The present invention relates to a light emitting diode (LED) driver, and more particularly, to a circuit for driving a string of light emitting diode (LEDs).
Due to the concept of low energy consumption, LED lamps are prevailing and considered a practice for lighting in the era of energy shortage. Typically, an LED lamp includes a string of LEDs to provide the needed light output. The string of LEDs can be arranged either in parallel or in series or a combination of both. Regardless of the arrangement type, providing correct voltage and/or current is essential to efficient operation of the LEDs.
In application where the power source is periodic, the LED driver should be able to convert the time varying voltage to the correct voltage and/or current level. Typically, the voltage conversion is performed by circuitry commonly known as AC/DC converters. These converters, which employ an inductor or transformer, capacitor, and/or other components, are large in size and have short life, which results in an undesirable form factor in lamp design, high manufacturing cost, and reduction in system reliability. Accordingly, there is a need for an LED driver that is reliable and has a small form factor to thereby reduce the manufacturing cost.
In one embodiment of the present disclosure, a method for driving light emitting diodes (LEDs) includes: providing a string of LEDs divided into groups, the groups being electrically connected to each other in series; providing a power source electrically connected to the string of LEDs; coupling each of the groups to a ground through a corresponding one of current regulating circuits; measuring a phase of a voltage waveform of the power source; and turning on the groups in a downstream sequence based on the measure phase.
In another embodiment of the present disclosure, a driver circuit for driving light emitting diodes (LEDs) includes: a string of LEDs divided into n groups, the n groups of LEDs being electrically connected to each other in series, a downstream end of group m−1 being electrically connected to the upstream end of group m, where m being a positive number equal to or less than n; a power source coupled to an upstream end of group 1 and operative to provide an input voltage; a plurality of current regulating circuits, each of the current regulating circuits being coupled to the downstream end of a corresponding group at one end and coupled to a ground at another end and including a sensor amplifier and a cascode having first and second transistors; and a phase control logic for sending a signal to each of the current regulating circuits to thereby control a current flow through each of the current regulating circuits.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
Referring now to
The LEDs as used herein is the general term for many different kinds of light emitting diodes, such as traditional LED, super-bright LED, high brightness LED, organic LED, etc. The drivers of the present invention are applicable to all kinds of LED.
As depicted in
A separate current regulating circuit (or, shortly regulating circuit) is connected to the downstream end of each LED group, where the current regulating circuit collectively refers to a group of elements for regulating the current flow, say i1, and includes a first transistor (say, UHV1), a second transistor (say, M1), and a sensor amplifier (say, SA1). Hereinafter, the term transistor refers to an N-Channel MOSFET, a P-Channel MOSFET, an NPN-bipolar transistor, a PNP-bipolar transistor, an Insulated gate Bipolar Transistor (IGBT), analog switch, or a relay.
The first and second transistors are electrically connected in series, forming a cascode structure. The first transistor is capable of shielding the second transistor from high voltages. As such, the first transistor is referred as shielding transistor hereinafter, even though its function is not limited to shielding the second transistor. The main function of the second transistor includes regulating the current i1, and as such, the second transistor is referred as regulating transistor hereinafter. The shielding transistor may be an ultra-high-voltage (UHV) transistor that has a high breakdown voltage of 500 V, for instance, while the regulating transistor M1 may be a low-voltage (LV), medium-voltage (MV), or a high-voltage (HV) transistor and has a lower breakdown voltage than the shielding transistor. The node, such as N1, refers to the point where the source of the shielding transistor is connected to the drain of the regulating transistor.
The sensor amplifier SA1, which may be an operational amplifier, compares the voltage V1 with the reference voltage Vref, and outputs a signal that is input to the gate of the regulating transistor, to thereby form a feedback control of the current i1 flowing through the cascode and the current sensing resistors R1, R2, R3, and R4. The gate voltage of the shielding transistor may be set to a constant voltage, Vcc2. (Hereinafter, Vcc2 refers to a constant voltage.) The mechanism for generating the constant gate voltage Vcc2 is well known in the art, and as such, the detailed description of the mechanism is not described in the present document.
