This application is the U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/EP2015/068005, filed on Aug. 5, 2015, which claims the benefit of European Patent Applications Nos. 14199929.2, filed on Dec. 23, 2014 and 14181742.9, filed on Aug. 21, 2014. These applications are hereby incorporated by reference herein.
The invention relates to a light emitting device. The invention further relates to a heat sink for said light emitting device. The invention further relates to a lamp comprising said light emitting device. The invention further relates to a luminaire comprising said light emitting device or said lamp.
The issue of heat management of LEDs (light emitting diodes) in lamps is known in the art. LED based solutions are less than 100% efficient. The heat that is generated during operation generally leads to temperatures in the application that may deteriorate the system efficacy and may limit the lifetime of the LEDs and/or other components. In order to transfer heat to the ambient, LED devices generally use a metal heat sink. In most LED applications the heat sink and the light emitting area are two separate elements. The size of the heat sink is in general smaller than the total lamp enclosure, limiting the heat transfer to the ambient and thus the thermal performance. In addition, heat sinks are generally relatively heavy and relatively expensive. Furthermore, heat sinks are generally not optically transparent.
U.S. Pat. No. 8,454,185 B2 discloses a liquid-cooled LED lamp having an outer lamp shade, an inner hollow container, and a plurality of LEDs positioned on a substrate in the space between the inner hollow container and the outer lamp shade. Said space is filled with a heat conducting liquid for conducting heat generated by the LED to the outer lamp shade. A disadvantage of this lamp is that measures have to be taken in order to prevent that electrical components will be in direct contact with the heat conducting liquid. Furthermore, heat transfer to the surroundings may be hampered as the LEDs that are present in the liquid may limit circulation of the liquid in the space. Furthermore, materials that are used in the LEDs, for example luminescent materials such as inorganic phosphors, organic phosphors or quantum dots, may be susceptible to degradation in case these materials become in contact with the heat conducting fluid.
The suggested systems thus seem to suffer from thermal management problems which may only be solved (partially) at the cost of optical properties. Vice versa, when optimizing optical properties, thermal management is a problem.
It is an object of the invention to provide an alternative light emitting device, which preferably further at least partly obviates one or more of above-described drawbacks.
This object is achieved with a light emitting device according to the invention, comprising at least one light source and a closed container, the closed container comprising a first area and a second area that is arranged opposite to the first area, the container being filled with a heat conducting fluid that is thermally coupled to an inside surface of the closed container, wherein the at least one light source is arranged on an outside surface of the first area of the closed container and thermally coupled to the inside surface of the closed container. The liquid in the container absorbs the heat generated by the light source and is acting as a heat spreader to spread the heat over the outer surface of the light emitting device. Due to the buoyancy forces resulting from the temperature differences within the fluid between the relative hot spots in the fluid close to the LEDs and the relative cold spots in the fluid close to the second area of the container, the fluid moves inside the container during operation of the light emitting device, improving the heat transfer to the surroundings. As a result the container with the heat conducting fluid will act as a heat sink to transfer the heat generated by the LEDs to the surroundings. As the LEDs are not positioned inside the container, the movement of the fluid is not hampered by the LEDs. In this way the heat can be released to the surroundings via a relative large surface area of the container. In addition, the LEDs are not in direct contact with the fluid which reduces the risk on short-circuiting. No further metal heat sink is required, for example a commonly used metal heatsink, resulting in less risk for interaction with electromagnetic field, X-rays or gamma radiation. Furthermore, the weight of the light emitting device can be reduced by the proper choice of the fluid as most fluids will have a lower density than the materials commonly used for heat sinks.
US2009/0154164A1 discloses an underwater lamp including a cylindrical shaped shell with two opposite ends being open, a lens being received at one of the two opposite ends of the shell, and a sink base attached to the other one of the two opposite ends of the shell. An interior space is defined among the shell, the sink base, and the lens. A light generating element is positioned in the interior space and thermally attached to the sink base. The lamp has two openings through which water flows into the interior space. The heat of the LED is primarily transferred to the sink base and further conducted to a plurality of fins.
