Light emitting diode package structure and method of manufacturing the same

Information

  • Patent Application
  • 20070215896
  • Publication Number
    20070215896
  • Date Filed
    March 17, 2006
    18 years ago
  • Date Published
    September 20, 2007
    17 years ago
Abstract
A light emitting diode package structure having a heat-resistant cover and a method of manufacturing the same include a base, a light emitting diode chip, a plastic shell, and a packaging material. The plastic shell is in the shape of a bowl and has an injection hole thereon. After the light emitting diode chip is installed onto the base, the plastic shell is covered onto the base to fully and air-tightly seal the light emitting diode chip, and the packaging material is injected into the plastic shell through the injection hole until the plastic shell is filled up with the packaging material to form a packaging cover, and finally the plastic shell is removed to complete the LED package structure.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a light emitting diode (LED), and more particular to a light emitting diode package structure and a method of manufacturing the same.


2. Description of Prior Art


A light emitting diode (LED) is a solid-state semiconductor device that combines two carriers produced by passing an electric current through the LED to release energy in the form of light. LED has the advantages of a compact size, a fast response rate, and a pollution-free feature, so that the LEDs can be used extensively in different industries. Since LEDs have bottlenecks including an insufficient brightness and a low luminous efficiency at an early stage, a high power LED is developed later to overcome the drawback of insufficient brightness, and thus LEDs become increasingly popular in the high power illumination market and tend to gradually take over the position of traditional tungsten lamps. LED products have the potential of replacing traditional illumination devices.


As LED manufacturing technologies are improved constantly and new materials are developed to meet the requirements of various different applications, the technology and structure of LEDs become mature, and thus leading to the development of a high power LED with enhanced energy capacity and brightness as well as the extensive use of high power LEDs in different areas. Among the types of high power LEDs, the surface mount device light emitting diode (SMD LED) is a common type of LEDs, and the general SMD LEDs are divided mainly into two types: a lead frame type and a printed circuit board type. The lead frame type uses a metal frame and a heat-resisting plastic material to produce a socket as a fixed lead frame of an LED chip by injection molding, and the printed circuit board type uses a composite material as a substrate, and both of these two types have to go through the processes of die bonding, wire bonding and encapsulation processes to complete the LED structure.


In a general die bonding process as shown in FIG. 1, a plastic shell 101 made of an insulating heat-resistant plastic material such as epoxy resin is covered onto an LED chip 102, and a packaging plastic material 103 such as soft silicone is injected into the plastic shell 101. Such arrangement not only prevents moisture or air from being permeated into the packaging plastic material during a non-airtight packaging process of the traditional packaging process, but also uses the plastic shell 101 for receiving the injected packaging plastic material 103 to form a fixed shape of the plastic shell 101, and thus the LED chip 102 can maximize its spectrum effect by the packaging plastic material 103 and the plastic shell 101.


However, there is a major drawback of the aforementioned packaging process, since the package structure and material cannot resist high temperature, and particularly the light emitting diode and other circuit board have to be processed in a soldering pot (at 250° C.˜300° C.), and the plastic shell 101 and the soft plastic material 103 usually cannot stand the high temperature of the soldering pot, and the light emitting diode structure may have broken lines or the plastic shell 101 may become soft. Even if the plastic shell 101 and the soft plastic material 103 can resist the high temperature, the coefficients of thermal expansion of the plastic shell 101 and the soft plastic material 103 are different, and cracks may be produced between the packaging plastic shell 101 and the soft plastic material 103, and thus resulting a defective light emitting diode. To reduce the defects in a manufacturing process, the soldering is conducted manually, and thus making the manufacture more difficult and time-consuming.


SUMMARY OF THE INVENTION

In view of the foregoing shortcomings of the prior art, the inventor of the present invention based on years of experience in the related industry to conduct experiments and modifications, and finally designed a light emitting diode package structure and a method of manufacturing the same to overcome the shortcomings of the prior art structure.


The present invention is to provide a light emitting diode package structure with a heat-resisting cover and a method of manufacturing the same that adopts a heat-resistant packaging material capable of contacting air directly as a packaging cover material to improve the yield rate for the process of connecting other electronic components at a high temperature and overcome the problem of having cracks produced by the thermal expansion of traditional packaging housing and packaging material.


Accordingly, the present invention provides a light emitting diode packaging structure and a method of manufacturing the same that comprise a base, an LED chip, a plastic shell, and a packaging material, wherein the plastic shell is substantially in the shape of a bowl, and the plastic shell has an injection hole thereon. After the LED chip is installed on the base, the packaging plastic shell is covered onto the base, and the LED chip is fully and air-tightly sealed. A packaging material is injected into the plastic shell through the injection hole until the plastic shell is filled up with the packaging material to form a packaging cover, and finally the packaging plastic shell is removed to complete the LED package structure.




BRIEF DESCRIPTION OF DRAWINGS

The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself however may be best understood by reference to the following detailed description of the invention, which describes certain exemplary embodiments of the invention, taken in conjunction with the accompanying drawings in which:



FIG. 1 is a cross-sectional view of a prior art light emitting diode;



FIG. 2 is a cross-sectional view of an LED packaging process of the invention;



FIG. 3 is another cross-sectional view of an LED packaging process of the invention;



FIG. 4 is a further cross-sectional view of an LED packaging process of the invention;


FIGS. 5(a) to 5(c) are schematic view of a manufacturing procedure according to another preferred embodiment of the invention;



FIG. 6 is a schematic view of a further preferred embodiment of the invention;



FIG. 7 is a flow chart of a manufacturing method of the invention; and



FIG. 8 is a schematic view of another further preferred embodiment of the invention.