As discussed above, each current regulating circuit is electrically connected to the downstream end of the corresponding LED group at one end and to the ground at the other end via the current sensing resistors. The voltages V1, V2, V3, and V4 represent the electrical potentials at the downstream ends of the regulating transistors M1, M2, M3, and M4, respectively. Thus, for instance, the voltage V1 can be represented by the equation:
V1=i1*(R1+R2+R3+R4)+i2*(R2+R3+R4)+i3*(R3+R4)+i4*R4.
The driver 10 can turn on/off each group of LEDs successively according to the signals received from the frequency-detector and phase-control-logic (or, shortly, phase-control-logic) 12. For example, the phase-control-logic 12 sends a signal to the sensor amplifier SA1 to turn on the regulating transistor M1, while the other regulating transistors M2-M4 are turned off. As will be discussed on conjunction with
In another example, the phase-control-logic 12 sends signals to more than one sensor amplifiers, say SA1 and SA2, to turn on more than one regulating transistors, say M1 and M2. As Vrect increases from the ground level, the current flows only through the first LED group, i.e., only the current i1 flows. As Vrect further increases enough to turn on the first and second LED groups, LED1 and LED2 (or Group 1 and Group 2), the current i2 starts flowing through the second current regulating circuit. At the same time, V1 further increases and exceeds Vref at a point in time. At this point, the feedback loop control mechanism cuts off the current i1, i.e., the sensor amplifier SA1 compares the voltage level V1 with the reference voltage Vref and sends a control signal to the regulating transistor, M1. More specifically, when V1 is higher than Vref, the sensor amplifier SA1 sends a low-state output signal to the regulating transistor M1 to thereby turn off the regulating transistor M1.
In another example, the sensor amplifier SA1 controls the regulating transistor M1 based on the output signals of the phase-control-logic 12 only. Detailed description of the current regulating methods is given in conjunction with
The same analogy applies to other current regulating circuits corresponding to Groups 2-4. For example, the current i3 is controlled by the sensor amplifier SA3 based on either the output signal of the phase-control-logic 12 or V3 or both. When the source voltage (or the rectified voltage Vrect) reaches its peak and Vrect starts descending, the above process reverses so that the first current regulating circuit turns back on last.
As discussed above, each regulating circuit includes two transistors, such as UHV1 and M1, arranged in series to form a cascode structure. The cascode structure, which is implemented as a current sink, has various advantages compared to a single transistor current sink. First, it has enhanced current driving capability. When operating in its saturation region, which is desired for a current sink, the current driving capability (Idrv) of an LV/MV/HV NMOS is far superior to an UHV NMOS. For example, Idrv of a typical LV NMOS is 500 μA/μm whereas that of a typical UHV NMOS is 10˜20 μA/μm. Thus, to regulate the same amount of current flow, the required projection area of an UHV NMOS on the chip is at least 20 times as large as that of an LV NMOS. Also, a typical UHV NMOS has the minimum channel length of 20 μm, while a typical LV NMOS has the minimum channel length of 0.5 μm. However, a typical LV NMOS requires a shielding mechanism that offers protection from high voltages. In the cascode structure, the first transistor, preferably UHV NMOS, operates as a shielding transistor, while the second transistor, preferably LV/MV/HV NMOS, operates as a current regulator, providing enhanced current driving capability. The shielding transistor is not operating in saturation region as would be in the case where a single UHV NMOS is used as the current sink and operated in the linear region. As such, the current driving capability Idrv is not the determinative design factor; rather the resistance of the shielding transistor, Rdson, is the important factor in designing the UHV NMOS of the cascode.
