This application claims the priority benefit of Taiwan application serial no. 9411 8308, filed on Jun. 3, 2005. All disclosure of the Taiwan application is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a light emitting diode (LED) and fabrication method thereof. In particular, it relates to a LED having increased light extraction efficiency and the fabrication method thereof.
2. Description of the Related Art
The typical light emitting diode (LED) efficiency can be classified as internal quantum efficiency and external quantum efficiency. The internal quantum efficiency describes the ratio of externally inputted carriers that are converted into photons. It is mainly related to the epitaxy of the material of the device and to the device structure; external quantum efficiency is the product of internal quantum efficiency and light extraction efficiency, wherein the light extraction efficiency is related to the proportion of photons generated inside the device which is dissipated externally of the device. The typical light emitting diode efficiency describes the external quantum efficiency, which is derived from the detected photon count external to the device and is compared with the input carrier.
Because Group III nitrides have a continuous and wider bandgap, they are therefore widely used as the light emitting diode. Because gallium nitride can be combined with indium nitride (InN) and aluminum nitride (AIN) to form ternary or quaternary compounds; therefore, the light emitting diode wavelength is allowed to encompass the infrared and ultraviolet light ranges by changing the ratio of the Group III elements. LED is used extensively in small and large outdoor displays, vehicle instrumentation panel, automobile lamp, cellular phone, warning light, indicator lamp, advertisement billboard, and traffic light. It thus improves and enriches quality of life for mankind.
The early development for light emitting diode using gallium nitride is in the improvement for the structure and quality of the epitaxy for improving internal quantum efficiency. However, the research for light extraction efficiency enhancement currently has received much attention, thus allowing for further improvement for the light emitting diode efficiency. In the area of improving the light extraction efficiency, the index of refraction for the light emitting diode of conventional gallium nitride series with respect to air is 2.5 to 1 respectively. Because the index of refraction for the gallium nitride series light emitting diode is higher, the internal total reflection can easily be formed. The formed photons are not easily released outside of the gallium nitride series light emitting diode because of internal total reflection.
The objective for the present invention is for providing a light emitting diode, which has increased light extraction efficiency.
Another objective for the present invention is for providing a fabrication method for a light emitting diode to obtain higher light extraction efficiency and to minimize the issues of instrument detection errors related to device positioning caused by the surface roughness or patterns (which is the n,p pad color difference) of the light emitting diode.
The present invention proposes a light emitting diode, which includes a substrate and an epitaxial structure disposed above the substrate. The surface for the epitaxial structure has a plurality of mass transferred patterns. The mass transferred patterns are made by a mass transfer method, which makes the original rough surface of the epitaxial structure to undergo deformation, wherein a surface topography of the mass transferred pattern is smoother and more gradual than that of the original surface of the epitaxial structure.
According to the light emitting diode for an embodiment of the present invention, the distance between each of the aforementioned mass transferred pattern is 0.1 μm to 5 μm. Furthermore, the surface of each of the mass transferred pattern is similar to the surface for a microlens.
According to the light emitting diode for an embodiment of the present invention, the aforementioned substrate includes a surface patterned substrate.
According to the light emitting diode for an embodiment of the present invention, a regrowth mask which is disposed within the epitaxial structure is further included.
According to the light emitting diode for an embodiment of the present invention, the aforementioned epitaxial structure includes a buffer layer disposed on the substrate, a first contact layer disposed on the buffer layer, an active layer disposed on the first contact layer, a clad layer disposed on the active layer, and a second contact layer disposed on the clad layer. In addition, the light emitting diode described in an embodiment of the present invention further includes a first electrode disposed on the first contact layer, a surface disposed on the second contact layer, and a second electrode on the mass transferred pattern and a transparent conductive layer, wherein the transparent conductive layer and the second electrode do not mutually overlap. Furthermore, the aforementioned transparent conductive layer includes a metal layer or a transparent conductive oxide layer.
According to the light emitting diode for an embodiment of the present invention, the aforementioned first contact layer includes a n-type contact layer, the second contact layer includes a p-type contact layer, and the clad layer includes a p-type clad layer. Furthermore, the light emitting diode further includes a regrowth mask, which is disposed between the substrate and the active layer.
