LIGHT-EMITTING DEVICE, MANUFACTURING METHOD THEREOF AND ELECTRONIC APPARATUS INCLUDING THE SAME

Information

  • Patent Application
  • 20230131817
  • Publication Number
    20230131817
  • Date Filed
    September 20, 2022
    a year ago
  • Date Published
    April 27, 2023
    a year ago
Abstract
Provided are a light-emitting device, a manufacturing method thereof and an electronic apparatus including the same, the light-emitting device including: a first electrode; a second electrode facing the first electrode; a middle region including an emission layer between the first electrode and the second electrode and an electron transport region between the second electrode and the emission layer; and an anti-oxidation layer between the second electrode and the electron transport region. The electron transport region includes an inorganic electron transport layer that comprises a metal oxide layer including a metal oxide.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to and the benefit of Korean Patent Application No. 10-2021-0131131, filed on Oct. 1, 2021, in the Korean Intellectual Property Office, the entire contents of which are hereby incorporated by reference.


BACKGROUND
1. Field

One or more embodiments of the present disclosure relate to a light-emitting device and an electronic apparatus including the same.


2. Description of the Related Art

Light-emitting devices, for example, organic light-emitting devices, are self-emissive devices that, as compared with devices of the related art, have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of luminance, driving voltage, and response speed.


In a light-emitting device, a first electrode is located on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode are sequentially formed on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. The holes and the electrons, which are carriers, recombine in the emission layer to produce excitons. These excitons transition from an excited state to a ground state, thereby generating light.


SUMMARY

One or more embodiments of the present disclosure are directed to a light-emitting device having a structure that prevents or reduces cathode oxidation and an electronic apparatus that includes this light-emitting device.


Additional aspects of embodiments will be set forth in part in the description, which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments of the disclosure.


According to one or more embodiments, there is provided a light-emitting device including a first electrode,


a second electrode facing the first electrode,


a middle region including an emission layer between the first electrode and the second electrode and an electron transport region between the second electrode and the emission layer, and


an anti-oxidation layer between the second electrode and the electron transport region,


wherein the electron transport region includes an inorganic electron transport layer that includes a metal oxide layer including a metal oxide.


In an embodiment, the anti-oxidation layer may include a transparent conductive oxide. In an embodiment, the transparent conductive oxide may include indium-tin oxide (ITO), aluminum-doped zinc oxide (AZO), indium-zinc oxide (IZO), or a mixture thereof.


In an embodiment, the anti-oxidation layer may have a thickness of 50 Å to 100 Å.


In an embodiment, the anti-oxidation layer may be in contact with the second electrode.


In an embodiment, the inorganic electron transport layer may include a metal oxide represented by Formula 1.





MxOy  Formula 1


In Formula 1,


M may be at least one metal or metalloid selected from elements belonging to Groups 1 to 14 of the Periodic Table of Elements, and


x and y may each independently be an integer from 1 to 5.


In an embodiment, M may include Zn, Ti, W, Sn, In, Nb, Fe, Ce, Sr, Ba, In, Al, Nb, Si, Mg, Ga, or a combination thereof.


In an embodiment, the inorganic electron transport layer may include a metal oxide represented by Formula 2.





M1αM2βOy  Formula 2


In Formula 2,


M1 and M2 may each independently be at least one different metal or metalloid selected from elements belonging to Groups 1 to 14 of the Periodic Table of Elements, and


0<α≤2, 0<β≤2, and 1<y≤5 are satisfied.


In an embodiment, M1 may include Zn, Ti, W, Sn, In, Nb, Fe, Ce, Sr, Ba, In, Al, Nb, or a combination thereof, and M2 may include Ti, Sn, Si, Mg, Al, Ga, In, or a combination thereof.


In an embodiment, the metal oxide may be a zinc-containing oxide. In an embodiment, the metal oxide may be ZnO or ZnMgO, but embodiments of the disclosure are not limited thereto.


In an embodiment, the inorganic electron transport layer may include 50 parts by weight or more of the metal oxide based on 100 parts by weight of the entire inorganic electron transport layer. In an embodiment, the metal oxide layer may consist of the metal oxide.


In an embodiment, the inorganic electron transport layer may be organic-free.


In an embodiment, the emission layer may include quantum dots.


According to another aspect of embodiments of the present disclosure, there is provided a method of manufacturing a light-emitting device, the method comprising providing an emission layer on a first electrode,


providing, on the emission layer, an inorganic electron transport layer including a metal oxide,


providing an anti-oxidation layer on the inorganic electron transport layer, and


providing a second electrode on the anti-oxidation layer.


In an embodiment, the anti-oxidation layer may be provided by physical vapor deposition of a transparent conductive oxide. In an embodiment, the anti-oxidation layer may be provided by sputtering or vacuum deposition.


In an embodiment, the second electrode may be provided by vacuum deposition.


In an embodiment, the inorganic electron transport layer may be provided by inkjet printing of a composition including the metal oxide or vacuum deposition of the metal oxide.


According to another aspect of embodiments of the present disclosure, there is provided an electronic apparatus including the light-emitting device.


In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects and features of certain embodiments of the present disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:



FIG. 1 shows a schematic view of a structure of a light-emitting device according to an embodiment;



FIG. 2 shows a schematic view of a structure of an electronic apparatus according to an embodiment;



FIG. 3 shows a schematic view of a structure of an electronic apparatus according to another embodiment; and



FIG. 4 is device lifespan simulation data of the light-emitting devices of Example 1 and Comparative Example 1.





DETAILED DESCRIPTION

Reference will now be made in more detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are described below, by referring to the figures, to explain non-limiting aspects of embodiments of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Throughout the disclosure, the expression “at least one of a, b and c” indicates only a, only b, only c, both a and b, both a and c, both b and c, all of a, b, and c, or variations thereof.


Because the subject matter of the disclosure may have diverse modified embodiments, embodiments are illustrated in the drawings and are described in the detailed description. An effect and a characteristic of the disclosure, and a method of accomplishing these will be apparent when referring to embodiments described with reference to the drawings. The subject matter of the disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.


It will be understood that although the terms “first,” “second,” etc. used herein may be used to describe various components, these components should not be limited by these terms. These components are only used to distinguish one component from another.


An expression used in the singular encompasses the expression of the plural, unless it has a clearly different meaning in the context.


In the following embodiments, when various components such as layers, films, regions, plates, etc. are said to be “on” another component, this may include not only a case in which other components are “immediately on” the layers, films, regions, or plates, but also a case in which other components may be placed therebetween. Sizes of elements in the drawings may be exaggerated for convenience of explanation. In other words, because sizes and thicknesses of components in the drawings may be arbitrarily illustrated for convenience of explanation, the following embodiments are not limited thereto.


It will be further understood that the terms “includes” and/or “comprises” used herein specify the presence of stated features or elements, but do not preclude the presence or addition of one or more other features or elements. Unless defined otherwise, the terms “include or have” may refer to both the case of consisting of features or components described in a specification and the case of further including other components.


In the present specification, “Group 1” includes, but is not limited to, IA Group elements of the IUPAC Periodic Table of Elements, for example, Li, Na, K, Rb, and Cs.


In the present specification, “Group 2” includes, but is not limited to, IIA Group elements of the IUPAC Periodic Table of Elements, for example, Be, Mg, Ca, Sr, and Ba.


In the present specification, “Group 3” includes, but is not limited to, IIIB Group elements of the IUPAC Periodic Table of Elements, for example, Sc, Y, La, and Ac.


In the present specification, “Group 4” includes, but is not limited to, IVB Group elements of the IUPAC Periodic Table of Elements, for example, Ti, Zr, and Hf.


In the present specification, “Group 5” includes, but is not limited to, VB Group elements of the IUPAC Periodic Table of Elements, for example, V, Nb, and Ta.


In the present specification, “Group 6” includes, but is not limited to, VIB Group elements of the IUPAC Periodic Table of Elements, for example, Cr, Mo, and W.


In the present specification, “Group 7” includes, but is not limited to, VIIB Group elements of the IUPAC Periodic Table of Elements, for example, Mn, Tc, and Re.


In the present specification, “Groups 8 to 10” include, but are not limited to, VIIIB Group elements of the IUPAC Periodic Table of Elements, for example, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, and Pt.


In the present specification, “Group 11” includes, but is not limited to, IB Group elements of the IUPAC Periodic Table of Elements, for example, Cu, Ag, and Au.


