1. Field of the Invention
The present invention relates to a light emitting diode system, and especially relates to an improved light emitting diode system.
2. Description of the Related Art
Nowadays, the connection types of the light emitting diode lamp strings are separated into two types: the serial-type connection and the parallel-type connection. The light emitting diode lamp strings are widely used for external walls of the building, decoration of trees, signboards, and scenery designing.
The related art light emitting diode lamp strings are commonly employed to be connected in series. Also, the amount of the light emitting diode lamp strings is determined according to the volume of the decorated objects. In addition, the controller of the light emitting diode lamp string can control the light emitting diode lamp string which the controller is arranged in only.
The disadvantage of the related art serial-type light emitting diode lamp string mentioned above is that the related art serial-type light emitting diode lamp strings cannot share an alternating-current-to-direct-current power and control circuit. Therefore, the cost is increasing.
In order to solve the above-mentioned problems, an object of the present invention is to provide a light emitting diode system.
In order to achieve the object of the present invention mentioned above, the light emitting diode system is applied to an alternating current power supply apparatus. The light emitting diode system includes a first light emitting diode apparatus and a second light emitting diode apparatus. The second light emitting diode apparatus is electrically connected to the first light emitting diode apparatus. The first light emitting diode apparatus includes an alternating-current-to-direct-current and light-controlling unit, a plurality of first light emitting diode modules and a first connector. The alternating-current-to-direct-current and light-controlling unit is electrically connected to the alternating current power supply apparatus. The first light emitting diode modules are electrically connected to each other in series. A first of the first light emitting diode modules is electrically connected to the alternating-current-to-direct-current and light-controlling unit. A last of the first light emitting diode modules is electrically connected to the alternating-current-to-direct-current and light-controlling unit. The first connector is electrically connected to the alternating-current-to-direct-current and light-controlling unit and the last of the first light emitting diode modules. The second light emitting diode apparatus includes a second connector, a signal-converting unit and a plurality of second light emitting diode modules. The second connector is electrically connected to the first connector. The signal-converting unit is electrically connected to the second connector. The second light emitting diode modules are electrically connected to each other in series. A first of the second light emitting diode modules is electrically connected to the signal-converting unit. A last of the second light emitting diode modules is electrically connected to the signal-converting unit. The alternating current power supply apparatus outputs an alternating current power to the alternating-current-to-direct-current and light-controlling unit. The alternating-current-to-direct-current and light-controlling unit converts the alternating current power into a drive direct current power. The alternating-current-to-direct-current and light-controlling unit outputs the drive direct current power and a light-controlling signal to the first of the first light emitting diode modules. Then the drive direct current power and the light-controlling signal are transmitted to the other first light emitting diode modules to control colors and intensities of the first light emitting diode modules. The alternating-current-to-direct-current and light-controlling unit outputs the drive direct current power to the signal-converting unit through the first connector and the second connector. The last of the first light emitting diode modules outputs the light-controlling signal to the signal-converting unit through the first connector and the second connector. The signal-converting unit outputs the drive direct current power and a regenerated light-controlling signal which is regenerated from the light-controlling signal to the first of the second light emitting diode modules after the signal-converting unit processes the drive direct current power and the light-controlling signal. Then the drive direct current power and the regenerated light-controlling signal are transmitted to the other second light emitting diode modules to control colors and intensities of the second light emitting diode modules. The signal-converting unit comprises a first switch subunit and a second switch subunit. The first switch subunit is electrically connected to the second connector. The second switch subunit is electrically connected to the second connector, the first switch subunit and the first of the second light emitting diode modules. The first switch subunit receives the light-controlling signal to drive the first switch subunit, so that a copied light-controlling signal is generated and is sent to the second switch subunit to drive the second switch subunit, so that according to the drive direct current power, the second switch subunit regenerates the light-controlling signal to obtain the regenerated light-controlling signal to send the regenerated light-controlling signal to the first of the second light emitting diode modules.
The efficiency of the present invention is that a plurality of light emitting diode lamp strings can be electrically connected to each other in series efficiently, and can share an alternating-current-to-direct-current circuit to save cost.
The first light emitting diode apparatus 10 includes an alternating-current-to-direct-current and light-controlling unit 106, a plurality of first light emitting diode modules 108 and a first connector 110. The alternating-current-to-direct-current and light-controlling unit 106 is electrically connected to the alternating current power supply apparatus 20. The first light emitting diode modules 108 are electrically connected to each other in series. A first of the first light emitting diode modules 108 is electrically connected to the alternating-current-to-direct-current and light-controlling unit 106. A last of the first light emitting diode modules 108 is electrically connected to the alternating-current-to-direct-current and light-controlling unit 106. The first connector 110 is electrically connected to the alternating-current-to-direct-current and light-controlling unit 106 and the last of the first light emitting diode modules 108.