The present invention further proposes a fabrication method for a light emitting diode, which an epitaxial structure on a substrate is formed, wherein the surface for the epitaxial structure has a plurality of first patterns. Later, using a mass transfer method, a plurality of second patterns are formed as the first pattern for the above surface undergoes deformation, wherein a surface topography of the second pattern is smoother and more gradual than that of each of the first pattern.
According to the fabrication method for the light emitting diode described in an embodiment of the present invention during the aforementioned mass transfer, the mass transfer phenomenon occurs at a temperature between 800° C. and 1400° C.
According to the fabrication method for the light emitting diode described in an embodiment of the present invention, the distance between each of the aforementioned second patterns is 0.1 μm to 5 μm. In addition, the height of each of the first pattern is between 500 angstrom and 10000 angstrom, and the width is between 0.1 μm and 5μm.
According to the fabrication method for the light emitting diode described in an embodiment of the present invention, a buffer layer, a first contact layer, an active layer, a clad layer, and a second contact layer are sequentially formed above the substrate in the aforementioned procedure for providing an epitaxial structure on the substrate. In addition, the aforementioned first patterns are formed using a fabrication method on the surface of the second contact layer.
According to the fabrication method for the light emitting diode described in an embodiment of the present invention, a surface patterned substrate as the substrate is provided in the aforementioned procedure for providing the epitaxial structure on the substrate, wherein the surface for the surface patterned substrate has surface patterns. Later, a buffer layer, a first contact layer, an active layer, a clad layer, and a second contact layer are sequentially formed above the substrate.
According to the fabrication method for the light emitting diode described in an embodiment of the present invention, the buffer layer, the first contact layer, the active layer, and the clad layer are sequentially formed above the substrate in the aforementioned procedure for providing the epitaxial structure on the substrate. Thereafter, the second contact layer is formed on the clad layer. Using the changes for the epitaxial conditions, the aforementioned first pattern is formed on the second contact layer.
According to the fabrication method for the light emitting diode described in an embodiment of the present invention, a regrowth mask in the epitaxial structure is formed in the aforementioned procedure for providing the epitaxial structure on the substrate, wherein the position for the regrowth mask pattern and the first pattern are mirror images of one another. In addition, the regrowth mask can be formed between the substrate and the active layer further using an epitaxial method such as epitaxial lateral over growth (ELOG) or PENDEO for forming the light emitting diode crystal .
According to the fabrication method for the light emitting diode described in an embodiment of the present invention, after the aforementioned procedure, the first electrode is then formed on the first contact layer, and the second electrode and the transparent conductive layer are formed above the second contact layer surface and second pattern, wherein the transparent conductive layer and the second electrode do not mutually overlap.
The present invention makes the originally rough or patterned surface for the epitaxial structure of the light emitting diode to undergo deformation by adopting the mass transfer method; as a result, the light extraction efficiency for the light emitting diode can be increased, and at the same time, the issues of instrument detection errors related to device positioning caused by the light emitting diode surface roughness or patterns are minimized.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A principle for the present invention is based on using a mass transfer method to make the already roughened or patterned surface of the light emitting diode to undergo deformations for achieving the objective of the present invention. The following are several embodiments as examples, but the application for the present invention is not limited thereto.
Referring to
The first contact layer 130 is, for example, made of gallium nitride (GaN) series material for forming the n-type contact layer. The active layer 140 is made of indium gallium nitride. The clad layer 150 is, for example, constructed of a material from the gallium nitride Group III to IV series for forming a p-type clad layer. And the second contact layer 160 is, for example, constructed from the gallium nitride series material for forming a p-type contact layer.
Thereafter, referring to
Later, referring to
Later, referring to
The enlarged cross-sectional view shown in
Referring to
Later, referring to
Later, referring to
In addition, the enlarged cross-sectional view shown in
Referring to
Later, referring to
Later, referring to
The enlarged cross-sectional view shown in
Referring to
Thereafter, referring to
Referring to
The enlarged cross-sectional view as shown in
In summary, a key element for the present invention is for applying the mass transfer method to the fabrication process for the light emitting diode to cause the surface of the epitaxial structure which is originally roughened or patterned to undergo deformation, thus increasing the light extraction efficiency for the light emitting diode, at the same time the issues of the instrument detection errors relating to device positioning caused by the light emitting diode surface roughness or pattern are reduced.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing descriptions, it is intended that the present invention covers modifications and variations of this invention if they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
94118308 | Jun 2005 | TW | national |