The invention relates to the field of lighting, and specifically to a lighting devices and/or light sources with semiconductor device—light emitting diodes.
The invention can be used as an LED light source for outdoor, industrial, domestic and architectural lighting design.
LED or light emitting diode (LED, LED, LED English. Light-emitting diode)—a semiconductor device with an electronic pn junction, which creates the optical radiation by passing electric current through it (http://ru.wikipedia.org/wiki/C).
LED Module—a printed circuit board—PCB with LEDs mounted on it, and possibly electronic components and secondary optics (http://light.rtcs.ru/products/list.php?SECTION_ID=89). LED modules (clusters) are sealed units of high-impact polystyrene with LEDs located inside. (http://nlt-trading.ru/catalog/index.php?SECTION_ID=4).
LED lighting devices have several advantages—high luminous efficiency, low power consumption, long service life, high security, compactness and light weight, resistance to mechanical stress, the purity of light, radiation directivity and others.
Known LED lighting—lamp containing sections of LEDs connected to the power supply, which is connected to the mains alternating voltage, where as a heatsink used luminaire housing made of a thermally conductive material, the section of LEDs mounted on the heatsink.
As the radiator cooling unit—heatsink can be used a block of metal elements located both on the housing and inside the housing, and to increase the heat dissipated by the power LED heatsink may have forced cooling, for example by means of blower (RF patent number 2,313,199 for an invention “Lamp” IPC H05B33/02, F21S4/00, publ. 20 Dec. 2007). The disadvantage of this lamp is the inefficient heat removal-dissipation at high thermal loads, which leads to reduction of lifetime of the lamp.
Known lamp containing an LED light source, as well as membrane blower motor, placed in the housing, which having the nozzle openings and a hollow radiator, where the outer surface of radiator is provided with cooling fins, wherein the radiator and the fan housing are installed so that the radiator intercostal spaces form channels for the air flow generated by the fans and discharged through the nozzle openings of the housing. The fan housing and a light source situated in the radiator cavity, when the lamp comprises installed over a radiator a tubular closed at the top housing, in the bottom and top parts of which are made through openings (RF patent number 111253 for the utility model “lamp with active cooling,” IPC F21V29/02 , publ. 10 Dec. 2011). The disadvantage of this lamp is its structural complexity and lack of operational reliability.
The closest known with respect to the essential features of the claimed invention and selected as a prototype LED lamp of convection cooling, comprising the hollow housing of a thermally conductive material on the outer surface of which is mounted LED light source that is connected to the power supply via flexible cable. Optical lens covering the LEDs has an annular shape; the body-housing is the radiator and has a vertical radiator grille (RF patent number 2,433,577 for the invention “LED lamp with high efficiency convection cooling,” IPC H05B33/00, publ. 10 Nov. 2011). Performing the outer side surface of the housing ribbed in the form of vertical ribs gratings requires external machining of the preform surface by the cutter-chisel or milling, which makes manufacturing of the known lamp laborious. Furthermore, the lamp characterized by low efficiency of heat exchange between the internal volume of the hollow housing and the environment.
The task to be solved by the claimed technical solution is to create a simple to manufacture high-efficiency lighting device.
Technical results achieved as a result of solving the problem, consist in:
These technical results are achieved by the fact that our LED luminaire with dynamic cooling convection comprises at least one hollow housing of a thermally conductive material on the outer surface of which is secured LED light source that is connected to a power source. The housing is a segment of a hollow pipe with open ends and the LED light source, for which the LED module is used, is installed in close proximity to one of the open ends of the housing.
In some cases of implementation LED module can be mounted on side surface of housing.
In some cases of implementation LED module can be secured at the end surface of the housing for entry of air into the interior of the housing.
In various cases of implementation LED module may be secured to the housing surface via a releasable or permanent connection.
Preferably, that between the surfaces of LED module and the housing was placed a layer of thermally conductive paste material.
In some cases of implementation LED luminaire may comprise n structurally interconnected hollow housings, where n≧2, each of which represents a segment of a hollow pipe with open ends; in close proximity to one of which the LED module is installed.
In various cases of implementation the housings of two or more fixtures can be connected to each other via a releasable or permanent connection.
