The present invention relates to a light-emitting diode, particularly to a light-emitting diode having high luminous efficiency.
A light-emitting diode (LED) is mainly formed via epitaxially growing semiconductor materials. For example, a blue LED is mainly made of gallium nitride (GaN)-based epitaxial films, wherein an N-type semiconductor layer, a light emitting layer and a P-type semiconductor layer are stacked to form a sandwich structure.
Refer to
Refer to
Obviously, the conventional technologies cannot spread current without increasing impedance. Therefore, the conventional technologies are unlikely to effectively promote the luminous efficiency.
The primary objective of the present invention is to provide an LED structure, thereby the contact impedance can be effectively controlled to obviously enhance the lighting efficiency.
Another objective of the present invention is to provide a method for fabricating an LED structure, thereby the contact impedance can be effectively controlled to obviously enhance the lighting efficiency.
The present invention proposes an LED with a current diffusion structure, which comprises an N-type semiconductor layer, a light emitting layer, a P-type semiconductor layer, an N-type electrode, a P-type electrode, and a current blocking layer. The light emitting layer is arranged on one side of the N-type semiconductor layer. The P-type semiconductor layer is arranged on one side of the light emitting layer, which is far from the N-type semiconductor layer. The N-type electrode has a pattern and is arranged on another side of the N-type semiconductor layer, which is far from the light emitting layer. The P-type electrode is arranged on one side of the P-type semiconductor layer, which is far from the light emitting layer. The current blocking layer has the pattern of the N-type electrode and embedded inside the N-type semiconductor layer.
The present invention also proposes a method for fabricating a light-emitting diode with a current diffusion structure, which comprises steps of: forming an N-type semiconductor layer on a temporary substrate; forming a current blocking layer embedded inside the N-type semiconductor layer; forming a light emitting layer; forming a P-type semiconductor layer; bonding the above-mentioned structure onto a permanent substrate; removing the temporary substrate; and coating an N-type electrode and a P-type electrode.
In the present invention, the current blocking layer embedded inside the N-type semiconductor layer not only can spread the current, but also can effectively control the contact impedance. Further, as the main light-emitting regions of the light emitting layer are far from the N-type electrode, the light shielded by the N-type electrode can be reduced. Therefore, the present invention can obviously promote the luminous efficiency.
The technical contents of the present invention are described in detail with embodiments. However, it should be understood that the embodiments are only to exemplify the present invention but not to limit the scope of the present invention.
Refer to
In one embodiment, the light emitting layer 20 is made of gallium nitride or gallium indium nitride. In one embodiment, the N-type semiconductor layer 10 is made of silicon-doped gallium nitride, gallium aluminum nitride, or gallium indium aluminum nitride. In one embodiment, the P-type semiconductor layer 30 is made of magnesium-doped gallium nitride, gallium aluminum nitride, or gallium indium aluminum nitride.
The current blocking layer 60 has the pattern of the N-type electrode 40 and embedded inside the N-type semiconductor layer 10. The N-type semiconductor layer 10 includes a first N-type semiconductor layer 11 and a second N-type semiconductor layer 12. The current blocking layer 60 is arranged between the first N-type semiconductor layer 11 and the second N-type semiconductor layer 12. In one embodiment, the current blocking layer 60 is made of metal oxide selected from a group consisting of titanium dioxide and silicon dioxide. The current blocking layer 60 has a thickness of 10-500 nm. The surface 111 of the first N-type semiconductor layer 11 is roughened to increase the contact area with the N-type electrode 40.
In one embodiment, a metal reflection layer 70 is arranged between the P-type electrode 50 and the P-type semiconductor layer 30. In one embodiment, the metal reflection layer 70 is made of a material selected from a group consisting of aluminum, nickel, silver and titanium. The metal reflection layer 70 reflects the light emitted by the light emitting layer 20 to promote the lighting efficiency. The metal reflection layer 70 also functions to conduct electricity.
In one embodiment, a barrier layer 80, a bonding layer 81 and a permanent substrate 82 are arranged between the metal reflection layer 70 and the P-type electrode 50. In one embodiment, the barrier layer 80 is made of a material selected from a group consisting of titanium, tungsten, platinum, nickel, aluminum and chromium. The barrier layer 80 is used to prevent the P-type semiconductor layer 30 from being damaged while bonding to the bonding layer 81. The barrier layer 80 also functions to conduct electricity and dissipate heat. In one embodiment, the bonding layer 81 is made of a material selected from a group consisting of gold-tin alloys, gold-indium alloys, and gold-lead alloys. The bonding layer 81 functions to conduct electricity, dissipate heat, and perform adhesion. In one embodiment, the permanent substrate 82 is made of a material selected from a group consisting of silicon, copper, copper-tungsten alloys, aluminum nitride, and titanium nitride. In addition to functioning as a substrate, the permanent substrate 82 also functions to conduct electricity and improve the heat-dissipating efficiency.
Refer to
Refer to
Refer to
Refer to
Refer to
Next, a light emitting layer 20 is formed on the second N-type semiconductor layer 12. In one embodiment, the light emitting layer 20 is made of gallium nitride or gallium indium nitride.
Next, a P-type semiconductor layer 30 is formed on the light emitting layer 20. In one embodiment, the P-type semiconductor layer 30 is made of magnesium-doped gallium nitride, gallium aluminum nitride, or gallium indium aluminum nitride.
Next, a metal reflection layer 70 is formed on the P-type semiconductor layer 30. In one embodiment, the metal reflection layer 70 is made of a material selected from a group consisting of aluminum, nickel, silver and titanium. The metal reflection layer 70 reflects the light generated by the light emitting layer 20. The metal reflection layer 70 also functions to conduct electricity and dissipate heat.
Next, a barrier layer 80 is formed on the metal reflection layer 70. In one embodiment, the barrier layer 80 is made of a material selected from a group consisting of titanium, tungsten, platinum, nickel, aluminum and chromium. The barrier layer 80 functions to conduct electricity and dissipate heat.
Next, the barrier layer 80 is bonded to a permanent substrate 82 via a bonding layer 81. The barrier layer 80 can prevent the P-type semiconductor layer 30 from being damaged while bonding to the bonding layer 81. The barrier layer 81 also functions to conduct electricity and dissipate heat. In one embodiment, the bonding layer 81 is made of a material selected from a group consisting of gold-tin alloys, gold-indium alloys, and gold-lead alloys. The bonding layer 81 functions to conduct electricity, dissipate heat, and perform adhesion. In one embodiment, the permanent substrate 82 is made of a material selected from a group consisting of silicon, copper, copper-tungsten alloys, aluminum oxide, and titanium nitride. In addition to functioning as a substrate, the permanent substrate 82 also functions to conduct electricity and improve heat-dissipating efficiency.
Refer to
Refer to
In the present invention, the current blocking layer 60 is embedded inside the N-type semiconductor layer 10. The current blocking layer 60 not only spreads the current but also controls the contact impedance. Thereby, the contact impedance would not be increased greatly. The method of the present invention can be used to fabricate a vertical structure LED, which needn't adopt a transparent conductive layer with high impedance. Further, as the main light-emitting regions of the light emitting layer 20 are far from the N-type electrode 40, the light shielded by the N-type electrode 40 can be reduced. Therefore, the present invention can effectively promote the luminous efficiency of LED.