DE541952 discloses a lighting device for projection lighting with a light source embedded in a cooling cuvette having a reflecting layer. The light is coupled into the cooling cuvette and reflected to an exit window. The cooling cuvette has openings for providing a flow of cooling fluid through the cooling cuvette. The lamp is embedded in the cooling cuvette in order to provide cooling by the cooling fluid.
An embodiment of the invention is characterized in that the heat conducting fluid is light transmissive (i.e. a “light transmissive fluid”), and in that at least a part of the first area and the second area are light transmissive. At least a part of the light generated by the light source may pass through the fluid before exiting the light emitting device via the second area. More freedom is obtained for the optical design of the light emitting device. The fluid and/or container may be used for beamshaping of the light or to create other light effects.
An embodiment of the invention is characterized in that the container comprises a first circular plate as the first area and a second circular plate as the second area, the second circular plate positioned at a distance from the first cylindrical plate of more than zero nun, and wherein the space between the first circular plate and the second circular plate is filled with the heat conducting fluid. In this embodiment light may be generated by a relatively large area without the need of a relatively complex construction of metal heat sinks
An embodiment of the invention is characterized in that the container comprises a first tubular vessel as the first area and a second tubular vessel as the second area, the second tubular vessel surrounding the first tubular vessel at a distance larger than zero mm, and wherein the space between the first tubular vessel and the second tubular vessel is filled with the heat conducting fluid. In this embodiment, the heat generated by the light source is transferred to the liquid and due to the buoyancy forces, the locally heated fluid starts to move. Finally, this results in a global circulation of the fluid inside the cylindrical vessel without the use of mechanical actuation (so-called thermosyphon effect). The tubular shape of the first and second vessel improves the mechanical strength of the light emitting device which may be of importance for light emitting devices having a relatively high output power that would require a relatively large heat sink.
An embodiment of the invention is characterized in that the container comprises a first spherical vessel as the first area and a second spherical vessel as the second area, the second spherical vessel surrounding the first spherical vessel at a distance larger than zero mm, and wherein the space between the first spherical vessel and the second spherical vessel is filled with the heat conducting fluid. In this embodiment, a device is obtained that substantially generates light in all directions. In addition, such device can be used in retrofit lamps. The spherical shape of the first and second vessel improves the mechanical strength of the light emitting device which may be of importance for light emitting devices having a relatively high output power that would require a relatively large heatsink.
An embodiment of the invention is characterized in that the distance d1 is in the range of 1-10 mm, more preferably in the range of 1-7 mm, even more preferably in the range of 2-7 mm, even more preferably in the range between 2-4 mm. A relatively thin layer of fluid leads to a relatively low-weight light emitting device. Furthermore, a relatively thin layer of fluid may be beneficial for the optical properties of the light emitting device while still providing sufficient capacity for transportation of the heat.
An embodiment of the invention is characterized in that the heat conducting and optically transparent fluid has a Grashof number in the range between 5·108-3·1010, more preferably in the range between 6·109-3·1010, even more preferably in the range between 1·1010-3·1010. The Grashof number (Gr) is a known dimensionless number in fluid dynamics and heat transfer, that approximates the ratio of the buoyancy to viscous force acting on a fluid. The fluids according to this embodiment, when heated during operation of the light emitting device, will start to circulate relatively easy and have relatively good properties for transportation of the heat. In general, the higher the Grashof number of the fluid is, the better properties it will have for application in the present invention.
An embodiment of the invention is characterized in that the heat conducting fluid is selected from the group comprising silicon oil, methanol, ethanol, acetone, water, a fluorinated aliphatic organic compound, an aromatic organic compound and dimethylpolysiloxane. These fluids are especially suitable for the creation of the thermosyphon effect due to their relatively large thermal expension coefficient.
An embodiment of the invention is characterized in that at least a part of the container is made of one or more materials selected from the group comprising a light transmissive organic material, a glass material, a light transmissive ceramic material and a silicone material. These materials are light transmissive and allow having sufficient freedom for the optical design of the light emitting device.
An embodiment of the invention is characterized in that the light source comprises at least one Light Emitting Diode (LED). The heat in a LED is produced in a relatively small volume and in this way that heat can be spread out over a relatively large area. The LED may be present, for example, as a single LED, multiple LEDs, a strip with multiple LEDs or a Chip-On-Board LED source.
