This application claims the benefit of Korean Patent Application No. 10-2005-0095487, filed on Oct. 11, 2005, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field of the Invention
The present embodiments relate to a light emitting device using electron emission and a flat display apparatus using the same, and more particularly, to a light emitting device using electron emission which has a low driving voltage and high luminous efficiency, and a flat display apparatus using the light emitting device.
2. Description of the Related Art
A plasma display panel (PDP), which is a flat display apparatus, forms an image using an electrical discharge. Due to their superior display properties such as high brightness and large viewing angle, PDPs are widely used. PDPs may be classified as facing discharge type or surface discharge type according to the arrangement of electrodes. A facing discharge type PDP has a structure in which a pair of sustain electrodes are respectively formed on an upper substrate and a lower substrate, and discharge occurs perpendicular to the substrate. A surface discharge type PDP has a structure in which a pair of sustain electrodes are formed on the same substrate, and discharge occurs parallel to the substrate. In a PDP, an AC or DC voltage is applied between electrodes to cause a gas discharge, and visible light is emitted from a phosphor material excited by ultraviolet (UV) rays generated by the gas discharge.
In conventional PDPs constructed as above, plasma discharge occurs when a discharge gas containing Xe is ionized and then drops from its excited state, thereby emitting UV rays. However, conventional PDPs and flat lamps operated by plasma discharge require sufficiently high energy to ionize the discharge gas, and thus, have a high driving voltage and low luminous efficiency.
Generally, light emitting devices using electron emission use a thermal cathode or a cold cathode as an electron emission source. Light emitting devices that use a cold cathode as an electron emission source include field emitter array (FEA) type devices, surface conduction emitter (SCE) type devices, metal insulator metal (MIM) type devices, metal insulator semiconductor (MIS) type devices, ballistic electron surface emitting (BSC) type devices, etc.
SCE type light emitting devices using electron emission are self light-emitting displays such as field emission devices (FEDs), cathode-ray tubes (CRTs), and PDPs. The gradation rates of SCE type light emitting devices are higher than those of PDPs. Thus, SCE type light emitting devices can provide natural color presentation. In addition, SCE type light emitting devices have a quick response time, which is one of the drawbacks of liquid crystal displays (LCDs), and do not produce residual images, even when there is fast motion, as in, for example, sports programs. Also, even when implemented as large screens of greater than 40 inches, SCE type light emitting devices are thinner than CRTs. Further, since SCE type light emitting devices generally have low power consumption, they are receiving a lot of attention as next-generation displays.
Referring to
Referring to
The conventional light emitting device structured as described above has a nano-sized gap between the cathode electrode 23 and the gate electrode 22 through which electrons are emitted due to an electron tunneling effect. The nano-sized gap is a crack in a thin film which is created after current is supplied to the thin film. However, a conventional method of forming a nano-sized gap has problems in terms of repeatability and/or reliability. Hence, a new light emitting device structured such that the nano-sized gap can be easily formed is required. In addition, a light emitting device using electron emission which can maximize brightness at a low driving voltage and thus achieve a higher luminous efficiency than a conventional light emitting device is required.
According to an aspect of the present embodiments, there is provided a light emitting device using electron emission, the device including: a plurality of PN junctions, each comprising a depletion layer having a predetermined thickness; an anode electrode facing the depletion layers and separated from the depletion layers by a predetermined distance; and a phosphor layer formed on a surface of the anode electrode.
The device may further include: a substrate supporting the anode electrode and the phosphor layer; and a spacer maintaining a gap between the PN junction and the substrate.
Alternatively, the device may further include: a first substrate on which the PN junctions are formed; a second substrate supporting the anode electrode and the phosphor layer; and a spacer maintaining a gap between the first substrate and the second substrate.
According to another aspect of the present embodiments, there is provided a light emitting device using electron emission, the device including: a monocrystalline substrate which is completely doped with p-type impurities, a plurality of PN junctions being formed in the monocrystalline substrate by diffusing n-type impurities into a surface of the monocrystalline substrate; an anode electrode opposite the monocrystalline substrate; and a phosphor layer formed on a surface of the anode electrode.
A space between the anode electrode and the PN junctions may be maintained in a vacuum, and the phosphor layer may be excited by accelerated electrons and generates visible light. In this case, the phosphor layer may be formed of cathode luminescence (CL)-type phosphors that includes a red phosphor selected from the group consisting of ‘SrTiO3:Pr,’ ‘Y2O3:Eu’ or ‘Y2O3S:Eu,’ a green phosphor selected from the group consisting of ‘Zn(Ga, Al)2O4:Mn,’ ‘Y3(Al, Ga)5O12:Tb,’ ‘Y2SiO5:Tb’ or ‘ZnS:Cu,AI,’ and a blue phosphor selected from the group consisting of ‘Y2SiO5:Ce,’ ‘ZnGa2O4’ or ‘ZnS :Ag,CI.’