Second, due to the series configuration of the cascode structure, the required voltage (a.k.a. voltage compliance or voltage headroom) of the cascode structure can be higher than a single UHV NMOS configuration. For an LED driver case, however, the power loss due to the required voltage is much less than the power loss due to the LED driving voltage. For example, in an AC-driven LED driver case, the LED driving voltage (voltage on the LED anode) ranges 100 Vmrs˜250 Vrms. Assume the required voltage of a single UHV NMOS is 2V whereas that of a cascode structure is 5V. In this case, the efficiencies are 98˜99% and 95˜98%, respectively. Of course, Rdson can be reduced so that the required voltage of the cascode structure can be about the same as that of a single UHV NMOS. The point is that the additional power consumed by the cascode structure is a minor disadvantage. If efficiency is a crucial design factor, the cascode structure can be designed in a current mirror configuration whereas a current mirror configuration using two UHV NMOS transistors is not practically feasible due to their large area on the chip.
Third, turning on/off the current sink is easier in the cascode structure since the UHV MOS and LV/MV/HV NMOS are controlled separately. In a single UHV NMOS current sink, both current regulation and on/off action have to be done by controlling the gate of the UHV NMOS, which has the characteristics of a large capacitor. In contrast, in the cascode structure, the current regulation can be done by controlling the LV/MV/HV NMOS and on/off action can be done by controlling the UHV NMOS that requires only logic operation applied on the gate.
Fourth, the speed of turning on/off is controlled more smoothly in the cascode structure than a single UHV NMOS configuration. In a single UHV NMOS configuration, the linear control of current cannot be easily achieved by controlling the gate voltage since the current is a square function of the gate voltage. By contrast, in a cascode structure, when the gate of the LV/MV/HV NMOS is controlled, the current control (slewing) becomes smoother since it is operating as a resistor that is an inverse function of the gate voltage.
Fifth, the cascode structure provides better noise immunity. Noise from the power supply can propagate through the LEDs and subsequently can be coupled to the current regulating circuit. More specifically, the noise is introduced into the feedback loop of the current regulating circuit. In a single UHV NMOS configuration, this noise is directly coupled to this loop, whereas, in a cascode structure, the noise is attenuated by the ratio of Rdson of the UHV NMOS to the effective resistance of the LV/MV/HV NMOS.
Sixth, the noise generated by a cascode structure is lower than a single UHV NMOS configuration. In the cascode structure, the current control is mainly performed by the regulating transistor, while, in a single UHV NMOS configuration, the current control is performed by the UHV NMOS. Since the gate capacitance of the LV/MV/HV NMOS is lower than the UHV NMOS, the noise generated by the cascode structure is lower than a single UHV NMOS configuration.
It is noted that the shielding transistors UHV1˜UHV4 may be identical or different from each other. Likewise, the regulating transistors M1˜M4 may be identical or different from each other. The specifications of the shielding and regulating transistors may be selected to meet the designer's objectives.
As discussed above, the phase-control-logic 12 sends signals to the sensor amplifiers SA1˜SA4. The operation of the phase-control-logic 12 includes measuring the AC ½ cycle time, where the AC ½ cycle time refers to half the cycle period of AC signal.
Based on the determined frequency, the frequency selector 15 chooses preset time intervals for the switch tabs (or, shortly, tabs). The driver 10 (shown in
The detector 17 monitors the level of descending (or rising) Vrect and sends an enable signal, enable 2, when Vrect falls (or rises) to a predetermined voltage level, such as Vval. Then, the clock counter 18 starts counting the clock signal generated by the oscillator 16. Subsequently, the tab selector 19 receives the count from the clock counter 18. Then, the tab selector 19 compares the count received from the clock counter 18 to the preset time interval received from the frequency selector 15, and sends a switch enabling signal to the corresponding one of the tabs 20 when the count of the clock counter 18 matches the preset time interval. Upon receiving the switch enabling signal from tab selector 19, the corresponding tab, such as the sensor amplifier SA1, turns on/off the regulating transistor M1.
In
It is noted that the detector 13 may send the enable signal when Vrect rises or falls to Vval. For example, the detector 13 may send the enable signal at T1fa and T1fb (or, T1ra and T1rb) so that the clock counter 14 can count the clock signals during one AC ½ cycle time. Likewise, the detector 17 may send the enable signal when Vrect rises or falls to Vval. It is also noted that the detectors 13 and 17 may send enable signals at different preset voltage levels.