The second light emitting diode apparatus 104 includes a second connector 112, a signal-converting unit 114 and a plurality of second light emitting diode modules 116. The second connector 112 is electrically connected to the first connector 110. The signal-converting unit 114 is electrically connected to the second connector 112. The second light emitting diode modules 116 are electrically connected to each other in series. A first of the second light emitting diode modules 116 is electrically connected to the signal-converting unit 114. A last of the second light emitting diode modules 116 is electrically connected to the signal-converting unit 114.
The alternating current power supply apparatus 20 outputs an alternating current power 22 to the alternating-current-to-direct-current and light-controlling unit 106. The alternating-current-to-direct-current and light-controlling unit 106 converts the alternating current power 22 into a drive direct current power 118. The alternating-current-to-direct-current and light-controlling unit 106 outputs the drive direct current power 118 and a light-controlling signal 120 to the first of the first light emitting diode modules 108. Then the drive direct current power 118 and the light-controlling signal 120 are transmitted to the other first light emitting diode modules 108 to control colors and intensities of the first light emitting diode modules 108.
The alternating-current-to-direct-current and light-controlling unit 106 outputs the drive direct current power 118 to the signal-converting unit 114 through the first connector 110 and the second connector 112. The last of the first light emitting diode modules 108 outputs the light-controlling signal 120 to the signal-converting unit 114 through the first connector 110 and the second connector 112. The signal-converting unit 114 outputs the drive direct current power 118 and a regenerated light-controlling signal 120′ which is regenerated from the light-controlling signal 120 to the first of the second light emitting diode modules 116 after the signal-converting unit 114 processes the drive direct current power 118 and the light-controlling signal 120. Then the drive direct current power 118 and the regenerated light-controlling signal 120′ are transmitted to the other second light emitting diode modules 116 to control colors and intensities of the second light emitting diode modules 116.
The first light emitting diode apparatus 102 further includes an alternating current power connector 124. The alternating current power connector 124 is electrically connected to the alternating current power supply apparatus 20 and the alternating-current-to-direct-current and light-controlling unit 106.
The alternating-current-to-direct-current and light-controlling unit 106 includes a positive voltage contact 10602, a data output contact 10604, a negative voltage contact 10606 and a direct current power supply contact 10608. The positive voltage contact 10602 outputs the drive direct current power 118. The data output contact 10604 outputs the light-controlling signal 120. The direct current power supply contact 10608 outputs the drive direct current power 118.
The first light emitting diode module 108 includes a first positive voltage contact 10802, a first data input contact 10804, a first negative voltage contact 10806 and a first data output contact 10808. The first positive voltage contact 10802 of the first of the first light emitting diode modules 108 is electrically connected to the positive voltage contact 10602. The first positive voltage contacts 10802 of the other first light emitting diode modules 108 are electrically connected to the first negative voltage contacts 10806 of a previous of the first light emitting diode modules 108. The first positive voltage contact 10802 outputs the drive direct current power 118.
The first data input contact 10804 of the first of the first light emitting diode modules 108 is electrically connected to the data output contact 10604. The first data input contacts 10804 of the other first light emitting diode modules 108 are electrically connected to the first data output contacts 10808 of the previous of the first light emitting diode modules 108. The first data input contact 10804 is used for inputting the light-controlling signal 120.
The first negative voltage contact 10806 of the last of the first light emitting diode modules 108 is electrically connected to the negative voltage contact 10606 and the first connector 110. The first negative voltage contacts 10806 of the other first light emitting diode modules 108 are electrically connected to the first positive voltage contacts 10802 of a next of the first light emitting diode modules 108.
The first data output contact 10808 of the last of the first light emitting diode modules 108 is electrically connected to the first connector 110. The first data output contacts 10808 of the other first light emitting diode modules 108 are electrically connected to the first data input contacts 10804 of the next of the first light emitting diode modules 108. The first data output contact 10808 outputs the light-controlling signal 120.
The first connector 110 includes a first connector direct current power input contact 11002, a first connector negative voltage input contact 11004, a first connector data input contact 11006, a first connector direct current power output contact 11008, a first connector negative voltage output contact 11010 and a first connector data output contact 11012.
The first connector direct current power input contact 11002 is electrically connected to the direct current power supply contact 10608. The first connector direct current power input contact 11002 is used for inputting the drive direct current power 118. The first connector negative voltage input contact 11004 is electrically connected to the negative voltage contact 10606 and the first negative voltage contact 10806 of the last of the first light emitting diode modules 108. The first connector data input contact 11006 is electrically connected to the first data output contact 10808 of the last of the first light emitting diode modules 108. The first connector data input contact 11006 is used for inputting the light-controlling signal 120.