In the present specification, “Group 12” includes, but is not limited to, IIB Group elements of the IUPAC Periodic Table of Elements, for example, Zn, Cd, and Hg.


In the present specification, “Group 13” includes, but is not limited to, IIIA Group elements of the IUPAC Periodic Table of Elements, for example, Al, Ga, In, and Tl.


In the present specification, “Group 14” includes, but is not limited to, IVA Group elements of the IUPAC Periodic Table of Elements, for example, Si, Ge, Sn, and Pb.


In the present specification, “Group 15” includes, but is not limited to, VA Group elements of the IUPAC Periodic Table of Elements, for example, N, P, As, Sb, and Bi.


In the present specification, “Group 16” includes, but is not limited to, VIA Group elements of the IUPAC Periodic Table of Elements, for example, O, S, Se, Te, and Po.



FIG. 1 is a schematic cross-sectional view of a light-emitting device 10 according to an embodiment.


The light-emitting device (for example, an organic light-emitting device) 10 according to an aspect of an embodiment includes: a first electrode 110; a second electrode 150 facing the first electrode 110; a middle region 130 including an emission layer 135 between the first electrode 110 and the second electrode 150 and an electron transport region 136 between the second electrode 150 and the emission layer 135; and an anti-oxidation layer 140 between the second electrode 150 and the electron transport region 136, and the electron transport region 136 may include an inorganic electron transport layer including a metal oxide.


Recently, because of a demand for high-efficiency light emitting devices according to the integration and advancement of electronic devices, and the application of a cathode material having a low work function with excellent electron injection performance is being researched. However, because a metal oxide is used as an electron transport region material, oxidation of a cathode material by —OH and —COOH groups present on the surface of the metal oxide remains a problem, and in order to solve the problem, modifications have been made to improve oxidation resistance of a cathode material or attempts have been made to increase the thickness of an electron injection layer.


However, the modifications for improving the oxidation resistance of the cathode material lead to a decrease in electron injection performance or an increase in raw material price, and the increasing of the thickness of the electron injection layer leads to an increase in internal resistance, thereby resulting in an increase in overall driving voltage. Therefore, there has been a limitation in manufacturing a light-emitting device including a cathode including a cathode material having excellent electron injection performance and an electron transport region including a metal oxide layer.


The inventors of the present disclosure have discovered that, by the inclusion of the anti-oxidation layer 140 between the second electrode 150 and the electron transport region 136, oxidation of the second electrode 150 due to —OH or —COOH impurities present on the surface of the metal oxide, for example, ZnMgO, in a metal oxide layer included in the electron transport region 136 is prevented or reduced.


A light-emitting device according to an aspect of embodiments of the present disclosure may be a top-emission-type light-emitting device in which light is emitted toward a second electrode.


In an embodiment, in the top-emission-type light-emitting device, light amplified by first resonance and/or second resonance may be emitted.


Light amplified by first resonance refers to light reflected from a first electrode interface, from among light generated from an emission layer of the top-emission-type light-emitting device, and amplified by constructive interference with light emitted toward the second electrode.


Light amplified by second resonance refers to light reflected from a reflective layer (for example, Ag) present in a first electrode (for example, ITO/Ag/ITO), from among light generated from an emission layer of the top-emission-type light-emitting device, and amplified by constructive interference with light emitted toward the second electrode.


In a top-emission-type light-emitting device according to an embodiment, an optical distance for generating first resonance and second resonance may be suitably or appropriately adjusted by the introduction of an anti-oxidation layer.


In an embodiment, when a hole injection layer may be formed on a first electrode by using inkjet printing, one of ordinary skill in the art may suitably or appropriately adjust the thickness of a hole injection layer in consideration of an emission wavelength of light emitted from an emission layer to maximize or increase resonance efficiency.


In an embodiment, when a hole injection layer consisting of an inorganic compound, for example, WOx or MoOx, which is difficult to form a hole injection layer on a first electrode by using inkjet printing, is introduced, the first electrode and the hole injection layer may be formed by a single step process by using a photolithography method and, in this case, one of ordinary skill in the art may suitably or appropriately adjust the thickness of a hole transport layer in consideration of an emission wavelength of light emitted from an emission layer to maximize or increase resonance efficiency.


Hereinafter, a structure of the light-emitting device 10 according to an embodiment and a method of manufacturing the light-emitting device 10 will be described in connection with FIG. 1.


First Electrode 110

In FIG. 1, a substrate may be additionally located under the first electrode 110 or above the second electrode 150. As the substrate, a glass substrate and/or a plastic substrate may be used. In an embodiment, the substrate may be a flexible substrate, and may include plastics having excellent heat resistance and durability, such as polyimide, polyethylene terephthalate (PET), polycarbonate, polyethylene napthalate, polyarylate (PAR), polyetherimide, or any combination thereof.


The first electrode 110 may be formed by, for example, applying a material for forming the first electrode 110 on the substrate by using a deposition method, a sputtering method, a photolithography method, and/or the like. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high work function material that facilitates injection of holes.


The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. When the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or any combination thereof. In one or more embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof may be used as a material for forming a first electrode 110.


The first electrode 110 may have a single-layered structure consisting of a single layer or a multilayer structure including a plurality of layers. For example, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO.


Middle Region 130

The middle region 130 is on the first electrode 110. The middle region 130 includes an emission layer 135.


The middle region 130 may further include a hole transport region between the first electrode 110 and the emission layer 135 and an electron transport region 136 between the emission layer 135 and the second electrode 150.


The middle region 130 may further include, in addition to various suitable organic materials, a metal-containing compound such as an organometallic compound, an inorganic material such as quantum dots, and/or the like.


In one or more embodiments, the middle region 130 may include, i) two or more emitting units sequentially stacked between the first electrode 110 and the second electrode 150, and ii) a charge generation layer between the two emitting units. When the middle region 130 includes the emitting units and the charge generation layer as described above, the light-emitting device 10 may be a tandem light-emitting device.


Hole Transport Region in Middle Region 130

The hole transport region may have: i) a single-layered structure consisting of a single layer consisting of a single material, ii) a single-layered structure consisting of a single layer consisting of a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.


The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof.


For example, the hole transport region may have a multi-layered structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, the layers of each structure being stacked sequentially from the first electrode 110.


The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof:




embedded image


wherein, in Formulae 201 and 202,


L201 to L204 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,


L205 may be *—O—*′, *—S—*′, *—N(Q201)-*′, a C1-C20 alkylene group unsubstituted or substituted with at least one R10a, a C2-C20 alkenylene group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,


xa1 to xa4 may each independently be an integer from 0 to 5,


xa5 may be an integer from 1 to 10,


R201 to R204 and Q201 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,


R201 and R202 may optionally be linked to each other, via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a, to form a C8-C60 polycyclic group (for example, a carbazole group or the like) unsubstituted or substituted with at least one R10a (for example, Compound HT16),


R203 and R204 may optionally be linked to each other via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a, to form a C8-C60 polycyclic group unsubstituted or substituted with at least one R10a, and


na1 may be an integer from 1 to 4.


In an embodiment, each of Formulae 201 and 202 may include at least one of groups represented by Formulae CY201 to CY217:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein in Formulae CY201 to CY217, R10b and R10c may each be the same as described with respect to R10a, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formulae CY201 to CY217 may be unsubstituted or substituted with R10a as described above.


In an embodiment, ring CY201 to ring CY204 in Formulae CY201 to CY217 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.


In an embodiment, each of Formulae 201 and 202 may include at least one of groups represented by Formulae CY201 to CY203.


In an embodiment, Formula 201 may include at least one of groups represented by Formulae CY201 to CY203 and at least one of groups represented by Formulae CY204 to CY217.


In an embodiment, xa1 in Formula 201 may be 1, R201 may be a group represented by one of Formulae CY201 to CY203, xa2 may be 0, and R202 may be a group represented by one of Formulae CY204 to CY207.


In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY203.


In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY203, and may include at least one of groups represented by Formulae CY204 to CY217.


In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY217.


In an embodiment, the hole transport region may include one of Compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å, for example, about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or any combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, for example, about 100 Å to about 1,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer and the hole transport layer are within these ranges, suitable or satisfactory hole-transporting characteristics may be obtained without a substantial increase in driving voltage.


The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by an emission layer, and the electron blocking layer may block or reduce the leakage of electrons from an emission layer to a hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron blocking layer.


p-Dopant


The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties. The charge-generation material may be uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer consisting of a charge-generation material).


The charge-generation material may be, for example, a p-dopant.


