LED-based light systems are used to produce white light for applications such as liquid crystal display (LCD) backlighting. One technique for producing white light involves mixing the light from red, green, and blue (RGB) LEDs. White light generated from an RGB LED-based light system tends to be inconsistent in quality, especially as the LEDs degrade over time. Feedback control systems have been used to measure luminance and chrominance characteristics of the output light such as the brightness and color point and to adjust the LED drive signals to maintain the desired luminance and chrominance characteristics of the emitted white light. As time goes by, degradation of the individual LEDs in an LED-based light system causes changes in the brightness and shifts in the color point of the emitted white light. The feedback control system adjusts the drive signals to compensate for the changes in LED performance. Typically, as an LED-based light system degrades, the LEDs must be driven harder (e.g., with a higher drive voltage or drive current) to maintain the brightness of the red, green, and/or blue LEDs. Driving the LEDs harder causes the LEDs to dissipate more heat which further degrades LED performance.
At a certain point, the feedback control system will not be able to maintain the desired brightness and color point of the emitted white light due to the degradation of one or more of the LEDs. Although the LED-based light system is still able to produce white light, the light no longer has the desired luminance and chrominance characteristics and the LED-based light system must be replaced or the inferior quality of light accepted.
In view of this, what is needed is an LED-based light system that can produce light of a desired quality for longer than current LED-based light systems.
An LED-based light system includes a primary light source and at least one redundant light source. The primary light source is activated by itself and the performance of the light source is measured to determine whether nor not to drive the redundant light source. The redundant light source is activated when the performance measurements indicate that a performance characteristic is not being met by the primary light source alone. Using a redundant light source that is activated once the first light source cannot meet a performance characteristic extends the life of the LED-based light system.
The first light system can be activated in combination with the redundant light source once the decision is made to activate the redundant light source. Activating the light sources in combination allows the first light source to contribute to the overall light output even though it is no longer able to meet the desired performance characteristic.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrated by way of example of the principles of the invention.
Throughout the description similar reference numbers may be used to identify similar elements.
The light sources 102, 104, and 106 are controlled by the redundant light source management system 110. The redundant light source management system depicted in
The control system 116 receives the feedback signals from the light sensor 114 and generates LED control signals in response. The LED control signals are used to activate the individual LEDs 112 of the light sources 102, 104, and 106. The control system generates LED control signals that will cause the LEDs to emit light of desired luminance and chrominance characteristics (i.e., brightness and color point). In an embodiment, the control system compares luminance and chrominance characteristics indicated by the feedback signals to reference luminance and chrominance characteristics to determine which light source or light sources should be activated and to determine how the LED control signals should be adjusted to produce light having the desired luminance and chrominance characteristics.
In operation, the control system 116 generates LED control signals to control the light sources 102, 104, and 106. For description purposes, the operation starts with only the primary light source 102 being activated and therefore LED control signals are provided only to the primary light source. In response to the LED control signals, the primary light source emits light that is detected by the light sensor 114. The light sensor generates feedback signals in response to the detected light and provides the feedback signals to the control system. The control system uses the feedback signals to adjust the LED control signals to maintain the desired luminance and chrominance characteristics of the emitted light. The feedback process operates on a continuous basis to maintain the desired luminance and chrominance characteristics of the emitted light.
At some point, it is determined that the first redundant light source 104 should be activated in addition to the primary light source 102. In an embodiment, this determination is made based on measurements of the light that is emitted from the primary light source. In particular, the redundant light source is activated when measurements of the emitted light indicate that the light emitted from the primary light source alone does not have the desired luminance and chrominance characteristics.
Once the determination is made that the first redundant light source 104 should be activated, the control system 116 causes LED control signals to be provided to the first redundant light source as well as to the primary light source 102. The light that is emitted from the combination of the redundant and the primary light sources is then detected by the light sensor 114. Feedback signals generated by the light sensor continue to be used to adjust the LED control signals to maintain the desired luminance and chrominance characteristics of the emitted light.
The feedback and adjustment process continues as described above while both the primary and first redundant light sources 102 and 104 are activated. At some point, it is determined that the second redundant light source 106 should be activated in addition to the primary and first redundant light sources. This decision is made in the same manner as the decision to activate the first redundant light source. That is, the second redundant light source is activated when measurements of the emitted light indicate that the light emitted from the primary and first redundant light sources does not have the desired luminance and chrominance characteristics.
The process of measuring the performance of light sources and activating redundant light sources in a cumulative manner can be applied to any LED-based light system that includes at least one redundant light source. Although one primary light source 102 and two redundant light sources 104 and 106 are shown in
The switch system 118 receives switch control signals from the control system 116 and in response, controls which light sources receive the LED control signals that are generated by the control system. In an embodiment, the switch system is configured to provide the LED control signals to the light sources in a cumulative manner. That is, the LED control signals are provided to the primary light source 102, to the primary light source 102 and the first redundant light source 104, or to the primary light source 102 the first redundant light source 104 and the second redundant light source 106. The switch system may include, for example, mechanical or solid state relays.
In operation, the primary light source 102 is initially the only light source being activated and therefore the switch control signal causes the switch system 118 to provide the LED control signals only to the primary light source. In response to the LED control signals, the primary light source emits light that is detected by the light sensor 114. The light sensor generates feedback signals in response to the detected light and provides the feedback signals to the control system 116 as described above.