In various cases of implementation the housings of two or more fixtures can be connected by means of a rigid or swivel.
In some cases of implementation the housings of two or more fixtures can be connected to each other so that their longitudinal axes are parallel to each other.
In other cases of implementation the housings of two or more lamps may be connected to each other so that their longitudinal axes lie in one another at an angle of range 10°-170°.
In some cases, the housings of the two or more luminaires are interconnected via adjacent contact surfaces.
In some cases, the housings of the two or more luminaires are interconnected with a gap between adjacent surfaces.
In various cases, each of the housings may have a rectangular or square, or round, or triangular, or shaped profile.
Preferably, that the housing is made of an aluminum pipe of rectangular shape with exterior dimensions of width—100.0 mm, the height—30.0 mm, with a wall thickness of 2.0 mm.
Preferably, the length of the body is in the range of 0.2 m-0.5 m.
Preferably, the power LED module is in the range of 20-70 watts.
Preferably, the LED luminaire comprises means for fastening to the supporting surface.
Comparative analysis of the claimed invention with the prototype showed that in all cases of execution, it differs from the known closest technical solution:
In some cases, the invention differs from the known closest technical solution:
The proposed design of the cooling device has improved the thermal parameters by increasing the efficiency of convective thermal exchange, which provides removal from LEDs substantially all of the heat they emit and transmitting it to the surroundings. This increases the light output of LEDs and can increase their lifetime, and consequently, the lifetime of the lighting device. In addition, more intensive cooling, allows applying to LED module higher current values, thereby increasing the efficiency of and the power of the lighting device as a whole. Using the hollow pipe as the housing does not require additional milling or other processing of the outer surface, which reduces costs and simplifies the manufacture of the product. Implementation of the lamp, containing the n number of housings, different variants of their connections allows creating lamps of different power and a design, extending the functionality and application. Execution the housing as a rectangular shape pipe with exterior dimensions of width—100.0 mm, the height—30.0 mm, with a wall thickness of 2.0 mm allows the use of varietal rolling preform substantially reducing manufacturing costs. Implementation of the housing from aluminum characterized by high thermal conductivity and heat dissipation provides effective and efficient convection cooling of the LEDs. Experimental tests have shown that when the body length from 0.2 m to 0.5 m provided the most effective cooling. When the body length is less than 0.2 m air does not have time to cool, and when the body length is more than 0.5 m, air draft between the input and output is reduced.
The invention is illustrated by schematic drawings of
In a preferred embodiment, the LED lamp with dynamic convective cooling comprises at least one hollow housing (1) in the form of a segment of a hollow pipe of thermally conductive material with open ends (2) and (3). On the outer surface of the housing (1) in close proximity to one of the open ends (2) or (3) is attached connected to a power source (not shown) the LED module (4), which is a LED light source. In various cases of implementation LED module (4) may be secured on the side surface of the housing (1) (
The invention operates as follows. The LED module (4)i, through a layer of thermally conductive paste material (8) is attached at one of the open ends of the pipe, such as (2)i by means of a releasable (6)i or inseparable (7)i compounds. This end (2)i of the pipe becomes the input to the cold air. The opposite end (3)i of the pipe becomes the exit for the hot air. Preferably, that in the operating position the open end (2)i of the pipe in the close proximity of which installed the LED module (4)i, is placed below the level of the opposite open end (3)i of the pipe, providing slightly slanted or vertical position of the luminaire. When, through the LED module (4)i, starts to flow an electric current it is heated and through a thermally conductive composition transmits heat to the side surface of the housing (1)i, and further—into the air space inside the cavity of the housing. As a result, in the inner cavity of the housing (1)i created a difference of temperatures at the entrance (open end (2)i of the housing (1)i, and on the side surface of the housing (1)i, that is provided a natural convection. Sucked through the entrance (open end (2)i) the cold air passing through the heated by LED module airspace of the interior of the housing (1)i, it cools the LED module (4)i, and goes outside as heated through outlet (3)i.
Number | Date | Country | Kind |
---|---|---|---|
2012138177 | Sep 2012 | RU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/RU2013/000153 | 2/26/2013 | WO | 00 |