In an embodiment, a lowest unoccupied molecular orbital (LUMO) energy level of the p-dopant may be about −3.5 eV or less.


In an embodiment, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound containing element EL1 and element EL2, or any combination thereof.


Examples of the quinone derivative may include TCNQ, F4-TCNQ, and the like.


Examples of the cyano group-containing compound may include HAT-CN, a compound represented by Formula 221 below, and the like




embedded image


In Formula 221,


R221 to R223 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, and


at least one of R221 to R223 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each substituted with: a cyano group; —F; —Cl; —Br; —I; a C1-C20 alkyl group substituted with a cyano group, —F, —Cl, —Br, —I, or any combination thereof; or any combination thereof.


In the compound containing element EL1 and element EL2, element EL1 may be metal, metalloid, or a combination thereof, and element EL2 may be non-metal, metalloid, or a combination thereof.


Examples of the metal may include: an alkali metal (for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); an alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); a transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); a post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), etc.); and a lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.).


Examples of the metalloid may include silicon (Si), antimony (Sb), and tellurium (Te).


Examples of the non-metal may include oxygen (O) and halogen (for example, F, Cl, Br, I, etc.).


In an embodiment, examples of the compound containing element EL1 and element EL2 may include metal oxide, metal halide (for example, metal fluoride, metal chloride, metal bromide, or metal iodide), metalloid halide (for example, metalloid fluoride, metalloid chloride, metalloid bromide, or metalloid iodide), metal telluride, or any combination thereof.


Examples of the metal oxide may include tungsten oxide (for example, WO, W2O3, WO2, WO3, W2O5, etc.), vanadium oxide (for example, VO, V2O3, VO2, V2O5, etc.), molybdenum oxide (MoO, Mo2O3, MoO2, MoO3, Mo2O5, etc.), and rhenium oxide (for example, ReO3, etc.).


Examples of the metal halide may include an alkali metal halide, an alkaline earth metal halide, a transition metal halide, a post-transition metal halide, and a lanthanide metal halide.


Examples of the alkali metal halide may include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, and CsI.


Examples of the alkaline earth metal halide may include BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2), SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, BeI2, MgI2, CaI2, SrI2, and BaI2.


Examples of the transition metal halide may include titanium halide (for example, TiF4, TiCl4, TiBr4, TiI4, etc.), zirconium halide (for example, ZrF4, ZrCl4, ZrBr4, Zrl4, etc.), hafnium halide (for example, HfF4, HfCl4, HfBr4, HfI4, etc.), vanadium halide (for example, VF3, VCl3, VBr3, VI3, etc.), niobium halide (for example, NbF3, NbCl3, NbBr3, NbI3, etc.), tantalum halide (for example, TaF3, TaCl3, TaBr3, TaI3, etc.), chromium halide (for example, CrF3, CrCl3, CrBr3, CrI3, etc.), molybdenum halide (for example, MoF3, MoCl3, MoBr3, MoI3, etc.), tungsten halide (for example, WF3, WCl3, WBr3, WI3, etc.), manganese halide (for example, MnF2, MnCl2, MnBr2, MnI2, etc.), technetium halide (for example, TcF2, TcCl2, TcBr2, TcI2, etc.), rhenium halide (for example, ReF2, ReCl2, ReBr2, ReI2, etc.), ferrous halide (for example, FeF2, FeCl2, FeBr2, FeI2, etc.), ruthenium halide (for example, RuF2, RuCl2, RuBr2, RuI2, etc.), osmium halide (for example, OsF2, OsCl2, OsBr2, OsI2, etc.), cobalt halide (for example, CoF2, CoCl2, CoBr2, COI2, etc.), rhodium halide (for example, RhF2, RhCl2, RhBr2, RhI2, etc.), iridium halide (for example, IrF2, IrCl2, IrBr2, IrI2, etc.), nickel halide (for example, NiF2, NiCl2, NiBr2, NiI2, etc.), palladium halide (for example, PdF2, PdCl2, PdBr2, PdI2, etc.), platinum halide (for example, PtF2, PtCl2, PtBr2, PtI2, etc.), cuprous halide (for example, CuF, CuCl, CuBr, CuI, etc.), silver halide (for example, AgF, AgCl, AgBr, AgI, etc.), and gold halide (for example, AuF, AuCl, AuBr, AuI, etc.).


Examples of the post-transition metal halide may include zinc halide (for example, ZnF2, ZnCl2, ZnBr2, ZnI2, etc.), indium halide (for example, InI3, etc.), and tin halide (for example, SnI2, etc.).


Examples of the lanthanide metal halide may include YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3, SmCl3, YbBr, YbBr2, YbBr3, SmBr3, YbI, YbI2, YbI3, and SmI3.


Examples of the metalloid halide may include antimony halide (for example, SbCl5, etc.).


Examples of the metal telluride may include alkali metal telluride (for example, Li2Te, Na2Te, K2Te, Rb2Te, Cs2Te, etc.), alkaline earth metal telluride (for example, BeTe, MgTe, CaTe, SrTe, BaTe, etc.), transition metal telluride (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), post-transition metal telluride (for example, ZnTe, etc.), and lanthanide metal telluride (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.).


Emission layer 135 in middle region 130


When the light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a sub-pixel. In an embodiment, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other. In one or more embodiments, the emission layer may include two or more materials of a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed with each other in a single layer to emit white light.


The emission layer may include a host and a dopant. The dopant may include a phosphorescent dopant, a fluorescent dopant, or any combination thereof.


An amount of the dopant in the emission layer may be from about 0.01 parts by weight to about 15 parts by weight based on 100 parts by weight of the host.


In an embodiment, the emission layer may include a quantum dot.


In an embodiment, the emission layer may include a delayed fluorescence material. The delayed fluorescence material may act as a host or a dopant in the emission layer.


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer is within the range, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.


[Host]


The host may include a compound represented by Formula 301 below:





[Ar301]xb11-[(L301)xb1-R301]xb21,  Formula 301


wherein, in Formula 301,


Ar301 and L301 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,


xb11 may be 1, 2, or 3,


xb1 may be an integer from 0 to 5,


R301 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), or —P(═O)(Q301)(Q302),


xb21 may be an integer from 1 to 5, and


Q301 to Q303 are respectively the same as those described in connection with Q1.


In an embodiment, when xb11 in Formula 301 is 2 or more, two or more of Ar301(s) may be linked to each other via a single bond.


In an embodiment, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or any combination thereof:




embedded image


wherein, in Formulae 301-1 and 301-2,


ring A301 to ring A304 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,


X301 may be O, S, N[(L304)xb4-R304], C(R304)(R305), or Si(R304)(R305),


xb22 and xb23 may each independently be 0, 1, or 2,


L301, xb1, and R301 are respectively the same as those described in the present disclosure,


L302 to L304 are each independently the same as described in connection with L301,


xb2 to xb4 are each independently the same as described in connection with xb1, and


R302 to R305 and R311 to R314 are respectively the same as those described in connection with R301.


In an embodiment, the host may include an alkali earth metal complex, a post-transition metal complex, or a combination thereof. In an embodiment, the host may include a Be complex (for example, Compound H55), a Mg complex, a Zn complex, or a combination thereof.


In an embodiment, the host may include one of Compounds H1 to H124, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di(9-carbazolyl)benzene (mCP), and 1,3,5-tri(carbazol-9-yl)benzene (TCP), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Phosphorescent Dopant

The phosphorescent dopant may include at least one transition metal as a central metal.


The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or any combination thereof.


The phosphorescent dopant may be electrically neutral.


In an embodiment, the phosphorescent dopant may include an organometallic compound represented by Formula 401:




embedded image


wherein, in Formulae 401 and 402,


M may be a transition metal (for example, iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), gold (Au), hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), rhenium (Re), or thulium (Tm)),


L401 may be a ligand represented by Formula 402, and xc1 may be 1, 2, or 3, wherein, when xc1 is 2 or more, two or more of L401(s) may be identical to or different from each other,


L402 may be an organic ligand, and xc2 may be 0, 1, 2, 3, or 4, wherein, when xc2 is 2 or more, two or more of L402(s) may be identical to or different from each other,


X401 and X402 may each independently be nitrogen or carbon,


ring A401 and ring A402 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group,


T401 may be a single bond, *—O—*′, *—S—*′, *—C(═O)—*′, *—N(Q411)-*′, *—C(Q411)(Q412)-*′, *—C(Q411)=C(Q412)-*′, *—C(Q411)=*′, or *═C═*′,


X403 and X404 may each independently be a chemical bond (for example, a covalent bond or a coordinate bond), O, S, N(Q413), B(Q413), P(Q413), C(Q413)(Q414), or Si(Q413)(Q414),


Q411 to Q414 are respectively the same as those described in connection with Q1,


R401 and R402 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group unsubstituted or substituted with at least one R10a, a C1-C20 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), or —P(═O)(Q401)(Q402),


Q401 to Q403 are respectively the same as those described in connection with Q1,


xc11 and xc12 may each independently be an integer from 0 to 10, and


* and *′ in Formula 402 each indicate a binding site to M in Formula 401.


