1. Field of the Invention
The present invention relates generally to light-emitting diode (LED) lamps, and more particularly to an LED lamp with improved heat dissipation ability so that heat generated by the LEDs can be effectively removed.
2. Description of Related Art
Light-emitting diodes (LEDs) are highly efficient light sources currently used widely in such fields as automobiles, screen displays, and traffic light indicators. When the LED gives off light, heat is also produced. If not rapidly and efficiently removed, the heat produced may significantly reduce the lifespan of the LED. Therefore, a heat dissipation device is required to dissipate the heat from the LED.
Therefore, it is desirable to provide an LED lamp wherein one or more of the foregoing disadvantages may be overcome or at least alleviated.
The present invention relates to a light-emitting diode (LED) lamp. The LED lamp includes a heat sink having a cross section along an axial direction thereof being U-shaped. The heat sink includes a substrate and a sidewall extending from an outer periphery of the substrate. A circuit board is received in the heat sink and arranged on the substrate. At least one LED is arranged on and electrically connected to the circuit board. The at least one LED is thermally connected with the substrate of the heat sink. A plurality of fins extend outwardly from an outer surface of the sidewall of the heat sink. Each fin has a plurality of branches with inner sides being connected together at the outer surface of the sidewall and outer sides being spaced from each other except at a bottom end of the outer surface of the sidewall of the heat sink.
Other advantages and novel features of the present invention will become more apparent from the following detailed description of preferred embodiment when taken in conjunction with the accompanying drawings, in which:
Many aspects of the present light-emitting diode (LED) lamp can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present LED lamp. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views:
Referring to
A plurality of fins 100 extend radially and outwardly from the outer surface 110 of the sidewall 11. The fins 100 are integrally formed with the heat sink 10 and are evenly spaced from each other along a circumferential direction of the sidewall 11 of the heat sink 10. Each fin 100 is V-shaped, and includes a first branch 100a and a second branch 100b. Each branch 100a, 100b is planar-shaped. A width of the branch 100a, 100b is gradually increased from the bottom end to the top end of the heat sink 10. Outer sides 120 (
The lamp holder 20 is approximately disk-shaped, and connects to the bottom end of the heat sink 10. The lamp holder 20 includes a circular-shaped base 21 and a cylinder 22 extending upwardly from an outer periphery of the base 21. The lamp holder 20 is made by plastic injection. A pair of pins 202 extend through the base 21 and are fixedly assembled on the lamp holder 20. Two poles 201 extend inwardly from the cylinder 22 of the lamp holder 20 corresponding to the traverse holes 101 of the sidewall 11 of the heat sink 10. When the lamp holder 20 is assembled on the heat sink 10, the cylinder 22 of the lamp holder 20 is mounted around the bottom end of the sidewall 11 with the poles 201 received in the traverse holes 101. The base 21 of the lamp holder 20 faces the substrate 102 of the heat sink 10. Conducting wires 203 electrically connect top ends of the pins 202 and the circuit board 40. Bottom ends of the pins 202 are electrically connected with a power source to apply current to the LED 30 which is electrically connected to the circuit board 40.
The circuit board 40 is arranged on the substrate 102 of the heat sink 10. An aperture 42 is defined in the circuit board 40 corresponding to a position of the bulge 107 of the substrate 102. The LED 30 is arranged on the bulge 107 fixedly through soldering or adhesive, and extends through the aperture 42 of the circuit board 40. The LED 30 is electrically connected to the circuit board 40 through wire bonding or flip chip. The bracket 50 is received in the space 13 and arranged on the circuit board 40. The bracket 50 includes a chassis 51 and a lateral wall 52. The chassis 51 is circular-shaped, and has an outer diameter approximately equal to an inner diameter of the sidewall 11 of the heat sink 10. A central hole 53 is defined in the chassis 51 corresponding to the aperture 42 of the circuit board 40 for extension of the LED 30 therethrough. Two securing posts 501 extend downwardly from the bracket 50. Each post 501 forms a barb (not labeled) at a free end thereof. The circuit board 40 defines two openings (not labeled) corresponding to the posts 501 of the bracket 50. When assembled the posts 501 extend through the openings into the securing holes 103 and abut against the lower side of the substrate 102 to fix the circuit board 40, the bracket 50 and the heat sink 10 together. Thus movement of the circuit board 40 along the axial direction of the heat sink 10 is limited. The lateral wall 52 extends upwardly from an outer periphery of the chassis 51. A pair of mounting holes 502 are defined in the lateral wall 52 corresponding to the blocks 109 of the heat sink 10 and receive the blocks 109 therein to limit rotation of the bracket 50.
The reflector 60 is received in the bracket 50 and mounted around the LED 30. The reflector 60 includes an inner wall 61 having a shape of bowl and a cylindrical-shaped outer wall 62 extends downwardly from a top end of the inner wall 61. The bottom and top ends of the inner wall 61 are open. A diameter of the inner wall 61 gradually increases from the bottom end to the top end thereof. A pair of hooks 602 extend outwardly from the outer wall 62 corresponding to the mounting holes 502 of the lateral wall 52 of the bracket 50. When assembled the bottom end of the inner wall 61 abuts the chassis 51 of the bracket 50, and the hooks 602 engage in the mounting holes 502 to fix the reflector 60 and the bracket 50 together. The lampshade 70 is mounted on the top end of the reflector 60 to encapsulate the LED 30.
During assembly, the LED 30 is fixedly mounted on the bulge 107 of the heat sink 10 and is electrically connected with the circuit board 40. The poles 201 of the lamp holder 20 lock in the traverse holes 101 to lock the lamp holder 20 to the heat sink 10. The circuit board 40, the bracket 50, the reflector 60, and the lampshade 70 are stacked in the space 13 of heat sink 10 one on top of the other in sequence. The posts 501 of the bracket 50 extend through the securing holes 103 of the heat sink 10 and thus fix the bracket 50 to the heat sink 10. Conducting wires 203 extend through the through holes 105 to connect the circuit board 40 to the pins 202 of the lamp holder 20. During operation, the bottom ends of the pins 202 are electrically connected with the power source to apply current to the LED 30. When the LED 30 operates to give off light, heat is accordingly produced. The heat generated by the LED 30 is transferred to the substrate 102 of the heat sink 10 and then to the sidewall 11 and the fins 100 to dissipate. Since the fins 100 can increase the heat dissipation area of the heat sink 10 enormously, the heat of the LED 30 can be dissipated to the surrounding environment rapidly and efficiently. In this way the heat of the LED 30 can be quickly removed, thus significantly improving lifespan of the LED 30. In this embodiment, only one LED 30 is shown. Alternatively, there can be several LEDs 30 mounted on the substrate of the heat sink 10 of the LED 30 lamp, and the fins 100 can remove the heat of the LEDs 30 quickly and increase the overall brightness and lifespan of the LEDs 30.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
200610064615.6 | Dec 2006 | CN | national |