DETAILED DESCRIPTION OF THE INVENTION

The technical characteristics, features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments with reference to the accompanying drawings.


Referring to FIGS. 2 to 4 for the cross-sectional views of an LED packaging process according to a preferred embodiment of the present invention, the structure of an LED packaging process as shown in FIG. 2 comprises a light emitting diode having a base 1, an LED chip 2, a packaging plastic shell 3, and a packaging material 4 (as shown in FIG. 3). The base 1 of the light emitting diode in this preferred embodiment is a semi-finished product of a lead frame type LED, and the base 1 further includes a lead frame 11 for an electric connection and a heat dissipating member 12, and then the semi-finished product is processed through a heat-resistant plastic molding injection and formation. The heat dissipating member 12 in the base 1 has a plane 121 of the LED chip 2, and the plane 121 fixes the LED chip 2, and the plastic shell 3 is in a hemispherical shape for covering the base 1 and sealing the LED chip 2 in the plastic shell 3, and the plastic shell 3 has an injection hole 31 disposed on a lateral side of the plastic shell 3.


In FIG. 3, the plastic shell 3 is installed onto the base 1 to filly seal the space around the periphery of the LED chip 2 which is preinstalled on the base 1, and the packaging material 4 is injected into the plastic shell 3 from the injection hole 31. The packaging material 4 of this preferred embodiment is a silicone material having a hardness that falls within the range from shore A40 to shore D70, and thus after the packaging material 4 is injected from the injection hole 31 until the plastic shell 3 is filled up to form a hemispherical cover and fully cover the LED chip 2 as shown in FIG. 4. After the packaging material 4 is solidified and shaped, the mold of the plastic shell 3 covered on the external portion of the packaging material 4 is released and removed to complete the LED package structure, so that when the light emitting diode structure and other printed circuit board pass through a soldering pot in a connecting process, the light emitting diode structure and printed circuit board can resist the high temperature to successfully complete the connection. Further, the foregoing process can also be used in a printed circuit board type LED package structure as shown in FIGS. 5(a) to 5(c). Referring to FIG. 6, the plastic shell 3 having a plurality of injection holes 31 is covered onto a semi-finished substrate having a plurality of manufactured LED chips 2, and injected with a packaging material 4, and finally the mold of the plastic shell 3 is removed to complete the package structure.


Referring to FIG. 7, the manufacture flow of the LED packaging process comprises the steps of providing a base 1 of the light emitting diode having an installed semi-finished product of an LED chip 2 (S1); covering a plastic shell 3 onto the base 1 and fully sealing the LED chip 2 (S2);


injecting a packaging material into an injection hole 31 of the plastic shell 3 for the formation until the plastic shell 3 is filled up with the packaging material 4 (S3); and releasing and removing the mold of the plastic shell 3 to complete the light emitting diode structure, after the packaging material 4 forms a packaging cover 11 (S4).


Referring to FIG. 8 for another preferred embodiment of the present invention, the base 1 includes an inverted T-shaped groove 13 preinstalled at the bottom and around the periphery of the LED chip 2, such that after the plastic shell 3 fully covers and seals the base 1, and the packaging material 4 is injected through the injection hole 31 on the plastic shell 3, the packaging material 4 also can be injected into the groove 13 around the periphery of the base 1 until the plastic shell 3 is filled up with the packaging material 4 and the package material is solidified to from a packaging cover, and the packaging material 4 filled in the groove 13 is solidified to form an connecting end for securing the packaging cover onto the base 1.


The present invention are illustrated with reference to the preferred embodiment and not intended to limit the patent scope of the present invention. Various substitutions and modifications have suggested in the foregoing description, and other will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.

Claims
  • 1. A light emitting diode packaging structure, comprising: a base; a light emitting diode chip, installed on the base; and a cover, disposed on the base for fully and air-tightly covering the light emitting diode chip.
  • 2. The light emitting diode package structure of claim 1, wherein the base further includes a groove disposed at the bottom of the base.
  • 3. The light emitting diode package structure of claim 1, wherein the base is a semi-finished product of a light emitting diode.
  • 4. The light emitting diode package structure of claim 3, wherein the light emitting diode is a lead frame type light emitting diode.
  • 5. The light emitting diode package structure of claim 3, wherein the light emitting diode is a circuit board type light emitting diode.
  • 6. The light emitting diode package structure of claim 1, wherein the cover is made of a silicone material.
  • 7. The light emitting diode package structure of claim 6, wherein the hardness of the silicone material falls within a range from shore A40 to shore D70.
  • 8. A method of manufacturing a light emitting diode package structure, comprising the steps of: providing a light emitting diode semi-finished product containing a chip; covering a plastic shell onto a base; injecting a packaging material into the plastic shell for molding; and removing the plastic shell to complete the package structure.
  • 9. The method of manufacturing a light emitting diode package structure of claim 8, wherein the plastic shell further includes an injection hole.
  • 10. The method of manufacturing a light emitting diode package structure of claim 8, wherein the packaging material is a silicone material.
  • 11. The method of manufacturing a light emitting diode package structure of claim 10, wherein the hardness of the silicone material falls within a range from shore A40 to shore D70.
  • 12. The method of manufacturing a light emitting diode package structure of claim 8, wherein the light emitting diode semi-finished product is a lead frame type light emitting diode.
  • 13. The method of manufacturing a light emitting diode package structure of claim 8, wherein the light emitting diode semi-finished product is a printed circuit board type light emitting diode.