In an embodiment, in Formula 402, i) X401 may be nitrogen, and X402 may be carbon, or ii) each of X401 and X402 may be nitrogen.


In an embodiment, when xc1 in Formula 402 is 2 or more, two ring A401 in two or more of L401(s) may be optionally linked to each other via T402, which is a linking group, or two ring A402 may optionally be linked to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 are respectively the same as those described in connection with T401.


L402 in Formula 401 may be an organic ligand. In an embodiment, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O) group, an isonitrile group, —CN group, a phosphorus-containing group (for example, a phosphine group, a phosphite group, etc.), or any combination thereof.


The phosphorescent dopant may include, for example, one of compounds PD1 to PD25, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Fluorescent Dopant

The fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or any combination thereof.


In an embodiment, the fluorescent dopant may include a compound represented by Formula 501:




embedded image


wherein, in Formula 501,


Ar501, L501 to L503, R501, and R502 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,


xd1 to xd3 may each independently be 0, 1, 2, or 3, and


xd4 may be 1, 2, 3, 4, 5, or 6.


In an embodiment, Ar501 in Formula 501 may be a condensed cyclic group (for example, an anthracene group, a chrysene group, or a pyrene group) in which three or more monocyclic groups are condensed together.


In an embodiment, xd4 in Formula 501 may be 2.


For example, the fluorescent dopant may include: one of Compounds FD1 to FD36; DPVBi; and DPAVBi; or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Delayed Fluorescence Material

The emission layer may include a delayed fluorescence material.


In the present specification, the delayed fluorescence material may be selected from compounds capable of emitting delayed fluorescence based on a delayed fluorescence emission mechanism.


The delayed fluorescence material included in the emission layer may act as a host or a dopant depending on the type of other materials included in the emission layer.


In an embodiment, the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material may be greater than or equal to 0 eV and less than or equal to 0.5 eV. When the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material satisfies the above-described range, up-conversion from the triplet state to the singlet state of the delayed fluorescence materials may effectively occur, and thus, the luminescence efficiency of the light-emitting device 10 may be improved.


In an embodiment, the delayed fluorescence material may include i) a material including at least one electron donor (for example, a π electron-rich C3-C60 cyclic group, such as a carbazole group) and at least one electron acceptor (for example, a sulfoxide group, a cyano group, or a π electron-deficient nitrogen-containing C1-C60 cyclic group), and ii) a material including a C8-C60 polycyclic group in which two or more cyclic groups are condensed while sharing boron (B).


Examples of the delayed fluorescence material may include at least one of the following Compounds DF1 to DF9:




embedded image


Quantum Dot

The emission layer may include a quantum dot.


In the present disclosure, a quantum dot refers to a crystal of a semiconductor compound, and may include any suitable material capable of emitting light of various suitable emission wavelengths according to the size of the crystal.


A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.


The quantum dot may be synthesized by a wet chemical process, a metal organic chemical vapor deposition process, a molecular beam epitaxy process, and/or any suitable process similar thereto.


According to the wet chemical process, a precursor material is mixed with an organic solvent to grow a quantum dot particle crystal. When the quantum dot particle crystal grows, the organic solvent naturally acts as a dispersant coordinated on the surface of the quantum dot particle crystal and controls the growth of the quantum dot particle crystal so that the growth of quantum dot particles crystal can be controlled through a process which is more easily performed than vapor deposition methods, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE), and which requires low costs.


The quantum dots may include: a Group 2-6 semiconductor compound; a Group 3-5 semiconductor compound; a Group 3-6 semiconductor compound; a Group 1-3-6 semiconductor compound; a Group 4-6 semiconductor compound; a Group 4 element or semiconductor compound; or any combination thereof.


Examples of the Group 2-6 semiconductor compound may include binary compounds, such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, or MgS; ternary compounds, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, or MgZnS; quaternary compounds, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, or HgZnSTe; or any combination thereof.


Examples of the Group 3-5 semiconductor compound may include: a binary compound, such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, or the like; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, InPSb, or the like; a quaternary compound, such as GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, or the like; or any combination thereof. In an embodiment, the Group 3-5 semiconductor compound may further include a Group 2 element. Examples of the Group 3-5 semiconductor compound further including a Group 2 element may include InZnP, InGaZnP, InAlZnP, etc.


Examples of the Group 3-6 semiconductor compound may include: a binary compound, such as GaS, GaSe, Ga2Se3, GaTe, InS, InSe, In2S3, In2Se3, InTe, and the like; a ternary compound, such as InGaS3, InGaSe3, and the like; or any combination thereof.


Examples of the Group 1-3-6 semiconductor compound may include: a ternary compound such as AgInS, AgInS2, CuInS, CuInS2, CuGaO2, AgGaO2, or AgAlO2.


Examples of the Group 4-6 semiconductor compound may include: binary compounds, such as SnS, SnSe, SnTe, PbS, PbSe, or PbTe; ternary compounds, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, or SnPbTe; quaternary compounds, such as SnPbSSe, SnPbSeTe, or SnPbSTe; or any combination thereof.


The Group 4 element or semiconductor compound may include: a single element, such as Si, Ge, and/or the like; a binary compound, such as SiC, SiGe, and/or the like; or any combination thereof.


Each element included in a multi-element compound such as the binary compound, ternary compound and quaternary compound, may exist in a particle with a uniform concentration or non-uniform concentration.


In an embodiment, the quantum dot may have a single structure or a core-shell dual structure. In the case of the quantum dot having a single structure, the concentration of each element included in the corresponding quantum dot is uniform (e.g., substantially uniform). In an embodiment, the material contained in the core and the material contained in the shell may be different from each other.


The shell of the quantum dot may act as a protective layer to prevent or reduce chemical degeneration of the core to maintain semiconductor characteristics and/or as a charging layer to impart electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multi-layer. The element presented in the interface between the core and the shell of the quantum dot may have a concentration gradient that decreases along a direction toward the center of the quantum dot.


Examples of the shell of the quantum dot may be an oxide of metal, metalloid, or non-metal, a semiconductor compound, and any combination thereof. Examples of the oxide of metal, metalloid, or non-metal may include: a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, or NiO; a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, or CoMn2O4; or any combination thereof. Examples of the semiconductor compound may include, as described herein, Group 2-6 semiconductor compounds; Group 3-5 semiconductor compounds; Group 3-6 semiconductor compounds; Group 1-3-6 semiconductor compounds; Group 4-6 semiconductor compounds; or any combination thereof. In addition, the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, or any combination thereof.


A full width at half maximum (FWHM) of an emission wavelength spectrum of the quantum dot may be about 45 nm or less, for example, about 40 nm or less, for example, about 30 nm or less, and within these ranges, color purity and/or color reproducibility may be increased. In addition, because the light emitted through the quantum dot is emitted in all directions, the wide viewing angle can be improved.


In addition, the quantum dot may be a spherical particle, a pyramidal particle, a multi-arm particle, a cubic nanoparticle, a nanotube, a nanowire particle, a nanofiber particle, or a nanoplate particle.


Because the energy band gap can be adjusted by controlling the size of the quantum dot, light having various suitable wavelength bands can be obtained from the quantum dot emission layer. Therefore, by using quantum dots of different sizes, a light-emitting device that emits light of various suitable wavelengths may be implemented. In an embodiment, the size of the quantum dot may be selected to emit red, green and/or blue light. In addition, the size of the quantum dot may be configured to emit white light by combining light of various suitable colors.


Electron Transport Region 136 in Middle Region 130

The electron transport region may have: i) a single-layered structure consisting of a single layer consisting of a single material, ii) a single-layered structure consisting of a single layer consisting of a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.


The electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein, for each structure, constituting layers are sequentially stacked from the emission layer.


The electron transport region may include an inorganic electron transport layer including a metal oxide.


