The present invention relates to a light emitting diode (LED) driver, and more particularly, to a circuit for driving a string of light emitting diode (LEDs).
Due to the concept of low energy consumption, LED lamps are prevailing and considered a practice for lighting in the era of energy shortage. Typically, an LED lamp includes a string of LEDs to provide the needed light output. The string of LEDs can be arranged either in parallel or in series or a combination of both. Regardless of the arrangement type, providing correct voltage and/or current is essential to efficient operation of the LEDs.
In application where the power source is periodic, the LED driver should be able to convert the time varying voltage to the correct voltage and/or current level. Typically, the voltage conversion is performed by circuitry commonly known as AC/DC converters. These converters, which employ an inductor or transformer, capacitor, and/or other components, are large in size and have short life, which results in an undesirable form factor in lamp design, high manufacturing cost, and reduction in system reliability. Accordingly, there is a need for an LED driver that is reliable and has a small form factor to thereby reduce the manufacturing cost.
In one embodiment of the present disclosure, a method for driving light emitting diodes (LEDs) includes: providing a string of LEDs divided into groups, the groups being electrically connected to each other in series; providing a power source electrically connected to the string of LEDs; coupling each of the groups to a ground through a corresponding one of current regulating circuits; turning off the current regulating circuits except the current regulating circuit corresponding to a most upstream one of the groups when an input voltage from the power source is at a voltage level of the ground; and increasing the input voltage from the power source to turn on the groups in a downstream sequence.
In another embodiment of the present disclosure, a driver circuit for driving light emitting diodes (LEDs) includes: a string of LEDs divided into n groups, the n groups of LEDs being electrically connected to each other in series, a downstream end of group m−1 being electrically connected to the upstream end of group m, where m being a positive number equal to or less than n; a power source coupled to an upstream end of group 1 and operative to provide an input voltage; a plurality of current regulating circuits, each of the current regulating circuits being coupled to the downstream end of a corresponding group at one end and coupled to a ground at an other end and including a sensor amplifier and a cascode having first and second transistors; and a plurality of detectors, each of the detectors being adapted to detect a source voltage of the first transistor.
In yet another embodiment of the present disclosure, a driver circuit for driving light emitting diodes (LEDs) includes: a string of LEDs divided into n groups, the n groups of LEDs being electrically connected to each other in series, a downstream end of group m−1 being electrically connected to the upstream end of group m, where m being a positive number equal to or less than n; a power source coupled to an upstream end of group 1 and operative to provide an input voltage; a plurality of current regulating circuits, each of the current regulating circuits being coupled to the downstream end of a corresponding group at one end and coupled to a ground at an other end and including a sensor amplifier and a cascode having first and second transistors; and a plurality of detectors, each of the detectors being adapted to detect a source voltage of the first transistor.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
Referring now to
The LEDs as used herein is the general term for many different kinds of light emitting diodes, such as traditional LED, super-bright LED, high brightness LED, organic LED, etc. The drivers of the present invention are applicable to all kinds of LED.
As depicted in
A separate current regulating circuit (or, shortly regulating circuit) is connected to the downstream end of each LED group, where the current regulating circuit collectively refers to a group of elements for regulating the current flow, say i1, and includes a first transistor (say, UHV1), a second transistor (say, M1), and a sensor amplifier (say, SA1). Hereinafter, the term transistor refers to an N-Channel MOSFET, a P-Channel MOSFET, an NPN-bipolar transistor, a PNP-bipolar transistor, an Insulated gate Bipolar Transistor (IGBT), analog switch, or a relay.
The first and second transistors are electrically connected in series, forming a cascode structure. The first transistor is capable of shielding the second transistor from high voltages. As such, the first transistor is referred as shielding transistor hereinafter, even though its function is not limited to shielding the second transistor. The main function of the second transistor includes regulating the current i1, and as such, the second transistor is referred as regulating transistor hereinafter. The shielding transistor may be an ultra-high-voltage (UHV) transistor that has a high breakdown voltage of 500 V, for instance, while the regulating transistor M1 may be a low-voltage (LV), medium-voltage (MV), or a high-voltage (HV) transistor and has a lower breakdown voltage than the shielding transistor. The node, such as N1, refers to the point where the source of the shielding transistor is connected to the drain of the regulating transistor.
The sensor amplifier SA1, which may be an operational amplifier, compares the voltage V1 with the reference voltage Vref, and outputs a signal that is input to the gate of the regulating transistor, to thereby form a feedback control of the current i1 flowing through the cascode and the current sensing resistors R1, R2, R3, and R4. The gate voltage of the shielding transistor may be set to a constant voltage, Vcc2. (Hereinafter, Vcc2 refers to a constant voltage.) The mechanism for generating the constant gate voltage Vcc2 is well known in the art, and as such, the detailed description of the mechanism is not described in the present document.