An embodiment of the invention is characterized in that the light source comprises at least one array of light emitting diodes positioned substantially parallel to a longitudinal axis of the first tubular vessel and wherein the distance between two neighboring light emitting diodes is in the range of 5-15 mm, preferable in the range of 7-13 mm, more preferably in the range of 8-12 mm. The embodiment allows creating an elongated device that can be used as a TL replacement (retrofit) tube, for example. Having the LEDs sufficiently close to each other will improve the uniformity of the light output by reducing the spots in between the LEDs that may have a lower light output compared to the spots more close to the LEDs.
An embodiment of the invention is characterized by at least three arrays of light emitting diodes positioned substantially parallel to a longitudinal axis of the first tubular vessel, and wherein the three arrays are positioned in a non-symmetrical distribution along the radius of the first tubular vessel. In this embodiment a more uniform light output is obtained and it is beneficial for a good circulation of the liquid inside the vessel during operation of the device caused by the buyoyancy forces.
An embodiment of the invention is characterized in that the heat conducting fluid and/or at least a part of the container comprises particles selected from the group comprising scattering particles and inorganic luminescent particles, or a combination thereof. Use of scattering particles allows to modify the optical properties of the light emitting device and, for example, to diffuse the light that is generated by the light emitting device. Use of inorganic luminescent particles allows to change the color of at least part of the light emitted by the light source in order to generate white light of a desired color temperature or to create colored light. As the luminescent particles are not directly positioned on the light source itself, heating of the luminescent material by the light source is prevented. Furthermore, the heat generated by the luminescent particles during the light conversion can be transferred to the liquid and/or the container.
An embodiment of the invention is characterized in that the container comprises one or more optical elements for directing the light emitted during operation of the device in a predetermined direction. Use of the optical element(s) allows beamshaping of the light generated by the light emitting device according to the desired application, for example for use as a spot light, outdoor illumination or in projection systems.
According to the invention a heatsink comprises a closed container, the closed container comprising a first area and a second area that is arranged opposite to the first area the closed container being filled with a heat conducting fluid that is thermally coupled to an inside surface of the closed container. The heat sink is capable of spreading the heat over a relatively large area, while simultaneously providing freedom in optical design. It has a potentially lower weight than metal heat sinks.
According to the invention a lamp comprises at least one light emitting device according to the invention. According to the invention a luminaire comprises at least one light emitting device according to the invention, or a lamp according to the invention. The invention allows creating a relatively light-weight lamp or luminaire with sufficient freedom in optical design.
Especially, the material of the closed container may comprise one or more materials selected from the group consisting of a light transmissive organic material support, such as selected from the group consisting of PE (polyethylene), PP (polypropylene), PEN (polyethylene napthalate), PC (polycarbonate), polymethylacrylate (PMA), polymethylmethacrylate (PMMA) (Plexiglas or Perspex), cellulose acetate butyrate (CAB), silicone, polyvinylchloride (PVC), polyethylene terephthalate (PET), (PETG) (glycol modified polyethylene terephthalate), PDMS (polydimethylsiloxane), and COC (cyclo olefin copolymer). However, in another embodiment the material of the container may comprise an inorganic material. Preferred inorganic materials are selected from the group consisting of glasses, (fused) quartz, transmissive ceramic materials, and silicones. Also hybrid materials, comprising both inorganic and organic parts may be applied. Especially preferred are PMMA, transparent PC, or glass as material for the material of the first envelope and/or the material of the second envelope. Hence, the container comprises a material independently selected from the group consisting of glass, a translucent ceramic, and a light transmissive polymer.
An embodiment of the invention is characterized in that the material of the closed container has a light transmission in the range of 50-100%, especially in the range of 70-100%, for light generated by the light source. In case the light source is generating visible light, in this way the container is transmissive for the visible light from the light source. Herein, the term “visible light” especially relates to light having a wavelength selected from the range of 380-780 nm. The transmission or light permeability can be determined by providing light at a specific wavelength with a first intensity to the material and relating the intensity of the light at that wavelength measured after transmission through the material, to the first intensity of the light provided at that specific wavelength to the material (see also E-208 and E-406 of the CRC Handbook of Chemistry and Physics, 69th edition, 1088-1989).