In an embodiment, the inorganic electron transport layer may include a metal oxide represented by Formula 1:





MxOy  Formula 1


wherein, in Formula 1,


M may be at least one metal or metalloid selected from elements belonging to Groups 1 to 14 of the Periodic Table of Elements, and


x and y may each independently be an integer from 1 to 5.


In Formula 1, M may include, but is not limited to, Zn, Ti, W, Sn, In, Nb, Fe, Ce, Sr, Ba, In, Al, Nb, Si, Mg, Ga, or a combination thereof.


Also, the inorganic electron transport layer may include a metal oxide represented by Formula 2 below:





M1αM2βOy  Formula 2


wherein, in Formula 2,


M1 and M2 may each independently be at least one different metal or metalloid selected from elements belonging to Groups 1 to 14 of the Periodic Table of Elements, and


0<α≤2, 0<β≤2, and 1<y≤5 are satisfied.


In Formula 2, M1 may include, but is not limited to, Zn, Ti, W, Sn, In, Nb, Fe, Ce, Sr, Ba, In, Al, Nb, or a combination thereof, and M2 may include Ti, Sn, Si, Mg, Al, Ga, In, or a combination thereof.


In an embodiment, the inorganic electron transport layer may include ZnO, TiO2, WO3, SnO2, In2O3, Nb2O5, Fe2O3, CeO2, SrTiO3, Zn2SnO4, BaSnO3, In2S3, ZnSiO, Mg-doped ZnO (ZnMgO), Al-doped ZnO (AZO), Ga-doped ZnO (GZO), In-doped ZnO (IZO), Al-doped TiO2, Ga-doped TiO2, In-doped TiO2, Al-doped WO3, Ga-doped WO3, In-doped WO3, Al-doped SnO2, Ga-doped SnO2, In-doped SnO2, Mg-doped In2O3, Al-doped In2O3, Ga-doped In2O3, Mg-doped Nb2O5, Al-doped Nb2O5, Ga-doped Nb2O5, Mg-doped Fe2O3, Al-doped Fe2O3, Ga-doped Fe2O3, In-doped Fe2O3, Mg-doped CeO2, Al-doped CeO2, Ga-doped CeO2, In-doped CeO2, Mg-doped SrTiO3, Al-doped SrTiO3, Ga-doped SrTiO3, In-doped SrTiO3, Mg-doped Zn2SnO4, Al-doped Zn2SnO4, Ga-doped Zn2SnO4, In-doped Zn2SnO4, Mg-doped BaSnO3, Al-doped BaSnO3, Ga-doped BaSnO3, In-doped BaSnO3, Mg-doped In2S3, Al-doped In2S3, Ga-doped In2S3, In-doped In2S3, Mg-doped ZnSiO, Al-doped ZnSiO, Ga-doped ZnSiO, In-doped ZnSiO, or any combination thereof.


In an embodiment, the metal oxide may be a zinc-containing oxide.


The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof. In this case, the electron transport layer may be an inorganic electron transport layer.


The inorganic electron transport layer may include 50 parts by weight or more of the metal oxide based on 100 parts by weight of the entire inorganic electron transport layer. In an embodiment, the inorganic electron transport layer may essentially consist of the metal oxide, but the embodiment is not limited to thereto, may include, for example, impurities (e.g., an organic material) of less than 1%.


A thickness of the electron transport region may be from about 100 Å to about 5,000 Å, for example, from about 160 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, or any combination thereof, the thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be from about 20 Å to about 1000 Å, for example, about 30 Å to about 300 Å, and the thickness of the electron transport layer may be from about 100 Å to about 1000 Å, for example, about 150 Å to about 500 Å. When the thickness of the buffer layer, the hole blocking layer, the electron control layer, the electron transport layer, and/or the electron transport region are within these ranges, suitable or satisfactory electron transporting characteristics may be obtained without a substantial increase in driving voltage.


The electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode 150. The electron injection layer may be in direct contact with the second electrode 150.


The electron injection layer may have: i) a single-layered structure consisting of a single layer consisting of a single material, ii) a single-layered structure consisting of a single layer consisting of a plurality of different materials, or iii) a multi-layered structure including a plurality of layers including different materials.


The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof.


The alkali metal may include Li, Na, K, Rb, Cs, or any combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.


The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may include oxides, halides (for example, fluorides, chlorides, bromides, or iodides), or tellurides of the alkali metal, the alkaline earth metal, and the rare earth metal, or any combination thereof.


The alkali metal-containing compound may include alkali metal oxides, such as Li2O, Cs2O, or K2O, alkali metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, or KI, or any combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal oxide, such as BaO, SrO, CaO, BaxSr1-xO (x is a real number satisfying the condition of 0<x<1), BaxCa1-xO (x is a real number satisfying the condition of 0<x<1), or the like. The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or any combination thereof. In an embodiment, the rare earth metal-containing compound may include lanthanide metal telluride. Examples of the lanthanide metal telluride may include LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, and Lu2Te3.


The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include i) one of ions of the alkali metal, the alkaline earth metal, and the rare earth metal and ii), as a ligand bonded to the metal ion, for example, a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenyl benzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.


The electron injection layer may consist of (or include) an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof, as described above. In an embodiment, the electron injection layer may further include an organic material (for example, a compound represented by Formula 601).


In an embodiment, the electron injection layer may consist of i) an alkali metal-containing compound (for example, an alkali metal halide), or ii) a) an alkali metal-containing compound (for example, an alkali metal halide); and b) an alkali metal, an alkaline earth metal, a rare earth metal, or any combination thereof. In an embodiment, the electron injection layer may be a KI:Yb co-deposited layer, an RbI:Yb co-deposited layer, or the like.


When the electron injection layer further includes an organic material, alkali metal, alkaline earth metal, rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, alkali metal complex, alkaline earth-metal complex, rare earth metal complex, or any combination thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.


A thickness of the electron injection layer may be about 1 Å to about 100 Å, for example, about 3 Å to about 50 Å. When the thickness of the electron injection layer is within the range described above, suitable or satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.


Anti-Oxidation Layer 140

The anti-oxidation layer 140 is on the middle region 130 as described above. The anti-oxidation layer 140 may include a transparent conductive oxide which is under the second electrode 150, does not (or substantially does not) interfere with electron flow from the second electrode 150 to the electron transport region 136, has excellent electron injection performance, has oxidation resistance, and has suitable or sufficient transparency to transmit light generated from the emission layer 135.


The transparent conductive oxide may include indium-tin oxide (ITO), aluminum-doped zinc oxide (AZO), indium-zinc oxide (IZO), or a mixture thereof. The transparent conductive oxide is stable against acids derived from —OH and —COOH groups, and thus may prevent or reduce oxidation of the second electrode 150 due to an acid component generated from the middle region 130.


A thickness of the anti-oxidation layer 140 may be in a range from about 50 Å to about 100 Å. When the thickness of the anti-oxidation layer 140 is within the range, electron injection performance may be improved and oxidation of the second electrode 150 may be prevented or reduced, thereby enabling manufacturing a light-emitting device 10 having high efficiency and long lifespan characteristics.


The anti-oxidation layer 140 may be in contact with the second electrode 150, but embodiments of the disclosure is not limited thereto, and in view of improving electron injection performance, an additional electrode may be between the anti-oxidation layer 140 and the second electrode 150.


Second Electrode 150

The second electrode 150 is located on the anti-oxidation layer 140 having a structure as described above. The second electrode 150 may be a cathode, which is an electron injection electrode, and as the material for the second electrode 150, a metal, an alloy, an electrically conductive compound, or any combination thereof, each having a low work function, may be used.


The second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, IZO, or any combination thereof, and may be formed in a certain region by using sputtering or vacuum deposition. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.


In an embodiment, the second electrode 150 may include magnesium-silver (Mg—Ag) in consideration of high electron injection characteristics. Although the Mg—Ag electrode has high electron injection characteristics, its application in light-emitting devices 10 having an oxidizing environment has been limited due to a low resistance to acid, and an anti-oxidation layer 140 according to an embodiment may effectively prevent or reduce oxidation of such an electrode to improve efficiency and lifespan of a light-emitting device 10.


The second electrode 150 may have a single-layered structure or a multi-layered structure including two or more layers.


Capping Layer

A first capping layer may be located outside the first electrode 110, and/or a second capping layer may be located outside the second electrode 150. In an embodiment, the light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the middle region 130, the anti-oxidation layer 140, and the second electrode 150 are sequentially stacked, a structure in which the first electrode 110, the middle region 130, the anti-oxidation layer 140, the second electrode 150, and the second capping layer are sequentially stacked, or a structure in which the first capping layer, the first electrode 110, the middle region 130, the anti-oxidation layer 140, the second electrode 150, and the second capping layer are sequentially stacked.