As discussed above, each current regulating circuit is electrically connected to the downstream end of the corresponding LED group at one end and to the ground at the other end via the current sensing resistors. The voltages V1, V2, V3, and V4 represent the electrical potentials at the downstream ends of the regulating transistors M1, M2, M3, and M4, respectively. Thus, for instance, the voltage V1 can be represented by the equation:
V1=i1*(R1+R2+R3+R4)+i2*(R2+R3+R4)+i3*(R3+R4)+i4*R4.
The driver 10 can turn on/off each group of LEDs successively as the level of Vrect changes. As the voltage of the power source starts increasing from zero, Vrect may not be high enough to cause the electrical current to flow through the LEDs. The detector 1, detector 2, and detector 3 continuously monitor the voltage levels at nodes N1, N2, and N3. When the voltage levels at each node, say N1, is lower than a preset threshold level, the detector 1 sends its output signal to the sensor amplifier SA2 so that the sensor amplifier SA2 is disabled and, as a consequence, the regulating transistor M2 is turned off. V1 is lower than the reference voltage Vref, and thus, the sensor amplifier SA1 is enabled. Also, the enabled sensor amplifier SA1 outputs an output signal in the high-state to turn on the regulating transistor M1. More specifically, the output pin of the sensor amplifier SA1 is directly connected to the gate of the regulating transistor M1, and the high-state output signal turns on the regulating transistor M1. Thus, in this early stage, only the first regulating transistor M1 is turned on and, thus, only the first current regulating circuit conducts the current, while the other current regulating circuits are turned off.
As Vrect increases, the current i1 flows through the first group LED1, causing LED1 to emit light. Then, the current i1 flows through the transistors UHV1, M1 and the current sensing resistors R1, R2, R3, and R4 to the ground. When the voltage level at the node N1 reaches a preset level, the detector 1 sends an output signal to the sensor amplifier SA2 so that the sensor amplifier SA2 turns on the regulating transistor M2 and the current i2 flows through LED2. Thus, in this stage, both current i1 and i2 flows through LED1 and LED2, respectively.
As Vrect further increases to the level where the voltage V1 is higher than Vref, the sensor amplifier SA1 sends a low-state output signal to the regulating transistor M1 to thereby turn off the regulating transistor M1. In this stage, only the current i2 flows through LED1 and LED2. When the current i1 is cut off (or, set to a minimal level), the overall efficiency of the driver 10 increases. It is because LED2 would produce more light if more current flows therethough, and, cutting off (or reducing) the current i1 would cause the current i1 to be redirected to LED2.
The same analogy applies to other current regulating circuits corresponding to Groups 2-4. For example, the current regulating circuit for LED3 is turned off until the detector 2 sends a high-state output signal to the sensor amplifier SA3. Also, the current regulating circuit for LED3 is turned off when V3 is higher than Vref.
When the source voltage (or the rectified voltage Vrect) reaches its peak, the current regulating circuits for LED1, LED2, and LED3 are turned off. As Vrect starts descending, the above process reverses so that the first current regulating circuit turns back on last. The similar operational sequences (i.e., the sequences of turning on/off) of the current regulating circuits as Vrect varies apply to all of the embodiments of the present document.
As discussed above, each regulating circuit includes two transistors, such as UHV1 and M1, arranged in series to form a cascode structure. The cascode structure, which is implemented as a current sink, has various advantages compared to a single transistor current sink. First, it has enhanced current driving capability. When operating in its saturation region, which is desired for a current sink, the current driving capability (Idrv) of an LV/MV/HV NMOS is far superior to an UHV NMOS. For example, Idrv of a typical LV NMOS is 500 μA/μm whereas that of a typical UHV NMOS is 10˜20 μA/μm. Thus, to regulate the same amount of current flow, the required projection area of an UHV NMOS on the chip is at least 20 times as large as that of an LV NMOS. Also, a typical UHV NMOS has the minimum channel length of 20 μm, while a typical LV NMOS has the minimum channel length of 0.5 μm. However, a typical LV NMOS requires a shielding mechanism that offers protection from high voltages. In the cascode structure, the first transistor, preferably UHV NMOS, operates as a shielding transistor, while the second transistor, preferably LV/MV/HV NMOS, operates as a current regulator, providing enhanced current driving capability. The shielding transistor is not operating in saturation region as would be in the case where a single UHV NMOS is used as the current sink and operated in the linear region. As such, the current driving capability Idrv is not the determinative design factor; rather the resistance of the shielding transistor, Rdson, is the important factor in designing the UHV NMOS of the cascode.
