This application claims priority to China Application Serial Number 202010151258.7, filed Mar. 6, 2020, which is herein incorporated by reference in its entirety.
The present disclosure relates to a light emitting diode device.
Light emitting diode is a light-emitting element made of semiconductor material that can convert electrical energy into light. It has the advantages of small size, high energy conversion efficiency, long life, power saving, etc., so it can be widely used as light source in various electronic applications.
When the light-emitting diodes are used as a backlight of a display, how to reduce the uneven brightness of the backlight module is a problem that suppliers are desperately trying to solve.
One aspect of the present disclosure is to provide a light emitting diode device includes a substrate, a frame, an LED die and a transparent layer. The frame is located on the substrate. The frame and the substrate collectively define a concave portion. The frame has a light reflectivity ranging from 20% to 40%. The LED die is located on the substrate and within the concave portion. The transparent layer is filled into the concave portion and covering the LED die, wherein the LED die has a side-emitting surface and a top-emitting surface, the side-emitting surface has a luminous intensity greater than that of the top-emitting surface.
In one or more embodiments, the frame has a refractive index between 1.41 and 1.6.
In one or more embodiments, the frame includes 10% to 50% long fibers.
In one or more embodiments, the frame includes at least one of polyethylene terephthalate, aromatic ring bonded high-grade fat-locked semi-aromatic nylon resin, and polyphthalamide.
In one or more embodiments, the transparent layer has a top surface that is lower or higher than a top end of the frame.
In one or more embodiments, the transparent layer includes silicon-based materials.
In one or more embodiments, the silicon-based materials include at least one of phenyl silicone resin and methyl silicone resin.
In one or more embodiments, the LED die has a bottom surface bonded to the substrate, and the bottom surface is a light-reflective surface.
In one or more embodiments, the side-emitting surface has a luminous intensity 10%-60% greater than that of the top-emitting surface.
In one or more embodiments, the LED die is mounted on electrodes of the substrate in a flip-chip manner or wire-bonded to electrodes of the substrate.
In summary, the light emitting diode device disclosed herein utilizes its low-reflectivity frame with a concave portion and its LED die equipped with a greater side luminous intensity than a top luminous intensity to further expand the light emitting angle such that light emitting diode device can effectively improve the uneven brightness of a backlight module when it is used in the backlight module of a display.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.
The invention can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
It is to be noted that the following descriptions of preferred embodiments of this disclosure are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed. Also, it is also important to point out that there may be other features, elements, steps and parameters for implementing the embodiments of the present disclosure which are not specifically illustrated. Thus, the specification and the drawings are to be regard as an illustrative sense rather than a restrictive sense. Various modifications and similar arrangements may be provided by the persons skilled in the art within the spirit and scope of the present disclosure. In addition, the illustrations may not be necessarily be drawn to scale, and the identical elements of the embodiments are designated with the same reference numerals.
Referring to
The LED die 104 has side-emitting surfaces (D1, D2, D3, D4), a top-emitting surface D5 and a bottom surface D6. In this embodiment, the side-emitting surfaces (D1, D2, D3, D4) of the LED die 104 have a luminous intensity greater than a luminous intensity of the top-emitting surface D5. The LED die 104 has its bottom surface D6 bonded to the substrate 102, and the bottom surface D6 is a light-reflective surface.
In this embodiment, the frame 106 is made from materials including at least one of polyethylene terephthalate, aromatic ring bonded high-grade fat-locked semi-aromatic nylon resin, and polyphthalamide, and the materials may be mixed with 10% to 50% of long fibers in order to achieve a refractive index between 1.41 and 1.6 as well as a light reflectivity ranging from 20% to 40%, but not being limited thereto.
In this embodiment, the top surface 108a of the transparent layer 108 is flush with a top end 106b of the frame 106, but not being limited thereto.
In this embodiment, the transparent layer 108 is made from materials including silicon-based materials, and the silicon-based materials may include at least one of phenyl silicone resin and methyl silicone resin, but not being limited thereto.
In this embodiment, the LED die 104 has its side-emitting surface (D1, D2, D3, D4) with a luminous intensity 10%-60% greater than a luminous intensity of its top-emitting surface D5, but not being limited thereto.
In this embodiment, the LED die 104 is wire-bonded to electrodes of the substrate 102 via wires 105, but not being limited thereto.
In this embodiment, the LED die 104 may be a blue diode chip, but not being limited thereto.
Referring to
Referring to
In summary, the light emitting diode device disclosed herein utilizes its low-reflectivity frame with a concave portion and its LED die equipped with a side luminous intensity greater than a top luminous intensity to further expand the light emitting angle such that light emitting diode device can effectively improve the uneven brightness of a backlight module when it is used in the backlight module of a display.
Although the present invention has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
202010151258.7 | Mar 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
8587011 | Matsuda | Nov 2013 | B2 |
9024348 | Koseki | May 2015 | B2 |
9041283 | Zhang | May 2015 | B2 |
9698319 | Lee et al. | Jul 2017 | B2 |
20060183625 | Miyahara | Aug 2006 | A1 |
20190203904 | Lee | Jul 2019 | A1 |
20190305203 | Ukawa | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
111384226 | Jul 2020 | CN |
6768093 | Oct 2020 | JP |
I411743 | Oct 2013 | TW |
I624968 | May 2018 | TW |
WO-2019054793 | Mar 2019 | WO |
WO-2020015437 | Jan 2020 | WO |
Number | Date | Country | |
---|---|---|---|
20210280757 A1 | Sep 2021 | US |