An embodiment of the invention is characterized in that, the heat conducting fluid may comprise water, silicon oil, methanol, ethanol, acetone, water, a fluorinated aliphatic organic compound, an aromatic organic compound and silicone, or mixtures of two or more of these compounds.
An embodiment of the invention is characterized in that the optical refractive index of the heat conductive fluid (nfluid), and the optical refractive index of at least a part of the material of the container (ncontainer) are tuned to each other for modifying the optical properties of the heat sink and the light emitting device. For example, at least a part of the container comprises a material with an optical refractive index in the range of 1-5. The material used for the heat conductive and light transmissive fluid has an optical refractive index in the range of 1-5.
An embodiment of the invention is characterized in that the optical refractive index of the fluid is comparable to the optical refractive index of the material of at least a part of the container (nfluid≈ncontainer). In case the light propagates through the fluid, subsequently through the second area of the container and then exits the light emitting device, the light will not be substantially refracted by the material of the second area of the container and the light emitting device may generate diffuse light. A further embodiment of the invention is characterized in that the optical refractive index of the fluid is larger than the optical refractive index of at least a part of the container (nfluid>ncontainer). In case the light propagates through the fluid, subsequently through the second area of the container and then exits the light emitting device, the light will be substantially refracted by the material of the second area of the container and the light emitting device may generate beam shaped light. The amount of beamshaping is determined by the ratio of nfluid to ncontainer; at increasing ratio, for nfluid >ncontainer, the amount of beamshaping increases. Another further embodiment of the invention is characterized in that the optical refractive index of the fluid is smaller than the optical refractive index of at least a part of the container (nfluid<ncontainer). In case the light propagates through the fluid, subsequently through the second area of the container and then exits the light emitting device, a substantial part of the light will be reflected back by the second area of the container and may exit the light emitting device via the first area of the container. The amount of reflected light is determined by the ratio of nfluid to ncontainer; at decreasing ratio, for nfluid<ncontainer, the amount of reflected light increases. By tuning the optical refractive index of the heat conductive fluid, and the refractive index of at least a part of the container the optical properties of the heat sink and the light emitting device may be altered. The term “light source” may relate to one light source or to a plurality of light sources, such as 2-20 light sources, though in specific embodiments much more light sources may be applied, such as 10-1000. The light source may be a solid state light source or a plurality of solid state light sources. A solid state light source may for example be a LED (Light Emitting Diode), a laser diode, an organic light-emitting diodes (OLED), or a polymer light-emitting diodes (PLED). When more than one light source is applied, optionally these may be controlled independently, or subsets of light source may be controlled independently. The light source is configured to generate visible light or UV light, either directly or in combination with a light converter especially integrated in the solid state light source, such as in a dome on a LED die or in a luminescent layer (such as a foil) on or close to a LED die. The light source may also comprise an incandescent lamp, a high density discharge lamp, or a low-pressure discharge lamp.
In yet another embodiment, the lamp includes at least two subsets of solid state light sources. Optionally, the two or more subsets may be controlled individually (with a (remote) controller).
The terms “upstream” and “downstream” relate to an arrangement of items or features relative to the propagation of the light from a light generating means (here the especially the light source), wherein relative to a first position within a beam of light from the light generating means, a second position in the beam of light closer to the light generating means is “upstream”, and a third position within the beam of light further away from the light generating means is “downstream”.
The term “heat conducting fluid” means a liquid or a gas that is capable of conducting heat. The term “light transmissive fluid” means a liquid or a gas that has a light transmission in the range of 50-100%, especially in the range of 70-100%, for light generated by the light source.