Light generated in an emission layer of the middle region 130 of the light-emitting device 10 may be extracted toward the outside through the first electrode 110 which is a semi-transmissive electrode or a transmissive electrode, and the first capping layer. Light generated in an emission layer of the middle region 130 of the light-emitting device 10 may be extracted toward the outside through the second electrode 150 which is a semi-transmissive electrode or a transmissive electrode, and the second capping layer.


The first capping layer and the second capping layer may increase external luminescence efficiency according to the principle of constructive interference. Accordingly, the light extraction efficiency of the light-emitting device 10 is increased, so that the luminescence efficiency of the light-emitting device 10 may be improved.


Each of the first capping layer and second capping layer may include a material having a refractive index (at a wavelength of 589 nm) of 1.6 or more.


The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.


At least one of the first capping layer and the second capping layer may each independently include carbocyclic compounds, heterocyclic compounds, amine group-containing compounds, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, alkali metal complexes, alkaline earth metal complexes, or any combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may be optionally substituted with a substituent containing O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof. In an embodiment, at least one of the first capping layer and the second capping layer may each independently include an amine group-containing compound.


In an embodiment, at least one of the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof.


In an embodiment, at least one of the first capping layer and the second capping layer may each independently include one of Compounds HT28 to HT33, one of Compounds CP1 to CP6, β-NPB, or any combination thereof:




embedded image


Electronic Apparatus

The light-emitting device 10 may be included in various suitable electronic apparatuses. In some embodiments, an electronic apparatus including the light-emitting device 10 may be a light-emitting apparatus and/or an authentication apparatus.


The electronic apparatus (e.g., a light-emitting apparatus) may further include, in addition to the light-emitting device 10, i) a color filter, ii) a color conversion layer, or iii) a color filter and a color conversion layer. The color filter and/or the color conversion layer may be on at least one traveling direction of light emitted from the light-emitting device 10. For example, light emitted from the light-emitting device 10 may be blue light or white light. The light-emitting device 10 may be understood by referring to the descriptions provided herein. In an embodiment, the color conversion layer may include quantum dots. The quantum dot may be, for example, a quantum dot as described herein.


The electronic apparatus may include a first substrate. The first substrate may include a plurality of subpixel areas, the color filter may include a plurality of color filter areas respectively corresponding to the subpixel areas, and the color conversion layer may include a plurality of color conversion areas respectively corresponding to the subpixel areas.


A pixel-defining film (or a pixel-defining layer) may be located among the subpixel areas to define each of the subpixel areas.


The color filter may further include a plurality of color filter areas and light-shielding patterns located between the color filter areas, and the color conversion layer may include a plurality of color conversion areas and light-shielding patterns located between the color conversion areas.


The color filter areas (or the color conversion areas) may include a first area emitting first color light, a second area emitting second color light, and/or a third area emitting third color light, and the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths from one another. In an embodiment, the first color light may be red light, the second color light may be green light, and the third color light may be blue light. In an embodiment, the color filter areas (or the color conversion areas) may include quantum dots. In more detail, the first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may or may not include a quantum dot. The quantum dot is the same as described in the present specification. The first area, the second area, and/or the third area may each further include a scatterer.


In some embodiments, the light-emitting device 10 may emit first light, the first area may absorb the first light to emit first-first color light, the second area may absorb the first light to emit second-first color light, and the third area may absorb the first light to emit third-first color light. In this regard, the first first-color light, the second first-color light, and the third first-color light may have different maximum emission wavelengths. In one embodiment, the first light may be blue light, the first first-color light may be red light, the second first-color light may be green light, and the third first-color light may be blue light.


The electronic apparatus may further include a thin-film transistor, in addition to the light-emitting device 10. The thin-film transistor may include a source electrode, a drain electrode, and an activation layer, and any one chosen from the source electrode and the drain electrode may be electrically connected to one chosen from the first electrode 110 and the second electrode 150 of the light-emitting device 10.


The thin-film transistor may further include a gate electrode, a gate insulating film, etc.


The activation layer may include crystalline silicon, amorphous silicon, organic semiconductor, oxide semiconductor, and/or the like.


The electronic apparatus may further include a sealing portion for sealing the light-emitting device 10. The sealing portion may be located between the color filter and/or the color conversion layer and the light-emitting device 10. The sealing portion allows light from the light-emitting device 10 to be extracted to the outside, while concurrently (e.g., simultaneously) preventing or reducing penetration of ambient air and/or moisture into the light-emitting device 10. The sealing portion may be a sealing substrate including a transparent glass substrate and/or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including at least one layer of an organic layer and an inorganic layer. When the sealing portion is a thin-film encapsulation layer, the electronic apparatus may be flexible.


Various suitable functional layers may be additionally located on the sealing portion, in addition to the color filter and/or the color conversion layer, according to the use of the electronic apparatus. The functional layers may include a touch screen layer, a polarizing layer, and/or the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, and/or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by using biometric information of a living body (for example, fingertips, pupils, etc.).


The authentication apparatus may further include, in addition to the light-emitting device 10, a biometric information collector.


The electronic apparatus may be applied to various suitable displays, light sources, lighting, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic diaries, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, and/or endoscope displays), fish finders, various suitable measuring instruments, meters (for example, meters for a vehicle, an aircraft, and/or a vessel), projectors, and/or the like.


Description of FIGS. 2 and 3


FIG. 2 is a cross-sectional view of a light-emitting apparatus according to an embodiment.


The light-emitting apparatus of FIG. 2 includes a substrate 100, a thin-film transistor (TFT), a light-emitting device, and an encapsulation portion 300 that seals the light-emitting device.


The substrate 100 may be a flexible substrate, a glass substrate, or a metal substrate. A buffer layer 210 may be formed on the substrate 100. The buffer layer 210 may prevent or reduce penetration of impurities through the substrate 100 and may provide a flat surface on the substrate 100.


A TFT may be located on the buffer layer 210. The TFT may include an activation layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.


The activation layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region and a channel region.


A gate insulating film 230 for insulating the activation layer 220 from the gate electrode 240 may be located on the activation layer 220, and the gate electrode 240 may be located on the gate insulating film 230.


An interlayer insulating film 250 is located on the gate electrode 240. The interlayer insulating film 250 may be placed between the gate electrode 240 and the source electrode 260 to insulate the gate electrode 240 from the source electrode 260 and between the gate electrode 240 and the drain electrode 270 to insulate the gate electrode 240 from the drain electrode 270.


The source electrode 260 and the drain electrode 270 may be located on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the activation layer 220, and the source electrode 260 and the drain electrode 270 may be in contact with the exposed portions of the source region and the drain region of the activation layer 220.


The TFT is electrically connected to a light-emitting device to drive the light-emitting device, and is covered by a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or a combination thereof. A light-emitting device is provided on the passivation layer 280. The light-emitting device may include a first electrode 110, a middle region 130, and a second electrode 150.


The first electrode 110 may be formed on the passivation layer 280. The passivation layer 280 does not completely cover the drain electrode 270 and exposes a portion of the drain electrode 270, and the first electrode 110 is connected to the exposed portion of the drain electrode 270.


A pixel-defining layer 290 containing an insulating material may be located on the first electrode 110. The pixel-defining layer 290 exposes a region of the first electrode 110, and a middle region 130 may be formed in the exposed region of the first electrode 110. The pixel-defining layer 290 may be a polyimide or polyacrylic organic film. In some embodiments, at least some layers of the middle region 130 may extend beyond the upper portion of the pixel-defining layer 290 to be located in the form of a common layer.


The second electrode 150 may be located on the middle region 130, and a capping layer 170 may be additionally formed on the second electrode 150. The capping layer 170 may be formed to cover the second electrode 150.


The encapsulation portion 300 may be located on the capping layer 170. The encapsulation portion 300 may be located on a light-emitting device to protect the light-emitting device from moisture and/or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or any combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic-based resin (for example, polymethyl methacrylate, polyacrylic acid, or the like), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE), or the like), or a combination thereof; or a combination of the inorganic film and the organic film.



FIG. 3 is a cross-sectional view of a light-emitting apparatus according to an embodiment.