At some point, it is determined that the first redundant light source 104 should be activated in addition to the primary light source 102. Once this determination is made, the control system 116 generates a switch control signal that causes the LED control signals to be provided to the first redundant light source as well as to the primary light source. The light that is emitted from the combination of the primary and first redundant light sources is then detected by the light sensor 114 and the LED control signals are adjusted as described above to maintain the desired luminance and chrominance characteristics of the emitted light. The process continues as described above while both the primary and first redundant light sources are activated. At some point, it is determined that the second redundant light source 106 should be activated in addition to the primary and first redundant light sources 102 and 104. Once this determination is made, the control system generates a switch control signal that causes the LED control signals to be provided to the second redundant light source as well as to the primary and first redundant light sources. The light that is emitted from the primary, the first redundant, and the second redundant light sources is then detected by the light sensor and the LED control signals are adjusted as described above to maintain the desired luminance characteristics of the emitted light.
An advantage of the system 200 of
An advantage of activating the light sources 102, 104, and 106 in a cumulative manner as described above is that light sources that no longer are able to meet the desired luminance and chrominance characteristics alone still contribute to the overall light output. In this way, the LED-based light system is able to take advantage of the light emitted from underperforming light sources while ensuring the desired luminance and chrominance characteristics are met. For example, although the light emitted from a light source has degraded to the point where it is no longer able to meet the luminance and chrominance requirements alone, it can still contribute to the spectral power and brightness of the emitted light, thereby lowering the burden on the redundant light source or light sources. The cumulative approach extends the life of the light system over a light system that switches from one light source to the next light source without continuing to drive the degraded light source or light sources. Although a cumulative approach to activating the light sources is described, other approaches (e.g., activating only one light source at a time) are possible.
As described above, the light sources 102, 104, and 106 may include multiple color LEDs, such as red, green, and blue LEDs. It is often desirable to control the color LEDs on a color-specific basis in response to feedback signals that include color-specific information.
The redundant light source management system 110 includes a color sensor 114, a control system 116, and a switch system 118. The light sensor detects light that is emitted from the light sources and provides feedback signals with color-specific information to the control system. The control system includes a microcontroller 120 and a color management system 122. The microcontroller provides reference luminance and chrominance information (i.e., brightness and color point information) to the color management system. The color management system uses the reference luminance and chrominance information and the feedback signals from the color sensor to generate color-specific LED control signals. As depicted in
The switch system 118 is configured such that it can distribute the LED control signals to each of the light sources 102, 104, and 106. Additionally, the switch system is configured to provide the LED control signals to the light sources in a cumulative manner (e.g., to the primary light source 102, to the primary and first redundant light sources 102 and 104, or to the primary, first redundant, and second redundant light sources 102, 104, and 106). The switch system depicted in
In operation, the primary light source 102 is initially the only light source being controlled by the color management system 122. This is accomplished by turning off the two switches 124 and 126 of the switch system 118 (i.e., blocking the transmission of the LED control signals to the redundant light sources). The color sensor measures performance characteristics (e.g., luminance and chrominance) of the light that is emitted from the primary light source and provides the performance measurements to the color management system as feedback signals. The color management system compares the performance characteristic measurements to desired performance characteristics. Once it is determined that the desired performance characteristics are not being met by the primary light source alone, an error flag is generated by the color management system. The error flag is provided to the microcontroller 120 and causes the microcontroller to generate a first switch control signal. The first switch control signal turns on the first switch 124 within the switch system 118, which causes the LED control signals to be provided to the first redundant light source 104 in addition to the primary light source 102. In response to the first switch control signal and the LED control signals, light is emitted from both the primary and first redundant light sources. The emitted light is then detected by the color sensor and the resulting feedback signals are used by the color management system to adjust the LED control signals.
Once it is determined that the desired performance characteristics are not being met by the primary and first redundant light sources 102 and 104, a second error flag is generated by the color management system 122. The second error flag is provided to the microcontroller 120 and causes the microcontroller to generate a second switch control signal. The second switch control signal turns on the second switch 126 within the switch system 118, which causes the LED control signals to be provided to the second redundant light source 106 in addition to the primary and first redundant light sources 102 and 104. In response to the first and second switch control signals and the LED control signals, light is emitted from the primary, the first redundant, and the second redundant light sources. The emitted light is then detected by the color sensor and the resulting feedback signals are used by the color management system to adjust the LED control signals.
As described above, an advantage of activating the light sources in a cumulative manner is that light sources that no longer are able to meet the desired luminance and chrominance characteristics alone still contribute to the overall light output. This advantage is illustrated in the LED-based light system 300 of
For the purposes of example, the LED-based light systems 100, 200, and 300 depicted in
where
With reference to
The alternate color management system 116 of
Although the light sources are described as identical to each other with reference to
In an embodiment, the LED-based light systems are used to produce white light for LCD backlighting. Alternatively, the LED-based light systems can be used in any other light application and are in no way limited to backlighting for LCD panels.
Other embodiments of the redundant light source management system 110 that provide feedback signals, adjust the LEDs in response to the feedback signals, and activate the redundant light sources in response to the feedback signals are possible.
Although specific embodiments of the invention have been described and illustrated, the invention is not to be limited to the specific forms or arrangements of parts so described and illustrated. The scope of the invention is to be defined by the claims appended hereto and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
6095661 | Lebens et al. | Aug 2000 | A |
6441558 | Muthu et al. | Aug 2002 | B1 |
6498440 | Stam et al. | Dec 2002 | B1 |
6507159 | Muthu | Jan 2003 | B1 |
6753661 | Muthu et al. | Jun 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050242742 A1 | Nov 2005 | US |