The inorganic luminescent particles may comprise one or more luminescent materials. Examples of luminescent materials are, amongst others: M2Si5N8:Eu2+, wherein M is selected from the group consisting of Ca, Sr and Ba, even more especially wherein M is selected from the group consisting of Sr and Ba; MAlN3:Eu2+, wherein M is selected from the group consisting of Ca, Sr and Ba, even more especially wherein M is selected from the group consisting of Sr and Ba; M3A5O12:Ce3+ luminescent material, wherein M is selected from the group consisting of Sc, Y, Tb, Gd, and Lu, wherein A is selected from the group consisting of Al and Ga. Preferably, M at least comprises one or more of Y and Lu, and A at least comprises Al. In alternative embodiments, quantum dot based materials are used as luminescent material. For example, a macro porous silica or alumina particle that is filled with polymer matrix material comprising quantum dots may be used. The quantum dots may be II-VI quantum dots, especially selected from the group consisting of (core-shell quantum dots, with the core selected from the group consisting of) CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe and HgZnSTe, even more especially selected from the group consisting of CdS, CdSe, CdSe/CdS and CdSe/CdS/ZnS. The marco porous silica or alumina particles may coated with an inorganic coating, for example provided via atomic layer deposition, to reduce the exposure of the quantum dots to oxygen and/or the heat conducting fluid.
The light emitting device, lamp or luminaire may be part of or may be applied in e.g. office lighting systems, household application systems, shop lighting systems, home lighting systems, accent lighting systems, spot lighting systems, theater lighting systems, fiber-optics application systems, projection systems, self-lit display systems, pixelated display systems, segmented display systems, warning sign systems, medical lighting application systems, indicator sign systems, decorative lighting systems, portable systems, automotive applications, green house lighting systems, horticulture lighting, or LCD backlighting. In addition, the light emitting device, lamp or luminaire may be part of or may be applied in e.g. air or water purification systems.
Especially, fields of application are: consumer lamps (e.g. candles, bulbs, spot lights, retrofit TL lamps); professional lamps (especially street light lamps); consumer luminaires (indoor); professional luminaires (e.g. indoor spots, outdoor luminaries); street lights: integrated amp-luminaire designs; special lighting: extreme environments (e.g. pigsties with ammonia levels, disinfection lamps, luminaires for environments with X-Ray or gamma radiation such as nuclear power plants), or underwater lighting (glass is watertight and can be easily coated to prevent organic growth); etc.
The term “substantially” herein, such as in “substantially all light” or in “substantially consists”, will be understood by the person skilled in the art. The term “substantially” may also include embodiments with “entirely”, “completely”, “all”, etc. Hence, in embodiments the adjective substantially may also be removed. Where applicable, the term “substantially” may also relate to 90% or higher, such as 95% or higher, especially 99% or higher, even more especially 99.5% or higher, including 100%. The term “comprise” includes also embodiments wherein the term “comprises” means “consists of”. The term “and/or” especially relates to one or more of the items mentioned before and after “and/or”. For instance, a phrase “item 1 and/or item 2” and similar phrases may relate to one or more of item 1 and item 2. The term “comprising” may in an embodiment refer to “consisting of” but may in another embodiment also refer to “containing at least the defined species and optionally one or more other species”.
Furthermore, the terms first, second, third and the like in the description and in the claims, are used for distinguishing between similar elements and not necessarily for describing a sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other sequences than described or illustrated herein.
The devices herein are amongst others described during operation. As will be clear to the person skilled in the art, the invention is not limited to methods of operation or devices in operation.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. Use of the verb “to comprise” and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. The article “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. In the device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
The invention further applies to a device comprising one or more of the characterizing features described in the description and/or shown in the attached drawings. The invention further pertains to a method or process comprising one or more of the characterizing features described in the description and/or shown in the attached drawings.
The various aspects discussed in this patent can be combined in order to provide additional advantages. Furthermore, some of the features can form the basis for one or more divisional applications.
Referring to
Referring to
Referring to
Referring to
Referring to
In an alternative embodiments, halogen lamps or high-intensity discharge lamps are used as light sources 101, 201, 301 or 401.