The light-emitting apparatus of FIG. 3 is the same as the light-emitting apparatus of FIG. 2, except that a light-shielding pattern 500 and a functional region 400 are additionally located on the encapsulation portion 300. The functional region 400 may be i) a color filter area, ii) a color conversion area, or iii) a combination of the color filter area and the color conversion area. In an embodiment, the light-emitting device included in the light-emitting apparatus of FIG. 3 may be a tandem light-emitting device.


Manufacture Method

Respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, laser-induced thermal imaging (LITI), and photolithography methods.


The anti-oxidation layer may be formed in a certain region by using physical vapor deposition, for example, sputtering or vacuum deposition.


When layers constituting the hole transport region, the emission layer, layers constituting the electron transport region, and the anti-oxidation layer are formed by vacuum deposition, the vacuum deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10−8 torr to about 10−3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, depending on the material to be included in a layer to be formed and the structure of a layer to be formed.


Definition of Terms

The term “C3-C60 carbocyclic group” as used herein refers to a cyclic group consisting of carbon only as a ring-forming atom and having three to sixty carbon atoms, and the term “C1-C60 heterocyclic group” as used herein refers to a cyclic group that has one to sixty carbon atoms and further has, in addition to carbon, a heteroatom as a ring-forming atom. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed with each other. In an embodiment, the C1-C60 heterocyclic group has 3 to 61 ring-forming atoms.


The “cyclic group” as used herein may include the C3-C60 carbocyclic group and the C1-C60 heterocyclic group.


The term “π electron-rich C3-C60 cyclic group” as used herein refers to a cyclic group that has three to sixty carbon atoms and does not include *—N═*′ as a ring-forming moiety, and the term “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein refers to a heterocyclic group that has one to sixty carbon atoms and includes *—N═*′ as a ring-forming moiety.


In an embodiment,


the C3-C60 carbocyclic group may be i) group T1 or ii) a condensed cyclic group in which two or more groups T1 are condensed with each other (for example, a cyclopentadiene group, an adamantane group, a norbornane group, a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indenophenanthrene group, or an indenoanthracene group),


the C1-C60 heterocyclic group may be i) group T2, ii) a condensed cyclic group in which two or more groups T2 are condensed with each other, or iii) a condensed cyclic group in which at least one group T2 and at least one group T1 are condensed with each other (for example, a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),


the π electron-rich C3-C60 cyclic group may be i) group T1, ii) a condensed cyclic group in which two or more groups T1 are condensed with each other, iii) group T3, iv) a condensed cyclic group in which two or more groups T3 are condensed with each other, or v) a condensed cyclic group in which at least one group T3 and at least one group T1 are condensed with each other (for example, the C3-C60 carbocyclic group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, etc.),


the π electron-deficient nitrogen-containing C1-C60 cyclic group may be i) group T4, ii) a condensed cyclic group in which two or more group T4 are condensed with each other, iii) a condensed cyclic group in which at least one group T4 and at least one group T1 are condensed with each other, iv) a condensed cyclic group in which at least one group T4 and at least one group T3 are condensed with each other, or v) a condensed cyclic group in which at least one group T4, at least one group T1, and at least one group T3 are condensed with one another (for example, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),


group T1 may be a cyclopropane group, a cyclobutane group, a cyclopentane group, a cyclohexane group, a cycloheptane group, a cyclooctane group, a cyclobutene group, a cyclopentene group, a cyclopentadiene group, a cyclohexene group, a cyclohexadiene group, a cycloheptene group, an adamantane group, a norbornane (or a bicyclo[2.2.1]heptane) group, a norbornene group, a bicyclo[1.1.1]pentane group, a bicyclo[2.1.1]hexane group, a bicyclo[2.2.2]octane group, or a benzene group,


group T2 may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a tetrazine group, a pyrrolidine group, an imidazolidine group, a dihydropyrrole group, a piperidine group, a tetrahydropyridine group, a dihydropyridine group, a hexahydropyrimidine group, a tetrahydropyrimidine group, a dihydropyrimidine group, a piperazine group, a tetrahydropyrazine group, a dihydropyrazine group, a tetrahydropyridazine group, or a dihydropyridazine group,


group T3 may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, or a borole group, and


group T4 may be a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or a tetrazine group.


The term “cyclic group”, “C3-C60 carbocyclic group”, “C1-C60 heterocyclic group”, “π electron-rich C3-C60 cyclic group”, or “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein refers to a group condensed to any cyclic group or a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, etc.), depending on the structure of a formula in connection with which the terms are used. In an embodiment, “a benzene group” may be a benzo group, a phenyl group, a phenylene group, or the like, which may be easily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”


Examples of the monovalent C3-C60 carbocyclic group and the monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group. Examples of the divalent C3-C60 carbocyclic group and the divalent C1-C60 heterocyclic group may include a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a divalent non-aromatic condensed heteropolycyclic group.


The term “C1-C60 alkyl group” as used herein refers to a linear or branched aliphatic saturated hydrocarbon monovalent group that has one to sixty carbon atoms, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as used herein refers to a divalent group having the same structure as the C1-C60 alkyl group.


The term “C2-C60 alkenyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon double bond in the middle or at the terminus of the C2-C60 alkyl group, and examples thereof include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkenyl group.


The term “C2-C60 alkynyl group” as used herein refers to a monovalent hydrocarbon group having at least one carbon-carbon triple bond in the middle or at the terminus of the C2-C60 alkyl group, and examples thereof include an ethynyl group and a propynyl group. The term “C2-C60 alkynylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkynyl group.


The term “C1-C60 alkoxy group” as used herein refers to a monovalent group represented by —OA101 (wherein A101 is the C1-C60 alkyl group), and examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.


The term “C3-C10 cycloalkyl group” as used herein refers to a monovalent saturated hydrocarbon monocyclic group including 3 to 10 carbon atoms. Examples of the C3-C10 cycloalkyl group as used herein include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, a norbornyl (bicyclo[2.2.1]heptyl) group, a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, or a bicyclo[2.2.2]octyl group. The term “C3-C10 cycloalkylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group” as used herein refers to a monovalent cyclic group that further includes, in addition to a carbon atom, at least one heteroatom as a ring-forming atom and has 1 to 10 carbon atoms, and examples thereof include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as used herein refers to a divalent group having the same structure as the C1-C10 heterocycloalkyl group.


The term “C3-C10 cycloalkenyl group” used herein refers to a monovalent cyclic group that has three to ten carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkenyl group.


The term “C1-C10 heterocycloalkenyl group” as used herein refers to a monovalent cyclic group that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, 1 to 10 carbon atoms, and at least one double bond in the cyclic structure thereof. Examples of the C1-C10 heterocycloalkenyl group include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group” as used herein refers to a divalent group having the same structure as the C1-C10 heterocycloalkenyl group.


The term “C6-C60 aryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system having six to sixty carbon atoms, and the term “C6-C60 arylene group” as used herein refers to a divalent group having a carbocyclic aromatic system having six to sixty carbon atoms. Examples of the C6-C60 aryl group include a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, and an ovalenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the rings may be condensed with each other.


The term “C1-C60 heteroaryl group” as used herein refers to a monovalent group having a heterocyclic aromatic system that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, and 1 to 60 carbon atoms. The term “C1-C60 heteroarylene group” as used herein refers to a divalent group having a heterocyclic aromatic system that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, and 1 to 60 carbon atoms. Examples of the C1-C60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, and a naphthyridinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the rings may be condensed with each other.


The term “monovalent non-aromatic condensed polycyclic group” as used herein refers to a monovalent group having two or more rings condensed with each other, only carbon atoms (for example, having 8 to 60 carbon atoms) as ring-forming atoms, and non-aromaticity in its molecular structure when considered as a whole. Examples of the monovalent non-aromatic condensed polycyclic group include an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, and an indeno anthracenyl group. The term “divalent non-aromatic condensed polycyclic group” as used herein refers to a divalent group having the same structure as a monovalent non-aromatic condensed polycyclic group.


The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein refers to a monovalent group having two or more rings condensed with each other, at least one heteroatom, in addition to carbon atoms (for example, including 1 to 60 carbon atoms), as a ring-forming atom, and non-aromaticity in its entire molecular structure when considered as a whole. Examples of the monovalent non-aromatic condensed heteropolycyclic group include a 9,9-dihydroacridinyl group and a 9H-xanthenyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein refers to a divalent group having the same structure as a monovalent non-aromatic condensed heteropolycyclic group.


The term “C6-C60 aryloxy group” as used herein indicates —OA102 (wherein A102 is the C6-C60 aryl group), and the term “C6-C60 arylthio group” as used herein indicates —SA103 (wherein A103 is the C6-C60 aryl group).


