo-2-fluorobenzene. Intermediate 2-1 was identified by LC/MS.
C24H10D4BrNO M+1: 417.05
Intermediate 2-2 was synthesized in substantially the same manner as used to synthesize Intermediate 1-2, except that Intermediate 2-1 was used instead of Intermediate 1-1. Intermediate 2-2 was identified by LC/MS.
Compound 2 was synthesized in substantially the same manner as used to synthesize Compound 1, except that Intermediate 2-2 was used instead of Intermediate 1-2. Compound 2 was identified by LC/MS and 1H-NMR.
Compound 9 was synthesized in substantially the same manner as used to synthesize Compound 1, except that 9,9′-(6-chloro-1,3,5-triazine-2,4-diyl)bis(9H-carbazole-1,2,3,4,5,6,7,8-d8) was used instead of 9,9′-(6-Chloro-1,3,5-triazine-2,4-diyl)bis(9H-carbazole). Compound 9 was identified by LC/MS and 1H-NMR.
Compound 10 was synthesized in substantially the same manner as used to synthesize Compound 1, except that 9,9′-(6-chloro-1,3,5-triazine-2,4-diyl)bis(9H-carbazole-1,2,3,4,5,6,7,8-d8) and Intermediate 2-2 were used instead of 9,9′-(6-Chloro-1,3,5-triazine-2,4-diyl)bis(9H-carbazole) and Intermediate 1-2. Compound 10 was identified by LC/MS and 1H-NMR.
Dibenzofuran-d8, iron powder, and bromine were dissolved in methylene chloride (MC) and then reacted at room temperature to obtain Intermediate 11-1. Intermediate 11-1 was confirmed by LC/MS.
C12D7BrO M+1: 255.01
Intermediate 11-1, bis(pinacolato) diboron, potassium acetate, and PdCl2(dppf) were dissolved in 1,4-dioxane, and then reacted at 120° C. to obtain Intermediate 11-2. Intermediate 11-2 was confirmed by LC/MS.
C18H12D7BO3 M+1: 302.19
Intermediate 11-2, 1-bromo-2-nitrobenzene-3,4,5,6-d4, potassium carbonate, H2O, and Pd(PPh3)4 were dissolved in THF and then reacted at 100° C. to obtain Intermediate 11-3. Intermediate 11-3 was confirmed by LC/MS.
C18H4D7NO3 M+1: 297.12
Intermediate 11-3 and triphenylphosphine were dissolved in 1,2-dichlorobenzene and then reacted at 190° C. to obtain Intermediate 11-4. Intermediate 11-4 was confirmed by LC/MS.
C18HD10NO M+1: 268.15
Intermediate 11-5 was synthesized in substantially the same manner as used to synthesize Intermediate 1-1, except that Intermediate 11-4 was used instead of 12H-benzofuro[3,2-a]carbazole. Intermediate 11-5 was confirmed by LC/MS.
C24D14BrNO M+1: 427.11
Intermediate 11-6 was synthesized in substantially the same manner as used to synthesize Intermediate 1-2, except that Intermediate 11-5 was used instead of Intermediate 1-1. Intermediate 11-6 was confirmed by LC/MS.
C24H2D14BNO3 M+1: 392.21
Compound 11 was synthesized in substantially the same manner as used to synthesize Compound 1, except that 9,9′-(6-chloro-1,3,5-triazine-2,4-diyl)bis(9H-carbazole-1,2,3,4,5,6,7,8-d8) and Intermediate 11-6 were used instead of 9,9′-(6-Chloro-1,3,5-triazine-2,4-diyl)bis(9H-carbazole) and Intermediate 1-2. Compound 11 was identified by LC/MS and 1H-NMR.
Fast atom bombardment-mass spectrometry (FAB-MS) of the compounds synthesized according to Synthesis Examples 1 to 5 are shown in Table 1 below. Synthesis methods of other compounds in addition to the compounds synthesized in Synthesis Examples 1 to 5 may be easily recognized by those skilled in the art by referring to the synthesis paths and source materials described herein.
As an anode, a glass substrate having 15 Ωcm2 (1,200 Å) ITO thereon, which was manufactured by Corning Inc., was cut to a size of 50 mm×50 mm×0.5 mm, and the glass substrate was sonicated by using isopropyl alcohol and pure water for 5 minutes each, and then ultraviolet (UV) light was irradiated for 30 minutes thereto and ozone was exposed thereto for cleaning. Then, the resultant glass substrate was loaded onto a vacuum deposition apparatus.
As a hole injection layer, HATCN was formed on the substrate in a thickness of 100 Å, BCFN, which is a first hole transport material, was vacuum-deposited in a thickness of 600 Å, and then SiCzCz, which is a hole transport material, was vacuum-deposited as a second hole-transporting compound in a thickness of 50 Å to form a hole transport layer.
As a host, Compound 1 and PtON-TBBI, which is a phosphorescent dopant, were co-deposited on the hole transport layer at a weight ratio of 87:13 to form an emission layer having a thickness of 350 Å.
As a first electron transport layer, mSiTrz was deposited on the emission layer in a thickness of 50 Å, and mSiTrz and LiQ were co-deposited as a second electron transport layer at a ratio of 1:1 to form an electron transport layer having a thickness of 350 Å. LiF, which is a halogenated alkaline metal, was deposited on the electron transport layer having a thickness of 15 Å, and then, Al was vacuum-deposited in a thickness of 80 Å to form an LiF/AI electrode, thereby completing the manufacture of an organic light-emitting device.
Organic light-emitting devices were manufactured in substantially the same manner as in Example 1, except that compounds shown in Table 2 were each used instead of Compound 1 in forming an emission layer.
The characteristics of the organic electroluminescent devices according to the Examples and the Comparative Examples were evaluated by measuring the driving voltage, maximum quantum efficiency, and device relative lifespan thereof, at the current density of 10 mA/cm2.
The driving voltage and current density of an organic light-emitting device were measured using a source meter (Keithley Instrument, 2400 series), and the maximum quantum efficiency was measured using the external quantum efficiency measurement device 9920-2-12 of Hamamatsu Photonics Inc. In evaluating the maximum quantum efficiency, the luminance/current density was measured utilizing a luminance meter that was calibrated for wavelength sensitivity, and the maximum quantum efficiency was converted by assuming an angular luminance distribution (Lambertian) which introduced a perfect reflecting diffuser.
Table 2 shows the evaluation results of the characteristics of the light-emitting devices.
From Table 2, it can be seen that the organic light-emitting devices according to Examples 1 to 5 had equal or improved efficiency and lifespan characteristics, compared to the organic light-emitting devices according to Comparative Examples 1 to 6.
As described above, the inclusion of a heterocyclic compound represented by Formula 1 may enable the manufacture of a light-emitting device having high efficiency and long lifespan and a high-quality electronic apparatus including the light-emitting device.
It should be understood that embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. While one or more embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims, and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10-2023-0003601 | Jan 2023 | KR | national |