Second, due to the series configuration of the cascode structure, the required voltage (a.k.a. voltage compliance or voltage headroom) of the cascode structure can be higher than a single UHV NMOS configuration. For an LED driver case, however, the power loss due to the required voltage is much less than the power loss due to the LED driving voltage. For example, in an AC-driven LED driver case, the LED driving voltage (voltage on the LED anode) ranges 100 Vmrs˜250 Vrms. Assume the required voltage of a single UHV NMOS is 2V whereas that of a cascode structure is 5V. In this case, the efficiencies are 98˜99% and 95˜98%, respectively. Of course, Rdson can be reduced so that the required voltage of the cascode structure can be about the same as that of a single UHV NMOS. The point is that the additional power consumed by the cascode structure is a minor disadvantage. If efficiency is a crucial design factor, the cascode structure can be designed in a current mirror configuration whereas a current mirror configuration using two UHV NMOS transistors is not practically feasible due to their large area on the chip.
Third, turning on/off the current sink is easier in the cascode structure since the UHV MOS and LV/MV/HV NMOS are controlled separately. In a single UHV NMOS current sink, both current regulation and on/off action have to be done by controlling the gate of the UHV NMOS, which has the characteristics of a large capacitor. In contrast, in the cascode structure, the current regulation can be done by controlling the LV/MV/HV NMOS and on/off action can be done by controlling the UHV NMOS that requires only logic operation applied on the gate.
Fourth, the speed of turning on/off is controlled more smoothly in the cascode structure than a single UHV NMOS configuration. In a single UHV NMOS configuration, the linear control of current cannot be easily achieved by controlling the gate voltage since the current is a square function of the gate voltage. By contrast, in a cascode structure, when the gate of the LV/MV/HV NMOS is controlled, the current control (slewing) becomes smoother since it is operating as a resistor that is an inverse function of the gate voltage.
Fifth, the cascode structure provides better noise immunity. Noise from the power supply can propagate through the LEDs and subsequently can be coupled to the current regulating circuit. More specifically, the noise is introduced into the feedback loop of the current regulating circuit. In a single UHV NMOS configuration, this noise is directly coupled to this loop, whereas, in a cascode structure, the noise is attenuated by the ratio of Rdson of the UHV NMOS to the effective resistance of the LV/MV/HV NMOS.
Sixth, the noise generated by a cascode structure is lower than a single UHV NMOS configuration. In the cascode structure, the current control is mainly performed by the regulating transistor, while, in a single UHV NMOS configuration, the current control is performed by the UHV NMOS. Since the gate capacitance of the LV/MV/HV NMOS is lower than the UHV NMOS, the noise generated by the cascode structure is lower than a single UHV NMOS configuration.
It is noted that the shielding transistors UHV1˜UHV4 may be identical or different from each other. Likewise, the regulating transistors M1˜M4 may be identical or different from each other. The specifications of the shielding and regulating transistors may be selected to meet the designer's objectives.
As Vrect further increases to the level where the voltage V1 is higher than Vref, the sensor amplifier SA1 sends a low-state output signal to the regulating transistor M1 to thereby turn off the regulating transistor M1. In this stage, only the current i2 flows through LED1 and LED2. The same analogy applies to the other current regulating circuits. It is noted that the gate voltage of UHV1 is maintained at the constant level Vcc2 so that it is turned on when Vrect is at the ground level.
As Vrect further increases to the level where the voltage V1 is higher than Vref, the sensor amplifier SA1 sends a low-state output signal to the regulating transistor M1 to thereby turn off the regulating transistor M1. In this stage, only the current i2 flows through LED1 and LED2.
The same analogy applies to other current regulating circuits corresponding to Groups 2-4. For example, the current regulating circuit for LED3 remains in the disabled state until the sensor amplifier SA2 sends a high-state output signal to the sensor amplifier SA3. Also, the current regulating circuit for LED3 is turned off (or, disabled) when V3 is higher than Vref.
It is noted that only two reference voltages Vref1 and Vref2 are used for each switch of the driver circuits 20, 30, 60 and 90. However, it should be apparent to those of ordinary skill in the art that more than two references voltages may be used for each switch.
Vref=Iref*R,
where Iref and R represent current and resistor, respectively.
The current regulating circuit 104 may be used in place of the current regulating circuit 100 of
As depicted in
It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.
This application is a divisional application of U.S. patent application Ser. No. 13/244,892, filed Sep. 26, 2011, which claims the benefit of U.S. Provisional Applications No. 61/422,128, filed on Dec. 11, 2010, entitled “Light emitting diode driver using turn-on voltage of light emitting diode,” and hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61422128 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13244892 | Sep 2011 | US |
Child | 14339413 | US |