The term “C7-C60 aryl alkyl group” used herein refers to -A1O4A105 (where A104 may be a C1-C54 alkylene group, and A105 may be a C6-C59 aryl group), and the term “C2-C60 heteroaryl alkyl group” used herein refers to -A106A107 (where A106 may be a C1-C59 alkylene group, and A107 may be a C1-C59 heteroaryl group).


R10a may be:


deuterium (-D), —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each being unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;


a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each being unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or


—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32).


Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 used herein may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each being unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof; a C7-C60 aryl alkyl group; or a C2-C60 heteroaryl alkyl group.


The term “hetero atom” as used herein refers to any atom other than a carbon atom. Examples of the heteroatom include O, S, N, P, Si, B, Ge, Se, or any combination thereof.


The term “the third-row transition metal” used herein includes hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), and the like.


The term “Ph” as used herein refers to a phenyl group, the term “Me” as used herein refers to a methyl group, the term “Et” as used herein refers to an ethyl group, the term “tert-Bu” or “But” as used herein refers to a tert-butyl group, and the term “OMe” as used herein refers to a methoxy group.


The term “biphenyl group” as used herein refers to “a phenyl group substituted with a phenyl group.” In other words, the “biphenyl group” is a substituted phenyl group having a C6-C60 aryl group as a substituent.


The term “terphenyl group” as used herein refers to “a phenyl group substituted with a biphenyl group”. The “terphenyl group” is a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.


* and *′ as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula or moiety.


Hereinafter, a light-emitting device and the metal oxide compound according to one or more embodiments will be described in more detail with reference to Examples.


EXAMPLES
Example 1

As an anode, a glass substrate with an ITO electrode deposited thereon was cut to a size of 50 mm×50 mm×0.7 mm, sonicated with acetone, isopropyl alcohol, and pure water, each for 15 minutes, and then cleaned by irradiation of ultraviolet rays and exposure of ozone thereto for 30 minutes. Then, the glass substrate was provided to a vacuum deposition apparatus.


An inkjet printing method was used to form a hole injection layer having a thickness of 1,500 Å including PEDOT/PSS, a hole transport layer having a thickness of 400 Å including TFB, an emission layer having a thickness of 200 Å including a InP/ZnSe/ZnS core-shell quantum dot, and an electron transport layer having a thickness of 250 Å including ZnMgO, which were sequentially stacked on the ITO electrode in this stated order.


Yb was vacuum-deposited on the electron transport layer to form an electron injection layer having a thickness of 30 Å, Ag was vacuum-deposited on the electron injection layer to form a cathode having a thickness of 150 Å, and then an acrylic organic material was vacuum-deposited on the cathode to form a capping layer of 550 Å, thereby completing manufacture of a light-emitting device.


Comparative Example 1

A light-emitting device was manufactured in the same manner as in Example 1, except that Mg and Ag were co-deposited on the electron injection layer.


Evaluation Example 1

For the light-emitting devices manufactured in Example 1 and Comparative Example 1, lifespan(T50) was measured until the luminance reaches 50%, and results thereof are provided in FIG. 4. FIG. 4 shows result data measured multiple times, and “x” indicates an average value. The Y axis in FIG. 4 is a value relatively showing lifespan characteristics of a device, wherein the larger the value, the better the lifespan characteristics. For example, in a case where an average value of a device of comparative example 1 is about 25 and an average value of a device of example 1 is about 80, it may be evaluated that the device of example 1 is expected to have a lifespan improvement effect of 400% compared to the device of comparative example 1.


Referring to FIG. 4, a lifespan value of the light-emitting device manufactured in Comparative Example 1 is about 25, and a lifespan value of the light-emitting device manufactured in Example 1 is about 80. Example 1 uses an Ag electrode that does not react with oxygen and shows that lifespan characteristics are improved by preventing or reducing oxidation of the electrode, whereas Comparative Example 1 employs an electrode including Mg, which has high reactivity with oxygen, and shows a decrease in lifespan due to oxidation of the MgAg electrode (See: www.aplustopper.com/reactivity-series-metals-towards-oxygen). Based on these experimental results, it is expected that lifespan characteristics will be improved in a device including an inorganic electron transport layer, and an anti-oxidation layer for protecting an electrode from an oxygen-containing group (for example, a hydroxyl group or a carboxyl group) derived from the inorganic electron transport layer which is between the electrode and the inorganic electron transport layer.


A light-emitting device according to an aspect of an embodiment of the present disclosure includes an anti-oxidation layer between a second electrode and an electron transport region, and thus, oxidation of the second electrode may be suppressed. Therefore, an electronic apparatus having long lifespan and high quality may be manufactured using such a light-emitting device.


It should be understood that embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. While one or more embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the claims, an equivalents thereof.

Claims
  • 1. A light-emitting device comprising: a first electrode;a second electrode facing the first electrode;a middle region comprising an emission layer between the first electrode and the second electrode and an electron transport region between the second electrode and the emission layer; andan anti-oxidation layer between the second electrode and the electron transport region,wherein the electron transport region comprises an inorganic electron transport layer that comprises a metal oxide layer comprising a metal oxide.
  • 2. The light-emitting device of claim 1, wherein the anti-oxidation layer comprises a transparent conductive oxide.
  • 3. The light-emitting device of claim 2, wherein the transparent conductive oxide comprises indium-tin oxide (ITO), aluminum-doped zinc oxide (AZO), indium-zinc oxide (IZO), or a mixture thereof.
  • 4. The light-emitting device of claim 1, wherein the anti-oxidation layer has a thickness of 50 Å to 100 Å.
  • 5. The light-emitting device of claim 1, wherein the anti-oxidation layer is in contact with the second electrode.
  • 6. The light-emitting device of claim 1, wherein the inorganic electron transport layer comprises a metal oxide represented by Formula 1: MxOy,  Formula 1wherein, in Formula 1,M is at least one metal or metalloid selected from the group consisting of elements belonging to Groups 1 to 14 of the Periodic Table of Elements, andx and y are each independently an integer from 1 to 5.
  • 7. The light-emitting device of claim 6, wherein M comprises Zn, Ti, W, Sn, In, Nb, Fe, Ce, Sr, Ba, In, Al, Nb, Si, Mg, Ga, or a combination thereof.
  • 8. The light-emitting device of claim 1, wherein the inorganic electron transport layer comprises a metal oxide represented by Formula 2: M1αM2βOy,  Formula 2wherein, in Formula 2,M1 and M2 are each independently at least one different metal or metalloid selected from the group consisting of elements belonging to Groups 1 to 14 of the Periodic Table of Elements, and0<α≤2, 0<β≤2, and 1<y≤5 are satisfied.
  • 9. The light-emitting device of claim 8, wherein M1 comprises Zn, Ti, W, Sn, In, Nb, Fe, Ce, Sr, Ba, In, Al, Nb, or a combination thereof, and M2 comprises Ti, Sn, Si, Mg, Al, Ga, In, or a combination thereof.
  • 10. The light-emitting device of claim 1, wherein the electron transport region further comprises at least one layer selected from a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, and an electron injection layer.
  • 11. The light-emitting device of claim 1, wherein the metal oxide is a zinc-containing oxide.
  • 12. The light-emitting device of claim 1, wherein the inorganic electron transport layer comprises 50 parts by weight or more of the metal oxide based on 100 parts by weight of the entire inorganic electron transport layer.
  • 13. The light-emitting device of claim 10, wherein the inorganic electron transport layer is organic-free.
  • 14. The light-emitting device of claim 1, wherein the emission layer comprises quantum dots.
  • 15. A method of manufacturing a light-emitting device, the method comprising: providing an emission layer on a first electrode;providing, on the emission layer, an inorganic electron transport layer comprising a metal oxide;providing an anti-oxidation layer on the inorganic electron transport layer; andforming a second electrode on the anti-oxidation layer.
  • 16. The method of claim 15, wherein the anti-oxidation layer is provided by physical vapor deposition of a transparent conductive oxide.
  • 17. The method of claim 15, wherein the second electrode is provided by vacuum deposition.
  • 18. The method of claim 15, wherein the inorganic electron transport layer is provided by inkjet printing of a composition comprising the metal oxide or by vacuum deposition of the metal oxide.
  • 19. An electronic apparatus comprising the light-emitting device according to claim 1.
  • 20. The electronic apparatus of claim 19, further comprising a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof.
Priority Claims (1)
Number Date Country Kind
10-2021-0131131 Oct 2021 KR national