A digital locked loop or a phase locked loop may be used in place of the clock counter 14 (or, clock counter 18). As the DLL, PLL, and clock counter are well known in the art, the detailed description is not given in the present document.
As described above, the phase-control-logic 12 controls the currents i1-i4 based on the frequency and phase of the AC input voltage waveform. This approach is useful when the noise level of the AC power source is high and/or it is preferable to make the current waveform smoothly follow the AC input voltage waveform. If the current i1 is controlled by the feedback control mechanism only, the current i1 will fluctuate significantly when the noise level of Vrect is high since the feedback control mechanism relies on the level of Vrect. The fluctuation of current flows i1-i4 may result in the luminance flicker that can be perceived by human eyes.
In one example, the phase-control-logic 12 sends a signal to SA1 to turn on M1 at P1. At P1, the current may flow only through the first LED group, i.e., only the current i1 flows. At P2, a signal is sent to SA2 to turn on M2. As Vrect further increases enough to turn on the first and second LED groups, LED1 and LED2 (or Group 1 and Group 2), the current i2 starts flowing through the second current regulating circuit. At the same time, V1 further increases and exceeds Vref at a point in time. At this point, the feedback loop control mechanism cuts off the current i1, i.e., the sensor amplifier SA1 compares the voltage level V1 with the reference voltage Vref and sends a control signal to the regulating transistor, M1. More specifically, when the voltage V1 is higher than Vref, the sensor amplifier SA1 sends a low-state output signal to the regulating transistor M1 to thereby turn off the regulating transistor M1.
It is noted that the two types of signal sequencing modes (or, equivalently, phase control modes) in
Vref=Iref*R,
where Iref and R represent current and resistor, respectively.
The current regulating circuit 114 may be used in place of the current regulating circuit 110 of
It is noted that only two reference voltages Vref1 and Vref2 are used for each switch of the driver circuits 50, 70, 90, and 100. However, it should be apparent to those of ordinary skill in the art that more than two references voltages may be used for each switch.
As depicted in
It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.
This application claims the benefit of U.S. Provisional Applications No. 61/422,128, filed on Dec. 11, 2010, entitled “Light emitting diode driver using turn-on voltage of light emitting diode,” and relates U.S. application, Ser. No. 13/244,892, filed on Sep. 26, 2011, entitled “Light emitting diode driver,” issued as U.S. Pat. No. 8,890,432, and U.S. application, Ser. No. 13/244,873, filed on Sep. 26, 2011, entitled “Light emitting diode driver having cascode structure,” which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5674762 | See et al. | Oct 1997 | A |
6989807 | Chiang | Jan 2006 | B2 |
7081722 | Huynh et al. | Jul 2006 | B1 |
7439944 | Huynh et al. | Oct 2008 | B2 |
8222832 | Zheng et al. | Jul 2012 | B2 |
20060175985 | Huynh et al. | Aug 2006 | A1 |
20060208669 | Huynh et al. | Sep 2006 | A1 |
20080116817 | Chao et al. | May 2008 | A1 |
20090128055 | Shin et al. | May 2009 | A1 |
20100194298 | Kuwabara | Aug 2010 | A1 |
20100308738 | Shteynberg et al. | Dec 2010 | A1 |
20100308739 | Shteynberg et al. | Dec 2010 | A1 |
20110273102 | van de Ven et al. | Nov 2011 | A1 |
20120081009 | Shteynberg et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
2007-123562 | May 2007 | JP |
2007-173813 | Jul 2007 | JP |
2010-225742 | Oct 2010 | JP |
10-2008-0034316 | Apr 2008 | KR |
10-2009-0050381 | May 2009 | KR |
10-0905844 | Jul 2009 | KR |
10-2010-0067468 | Jun 2010 | KR |
10-0973014 | Jul 2010 | KR |
10-0997050 | Nov 2010 | KR |
2012-034102 | Mar 2012 | WO |
2012-061999 | May 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20120146524 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61422128 | Dec 2010 | US |