The first connector direct current power output contact 11008 is electrically connected to the first connector direct current power input contact 11002. The first connector direct current power output contact 11008 outputs the drive direct current power 118. The first connector negative voltage output contact 11010 is electrically connected to the first connector negative voltage input contact 11004. The first connector data output contact 11012 is electrically connected to the first connector data input contact 11006. The first connector data output contact 11012 outputs the light-controlling signal 120.
The second connector 112 includes a second connector direct current power input contact 11202, a second connector negative voltage input contact 11204, a second connector data input contact 11206, a second connector direct current power output contact 11208, a second connector negative voltage output contact 11210 and a second connector data output contact 11212.
The second connector direct current power input contact 11202 is electrically connected to the first connector direct current power output contact 11008. The second connector direct current power input contact 11202 is used for inputting the drive direct current power 118. The second connector negative voltage input contact 11204 is electrically connected to the first connector negative voltage output contact 11010. The second connector data input contact 11206 is electrically connected to the first connector data output contact 11012. The second connector data input contact 11206 is used for inputting the light-controlling signal 120.
The second connector direct current power output contact 11208 is electrically connected to the second connector direct current power input contact 11202. The second connector direct current power output contact 11208 outputs the drive direct current power 118. The second connector negative voltage output contact 11210 is electrically connected to the second connector negative voltage input contact 11204. The second connector data output contact 11212 is electrically connected to the second connector data input contact 11206. The second connector data output contact 11212 outputs the light-controlling signal 120.
The signal-converting unit 114 includes a control side direct current power input contact 11402, a control side negative voltage input contact 11404, a control side data input contact 11406, a control side direct current power output contact 11408, a control side negative voltage output contact 11410 and a control side data output contact 11412.
The control side direct current power input contact 11402 is electrically connected to the second connector direct current power output contact 11208. The control side direct current power input contact 11402 is used for inputting the drive direct current power 118. The control side negative voltage input contact 11404 is electrically connected to the second connector negative voltage output contact 11210. The control side data input contact 11406 is electrically connected to the second connector data output contact 11212. The control side data input contact 11406 is used for inputting the light-controlling signal 120.
The control side direct current power output contact 11408 is electrically connected to the first of the second light emitting diode modules 116. The control side direct current power output contact 11408 outputs the drive direct current power 118. The control side negative voltage output contact 11410 is electrically connected to the control side negative voltage input contact 11404. The control side data output contact 11412 is electrically connected to the first of the second light emitting diode modules 116. The control side data output contact 11412 outputs the regenerated light-controlling signal 120′.
The second light emitting diode module 116 includes a second positive voltage contact 11602, a second data input contact 11604, a second negative voltage contact 11606 and a second data output contact 11608.
The second positive voltage contact 11602 of the first of the second light emitting diode modules 116 is electrically connected to the control side direct current power output contact 11408. The second positive voltage contacts 11602 of the other second light emitting diode modules 116 are electrically connected to the second negative voltage contacts 11606 of a previous of the second light emitting diode modules 116. The second positive voltage contact 11602 is used for inputting the drive direct current power 118.
The second data input contact 11604 of the first of the second light emitting diode modules 116 is electrically connected to the control side data output contact 11412. The second data input contacts 11604 of the other second light emitting diode modules 116 are electrically connected to the second data output contacts 11608 of the previous of the second light emitting diode modules 116. The second data input contact 11604 is used for inputting the regenerated light-controlling signal 120′.
The second negative voltage contact 11606 of the last of the second light emitting diode modules 116 is electrically connected to the control side negative voltage output contact 11410 and the third connector 122. The second negative voltage contacts 11606 of the other second light emitting diode modules 116 are electrically connected to the second positive voltage contact 11602 of a next of the second light emitting diode modules 116.
The second data output contact 11608 of the last of the second light emitting diode modules 116 is electrically connected to the third connector 122. The second data output contacts 11608 of the other second light emitting diode modules 116 are electrically connected to the second data input contact 11604 of the next of the second light emitting diode modules 116. The second data output contact 11608 outputs the regenerated light-controlling signal 120′.
The third connector 122 includes a third connector direct current power input contact 12202, a third connector negative voltage input contact 12204, a third connector data input contact 12206, a third connector direct current power output contact 12208, a third connector negative voltage output contact 12210 and a third connector data output contact 12212.
The third connector direct current power input contact 12202 is electrically connected to the second connector direct current power output contact 11208 and the control side direct current power input contact 11402. The third connector direct current power input contact 12202 is used for inputting the drive direct current power 118. The third connector negative voltage input contact 12204 is electrically connected to the control side negative voltage output contact 11410 and the second negative voltage contact 11606 of the last of the second light emitting diode modules 116. The third connector data input contact 12206 is electrically connected to the second data output contact 11608 of the last of the second light emitting diode modules 116. The third connector data input contact 12206 is used for inputting the regenerated light-controlling signal 120′.
