1. Technical Field
The disclosure is related to a smart lighting apparatus, and particularly to a smart lighting apparatus with tunable luminance modulated according to the in-situ lighting requirement.
2. Description of Related Art
Efficient lighting options are replacing old fashioned energy-hungry incandescent light bulbs and halogen spotlights. One of the major options is lighting devices with light emitting diodes (LEDs). To obtain an adjustable brightness, dimmers for the LEDs are required to provide currents in a range for driving LEDs. A superior method of dimming LEDs is to use pulse width modulation (PWM). The PWM process is a convenient way to interlace a duty cycle controller with a switching converter, such as a metal-oxide-semiconductor field-effect transistor (MOSFET).
With PWM, strings of LED bulbs can all be driven with a recommended forward current, with the dimming effects achieved by turning the LEDs on and off at such high frequencies that human eyes cannot see the strobing effects. The longer the on periods, the brighter the LEDs will appear to an observer.
Lighting apparatus are used in living rooms, bedrooms, and dining rooms with different lighting requirements. The lighting requirements may be affected by location of the house, incident angles of sun light, and decoration style. However, known dimmers for lighting apparatuses available on the market are incompatible amongst different manufacturers and are incapable of meeting all the different lighting requirements for the lighting apparatuses in different areas of the house. Multi-purpose dimmers capable of meeting the various requirements for lighting and reducing energy consumptions of the lighting apparatuses are therefore desirable.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of an smart lighting apparatus with tunable duty cycles. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
The disclosure will be described with references to the accompanying diagrams.
The lighting device 12 may be a light tube (see
Before the smart card 14 is inserted into the insertion slot 124, the lighting device 12 generates a predetermined luminance of light powered by the working current applied by the power input device 122. The first electrode pad 128 is located corresponding to the insertion slot 124 and electrically connected to the power input device 122 and the light source 126. When the smart card 14 is inserted into the insertion slot 124, the smart card 14 contacts the first electrode pad 128 and electrically connects to the power input device 122 and the light source 126 of the lighting device 12.
The timer dimming program 1424 is coded to determine the luminance of the lighting device 12 in periods according to a predetermined schedule based on user's habitual behavior or dally schedule. The efficiency management dimming program 1426 is coded to determine the luminance of the lighting device 12 according to a precision calculation to manage the household appliance in an efficient and power-saving mode.
The ecosystem dimming device 142 is powered by the power device 140 and signals from the ecosystem dimming device 142 is transmitted through a second electrode pad 144 on the smart card 14. The second electrode pad 144 is electrically connected to the ecosystem dimming device 142. When the smart card 14 is inserted into the insertion slot 124, the second electrode pad 144 is electrically connected to the first electrode pad 128 in the lighting device 12 to control the value of the working current provided by the power input device 122 to the lighting source 126 and consequently manage the luminance of the lighting device 12 efficiently.
The ecosystem dimming device 142 may be controlled by a distal remote or an in-situ controller. The distal remote refers to (but is not limited to) operate the ecosystem dimming device 142 by a phone, a computer or other communicating equipment from a far end. The in-situ controller refers to (but is not limited to) operate the ecosystem dimming device 142 by a wireless remote or a wired remote.
The smart lighting apparatus 10 of the disclosure manages the working currents for the lighting source 126 through the ecosystem dimming program 142 in the smart card 14 to determine the luminance of the smart lighting apparatus 10. Therefore, the smart fighting apparatus 10 is operated efficiently to enhance performance and energy-saving.
It is to be understood, however, that even though numerous characteristics and advantages of the present embodiments have been set fourth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in details, especially in matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
101136287 | Oct 2012 | TW | national |