1. Field of the Invention
The present invention relates to a light emitting diode, and more particularly to a base structure used for resisting static electricity or reverse current of the light emitting diode.
2. Description of Prior Art
A light emitting diode is a solid state semiconductor device that combines two carriers produced by passing a current through the diode to release energies in a light form. The light emitting diode has the advantages of compact size, fast response, and pollution-free feature, so that the light emitting diodes are used extensively in many industries. Although the light emitting diode encountered the bottlenecks of having insufficient brightness and a low luminous efficiency at its early development stage, later developed high power light emitting diodes overcome the issue of insufficient brightness. As a result, the light emitting diode gradually enters into the highly efficiency illumination area and has a tendency increasingly replacing traditional tungsten lamps, and the light emitting diode is a product having a high potential replacing traditional lamps.
As the light emitting diode manufacturing technology is improved and new materials are developed constantly, high power light emitting diodes are developed, the energy efficiency is improved greatly, and the current passing unit area becomes larger, so that the operating heat produced by a chip becomes increasingly larger, and the surrounding of the chip becomes the best heat dissipating area of the operating heat. However, resin compounds having a high heat resistance are generally used for packaging light emitting diodes, and thus light emitting diodes have poor heat conductivity. If resin compounds wrap the whole chip and electrode circuit, heat will not be able to be dissipated successfully. As a result, an operating environment with a practically constant temperature is created, and the light emitting diode generally does not come with a structure having a heat dissipating function, so that the operating heat will be conducted and dissipated from the circuit to the outside directly by using the heat conductivity of the electrode circuit, but the electrode circuit will produce a larger thermal resistance and weaken the luminous efficiency of the light emitting diode.
In view of the shortcomings of the foregoing structure, a light emitting diode base structure as disclosed in U.S. Pat. No. 6,274,924 and shown in
The structure of the foregoing light emitting diode base 10 solves the heat dissipating problem, but the circuit constitutes an isolated state by the plastic ring 102 and the heat dissipating base 11, and the electrode circuit generally does not come with a grounding circuit. Therefore, if the light emitting diode is installed in an electronic component, and an external static electricity or a reverse current enters into the diode, the static electricity or reverse current will pass through the electrode circuit directly to produce a short circuit to the light emitting diode chip 12, and seriously damage the life of the light emitting diode. In some prior arts, a Zener diode is added to the electrode circuit, such that if the reverse current enters the diode, the reverse current will pass through the Zener diode first, then the Zener diode will be in the state of an open circuit, or if the reverse current is too large, then the Zener diode will be short circuited. Although such arrangement can timely protect the light emitting diode chip, it cannot protect light emitting diode chip for the next time when the Zener diode is short circuited and the static electricity or reverse current occurs again. Furthermore, adding the Zener diode increases the cost, but it still cannot fully protect the light emitting diode chip from being damaged by the static electricity or reverse current, and all of the above are the drawbacks of such light emitting diode base structure.
The present invention is to overcome the shortcomings of the prior art by providing an improved light emitting diode structure that adopts a heat conducting medium as a grounding circuit and a support frame acting as an electrode circuit is in contact with a heat dissipating body acting as a heat conducting medium, such that an electrically conductive heat dissipating body becomes a grounding circuit for preventing any damage caused by a short circuit of the light emitting diode chip by using the electrode circuit, when static electricity or reverse current enters into the light emitting diode.
The present invention provides an improved light emitting diode structure comprising a heat dissipating body, a support frame, and a base, wherein the heat dissipating body has a heat dissipating column and a contact disc, and the support frame has a plurality of pins, and one of the pins is connected to a circular contact end for fixing the heat dissipating column of the heat dissipating body, and then both are buried into the interior of the base, and one side of the contact disc of the heat dissipating body is protruded from the bottom of the base, and the pins of the support frame are extended outwardly towards the base.
The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself however may be best understood by reference to the following detailed description of the invention, which describes certain exemplary embodiments of the invention, taken in conjunction with the accompanying drawings in which:
The technical characteristics, features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments with reference to the accompanying drawings.
Referring to
Further, the support frame 2 is made of a good electrically conductive metal such as aluminum and produced by an etching method and a stamping method. The left and right ends of the support frame 2 include a plurality of pins 21 used as an electric conducting end of the electrode circuit. In the figure, three pins are disposed on each end of the support frame 2, and the plurality of pins 21 is substantially in a curved shape and selected as an electrode connecting end according to the installing configuration. One of the pins 21a has a contact end 211a, and the contact end 211a in this preferred embodiment is substantially in an annular shape for fixing the heat dissipating column 11 of the heat dissipating body 1. After the support frame 2 and the heat dissipating body 1 are fixed, both are buried into the interior of the base 3, and the base 3 is a rectangular casing. After the support frame 2 and the heat dissipating body 1 are fixed, a formation is made by using an insert molding injection method to cover the connecting position of the support frame 2 and the heat dissipating body 1 as shown in
Referring to
Referring to
The present invention are illustrated with reference to the preferred embodiment and not intended to limit the patent scope of the present invention. Various substitutions and modifications have suggested in the foregoing description, and other will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.