In an alternative embodiment, the heat conductive and light transmissive fluid comprises particles. The particles are selected from the group comprising scattering particles and inorganic luminescent particles, or a combination thereof. Referring to
In a further alternative embodiment, the optical refractive index of the heat conductive and light transmissive fluid 111, 211 and 311, and the optical refractive index of at least a part of the container 103, 203 and 303 are tuned to each other. The refractive index of the heat conductive fluid (nfluid) is in the range of 1-5. The refractive index of the walls of the first circular plate 105 and/or second circular plate 107 (referring to
By tuning the values of nfluid and ncontainer to each other, a desired optical effect may be achieved. The optical refractive index of the fluid 111, 211, 311 (nfluid) is comparable to the optical refractive index of the material (ncontainer) of at least a part of the container 103, 203, 303 (nfluid≈ncontainer). In case the light 117, 217, 317 propagates through the fluid 111, 211, 311, subsequently through the second area 107, 207, 307 of the container 103, 203, 303 and then exits the light emitting device 100, 200, 300, the light 117, 217, 317 will not be substantially refracted by the material of the second area 107, 207, 307 of the container 103, 203, 303 and the light emitting device 100, 200, 300 may generate diffuse light. In an alternative embodiment, the optical refractive index of the fluid is larger than the optical refractive index of at least a part of the container (nfluid>ncontainer). In case the light propagates through the fluid 111, 211, 311, subsequently through the second area of the container 103, 203, 303 and then exits the light emitting device 100, 200, 300, the light 117, 217, 317 will be substantially refracted by the material of the second area 107, 207, 307 of the container 117, 217, 317 and the light emitting device 100, 200, 300 may generate beam shaped light. The amount of beamshaping is determined by the ratio of nfluid to ncontainer; at increasing ratio, for nfluid>ncontainer, the amount of beamshaping increases. In another alternative embodiment the optical refractive index of the fluid is smaller than the optical refractive index of at least a part of the container (nfluid<ncontainer). In case the light propagates through the fluid 111, 211, 311, subsequently through the second area 107, 207, 307 of the container 103, 203, 303 and then exits the light emitting device 100, 200, 300, a substantial part of the light 117, 217, 317 will be reflected back by the second area 107, 207, 307 of the container 103, 203, 303 and may exit the light emitting device 100, 200, 300 via the first area 105, 205, 305 of the container 103, 203, 303. The amount of reflected light is determined by the ratio of nfluid to ncontainer; at decreasing ratio, for nfluid<ncontainer, the amount of reflected light increases.
In a further alternative embodiment, the walls of the first circular plate 105 and/or second circular plate 107 (referring to
In a further alternative embodiment, the walls of the first circular plate 105 and/or second circular plate 107 (referring to
Number | Date | Country | Kind |
---|---|---|---|
14199929 | Dec 2014 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/068005 | 8/5/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/026695 | 2/25/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5890794 | Abtahi | Apr 1999 | A |
8262249 | Hsia | Sep 2012 | B2 |
8587185 | Negley et al. | Nov 2013 | B2 |
20050254264 | Sidwell | Nov 2005 | A1 |
20060274524 | Chang | Dec 2006 | A1 |
20090154164 | Hsu et al. | Jun 2009 | A1 |
20090207586 | Arai | Aug 2009 | A1 |
20100170670 | Catalano | Jul 2010 | A1 |
20110172976 | Budiman et al. | Jul 2011 | A1 |
20110267805 | Hua | Nov 2011 | A1 |
20120250333 | Chou | Oct 2012 | A1 |
20120294001 | Rehn | Nov 2012 | A1 |
20130170175 | Negley | Jul 2013 | A1 |
20140268744 | Nourbakhsh | Sep 2014 | A1 |
20150085492 | Kato | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
201339887 | Nov 2009 | CN |
201892047 | Jul 2011 | CN |
202141017 | Feb 2012 | CN |
102943967 | Feb 2013 | CN |
203068250 | Jul 2013 | CN |
541952 | Jan 1932 | DE |
102005013208 | Oct 2005 | DE |
3180295 | Aug 1991 | JP |
H110316488 | Dec 1998 | JP |
2006108010 | Apr 2006 | JP |
2012516540 | Jul 2012 | JP |
2013105711 | May 2013 | JP |
201441750 | Mar 2014 | JP |
2014102995 | Jun 2014 | JP |
2008133304 | Nov 2008 | WO |
WO2013082803 | Jun 2013 | WO |
2014068335 | May 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20170261194 A1 | Sep 2017 | US |