Alternatively, a space between the anode electrode and the PN junctions may be filled with an excitation gas, the excitation gas may be excited by the accelerated electrons, and the phosphor layer may be excited by ultraviolet (UV) rays emitted from the excitation gas and may generate the visible light. In this case, the excitation gas may be formed of at least one or more gases selected from the group consisting of Xe, N2, D2, CO2, H2, CO, Kr, and air. The phosphor layer may be formed of a photo luminescence (PL)-type phosphor that includes Y(V, P)O4:Eu+3, a green phosphor selected from the group consisting of Zn2SiO4:Mn and YBO3:Tb, and BaMgAl10O17:Eu.
The thickness of the depletion layer may be from about 1 nm to about 100 nm.
According to another aspect of the present embodiments, there is provided a flat display apparatus including: a light emitting device using electron emission which includes a plurality of PN junctions, each including a depletion layer having a predetermined thickness, an anode electrode facing the depletion layer and separated from the depletion layer by a predetermined distance, and a phosphor layer formed on a surface of the anode electrode; and a display panel including a non-emissive device which is installed in front of the anode electrode and realizes an image by controlling the transmission of light supplied from the light emitting device.
According to another aspect of the present embodiments, there is provided a flat display apparatus including: a light emitting device using electron emission which includes a monocrystalline substrate which is completely doped with p-type impurities, a plurality of PN junctions being formed in the monocrystalline substrate by diffusing n-type impurities into a surface of the monocrystalline substrate, an anode electrode opposite the monocrystalline substrate, and a phosphor layer formed on a surface of the anode electrode; and a display panel including a non-emissive device which is installed in front of the anode electrode and realizes an image by controlling the transmission of light supplied from the light emitting device. The non-emissive device may be a liquid crystal device.
The above and other features and advantages of the present embodiments will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
The present embodiments provide a light emitting device using electron emission with a low driving voltage and high luminous efficiency, and a flat display apparatus using the light emitting device.
The present embodiments also provide a light emitting device using electron emission with a nano-sized gap that can be formed with repeatability and have reliability.
Referring to
The PN junction 31 includes a depletion layer 34 having a predetermined thickness in an area where a p-type semiconductor and an n-type semiconductor are bonded. The anode electrode 12 faces the depletion layer 34 and is separated from the depletion layer 34 by a predetermined distance. The phosphor layer 13 is attached to a surface of the anode electrode 12. The thickness of the depletion layer 34 may be from about 1 nm to about 100 nm.
The light emitting device 30 may further include a substrate 11 on which the anode electrode 12 and the phosphor layer 13 are sequentially formed. The PN junction 31 and the substrate 11 face each other with a space 35 therebetween. A plurality of spacers 36 may be formed between the PN junction 31 and the substrate 11 to maintain the space 35 therebetween.
When a reverse-biased voltage is applied as illustrated in
The light emitting device 30 may generate visible light as follows.
The light emitting device 30 may operate in a similar manner to a conventional field emission device (FED). In other words, as illustrated in
To generate visible light in this way, the phosphor layer 13 is formed of a cathode luminescence (CL)-type phosphor, which can be a red phosphor such as ‘SrTiO3:Pr,’ ‘Y2O3:Eu’ or ‘Y2O3S:Eu,’ a green phosphor such as ‘Zn(Ga, Al)2O4:Mn,’ ‘Y3(Al, Ga)5O12:Tb,’ ‘Y2SiO5:Tb’ or ‘ZnS:Cu,AI,’ or a blue phosphor such as ‘Y2SiO5:Ce,’ ‘ZnGa2O4’ or ‘ZnS:Ag,CI.’ A proper color arrangement allows the formation of pixels and the realization of an image.
Also, the space 35 formed between the PN junction 31 and the substrate 11 is maintained at a high vacuum, with a pressure of about 10−7 Torr or less.
The light emitting device 30 may generate visible light using another method. That is, according to another embodiment, the space 35 between the PN junction 31 and the substrate 11 is filled with an excitation gas. Electrons emitted from the depletion layer 34 and accelerated by the anode electrode 12 excite the excitation gas, and ultraviolet (UV) rays are generated as a result. Then, the UV rays excite the phosphor layer 13 to generate visible light.