The third connector direct current power output contact 12208 is electrically connected to the third connector direct current power input contact 12202. The third connector direct current power output contact 12208 outputs the drive direct current power 118. The third connector negative voltage output contact 12210 is electrically connected to the third connector negative voltage input contact 12204. The third connector data output contact 12212 is electrically connected to the third connector data input contact 12206. The third connector data output contact 12212 outputs the regenerated light-controlling signal 120′.
In an embodiment, the light emitting diode system 10 includes a plurality of the second light emitting diode apparatuses 104. The second connector 112 of a second of the second light emitting diode apparatuses 104 is electrically connected to the third connector 122 of a first of the second light emitting diode apparatuses 104. The second connector 112 of a third of the second light emitting diode apparatuses 104 is electrically connected to the third connector 122 of the second of the second light emitting diode apparatuses 104, and so on.
Moreover, the first light emitting diode module 108 (or the second light emitting diode module 116) includes, for examples but not limited to, at least a light emitting diode and an external driver circuit, or includes a light emitting diode which includes a driver IC.
The advantage of the present invention is that a plurality of light emitting diode lamp strings can be electrically connected to each other in series efficiently, and can share an alternating-current-to-direct-current circuit to save cost.
The first switch subunit 11414 is electrically connected to the second connector 112. The second switch subunit 11416 is electrically connected to the second connector 112, the first switch subunit 11414 and the first of the second light emitting diode modules 116. The first resistor 11420 is electrically connected to the second connector 112 and the second switch subunit 11416. The second resistor 11422 is electrically connected to the first resistor 11420, the second switch subunit 11416 and the first switch subunit 11414. The third resistor 11424 is electrically connected to the second connector 112 and the first switch subunit 11414. The fourth resistor 11426 is electrically connected to the second connector 112. The first inductor 11428 is electrically connected to the fourth resistor 11426, the first resistor 11420 and the second switch subunit 11416. The first Zener diode 11430 is electrically connected to the first inductor 11428, the first resistor 11420, the second switch subunit 11416 and the first of the second light emitting diode modules 116. The first capacitor 11432 is electrically connected to the first inductor 11428, the first resistor 11420, the second switch subunit 11416, the first Zener diode 11430 and the first of the second light emitting diode modules 116. The first switch subunit 11414 in
The first switch subunit 11414 receives the light-controlling signal 120 to drive the first switch subunit 11414, so that a copied light-controlling signal 11418 is generated and is sent to the second switch subunit 11416 to drive the second switch subunit 11416, so that according to the drive direct current power 118, the second switch subunit 11416 regenerates the light-controlling signal 120 to obtain the regenerated light-controlling signal 120′ to send the regenerated light-controlling signal 120′ to the first of the second light emitting diode modules 116. The content “ . . . after the signal-converting unit 114 processes the drive direct current power 118 and the light-controlling signal 120” mentioned above means that according to the turned-on and turned-off of the first switch subunit 11414, the drive direct current power 118 utilizes the first resistor 11420 and the second resistor 11422 to form pulse wave signals at the gate of the second switch subunit 11416, and then according to a plurality sets of the pulse wave signals, the copied light-controlling signal 11418 is generated to drive the second switch subunit 11416. Once the second switch subunit 11416 is driven (turned-on and turned-off), the regenerated light-controlling signal 120′ is obtained. The drive direct current power 118 and the regenerated light-controlling signal 120′ are synchronous.
The first zener diode 11430 is electrically connected to the first resistor 11420, the second switch subunit 11416 and the first of the second light emitting diode modules 116. The first capacitor 11432 is electrically connected to the first resistor 11420, the second switch subunit 11416, the first Zener diode 11430 and the first of the second light emitting diode modules 116. The first diode 11434 is electrically connected to the first resistor 11420, the second switch subunit 11416, the first zener diode 11430, the second connector 112, the first capacitor 11432 and the second resistor 11422. The first switch subunit 11414 is a photo-coupler, so that the second light emitting diode apparatus 104 is protected due to electric insulation. A transmitting side of the photo-coupler receives the light-controlling signal 120. A receiving side of the photo-coupler is connected to the second resistor 11422. The second switch subunit 11416 is a BJT.
Although the present invention has been described with reference to the preferred embodiment thereof, it will be understood that the invention is not limited to the details thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.
This application is a Continuation-in-Part of co-pending application Ser. No. 14/190,603, filed on Feb. 26, 2014. The entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14190603 | Feb 2014 | US |
Child | 15018647 | US |