To generate visible light in this way, the phosphor layer is formed of a photo luminescence (PL)-type phosphor that can includes red phosphor such as Y(V, P)O4:Eu+3, a green phosphor such as Zn2SiO4:Mn and YBO3:Tb, and a blue phosphor such as BaMgAI10O17:Eu.
To be excited by electrons and thus generate UV rays, the excitation gas may be formed of at least one or more gases selected from Xe, N2, D2, CO2, H2, CO, Kr, and air.
Referring to
Referring to
According to the third embodiment, a light emission space 35 is defined by the front substrate 11 and the monocrystalline substrate 231. In the present embodiment, a plurality of spacers (not shown) may be used, and the front substrate 11 and the monocrystalline substrate 231 may be sealed with glass frit (not shown).
The light emitting devices 30, 130, and 230 described above may be used as a surface light source of a predetermined size. In particular, the light emitting device 30, 130, and 230 may be used as a back light unit (BLU), i.e., a surface light source of a liquid crystal display (LCD).
Referring to
The BLU is the light emitting device 130 described above and is supplied with power through a connection cable 104. The BLU emits visible light V through the second substrate 11 disposed on a front surface of the light emitting device 130 such that the emitted visible light V can be supplied to the LCD panel 700.
The configuration and operation of the LCD panel 700 will now be described in detail with reference to
The light emitting device 130 illustrated in
The LCD panel 700 includes a first substrate 505. A buffer layer 510 is formed on the first substrate 505, and a semiconductor layer 580 is formed in a predetermined pattern on the buffer layer 510. A first insulating layer 520 is formed on the semiconductor layer 580, a gate electrode 590 is formed in a predetermined pattern on the first insulating layer 520, and a second insulating layer 530 is formed on the gate electrode 590. After the second insulating layer 530 is formed, the first and second insulating layers 520 and 530 are etched through an etching process such as a dry-etching process, thereby exposing a portion of the semiconductor layer 580. A source electrode 570 and a drain electrode 610 are formed above and extend down to the exposed portion of the semiconductor layer 580. After the source electrode 570 and the drain electrode 610 are formed, a third insulating layer 540 is formed, and a planarization layer 550 is formed on the third insulating layer 540. The third insulating layer 540 and a portion of the planarization layer 550 are etched, and the first electrode 620 is formed in a predetermined pattern on the planarization layer 550 such that the drain electrode 610 and the first electrode 620 contact each other. A transparent second substrate 680 is manufactured separately from the first substrate 505, and a color filter layer 670 is formed on a bottom surface 680a of the second substrate 680. The second electrode 660 is formed on a bottom surface 670a of the color filter layer 670, and a first alignment layer 630 and a second alignment layer 650 which are used to align molecules of liquid crystal in a liquid crystal layer 640 are respectively formed on surfaces of the first and second electrodes 620 and 660 that face each other. A first polarizing layer 500 is formed on a bottom surface of the first substrate 505, and a second polarizing layer 690 is formed on a top surface 680b of the second substrate 680. A protective film 695 is formed on a top surface 690a of the second polarizing layer 690. A spacer 560 that defines the liquid crystal layer 640 is interposed between the color filter layer 670 and the planarization layer 550.
A potential difference is generated between the first electrode 620 and the second electrode 660 by an external signal which is controlled by the gate electrode 590, the source electrode 570, and the drain electrode 610. The potential difference determines the alignment of the liquid crystal layer 640, and the visible light V supplied to the BLU 130 is blocked or transmitted according to the alignment of the liquid crystal layer 640. When the visible light V that has transmitted through the liquid crystal layer 640 passes through the color filter layer 670, it becomes colored, thereby forming an image.
The LCD panel 700 is illustrated in
The flat display apparatus which includes the light emitting device using electron emission as a BLU can produce an image with enhanced brightness and have a longer life as a result of an increase in the brightness and lifetime of the BLU.
As described above, the present embodiments provide a light emitting device which can display an image using electron emission. The light emitting device can display an image in different ways using a phosphor layer which is formed of a different material according to whether an internal space is maintained in a vacuum state or whether the space is filed with an excitation gas.
In addition, the light emitting device has a structure that allows a nano-sized gap to be easily formed using a depletion layer of a PN junction.
The light emitting device according to the present embodiments can operate as follows. The space inside the light emitting device is filled with the excitation gas, the excitation gas is excited by electrons, and UV rays are generated by the exited excitation gas. The UV rays cause the phosphor layer to generate visible light. The light emitting device has far better energy efficiency than a conventional PDP which generates plasma discharge to generate UV rays, excite a phosphor layer using the UV rays, and thus generate visible light.
While the present embodiments have been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present embodiments as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2005-0095487 | Oct 2005 | KR | national |