This application is based on and claims priority under 35 USC §119 from Japanese Patent Application No. 2008-208785 filed Aug. 13, 2008.
1. Technical Field
The present invention relates to a light-emitting element chip, an exposure device and an image forming apparatus.
2. Related Art
In an electrophotographic image forming apparatus such as a printer, a copy machine or a facsimile machine, an image is formed on a recording paper sheet as follows. Firstly, an electrostatic latent image is formed on a uniformly charged photoconductor by causing an optical recording unit to emit light so as to transfer image information onto the photoconductor. Then, the electrostatic latent image is made visible by being developed with toner. Lastly, the toner image is transferred on and fixed to the recording paper sheet. As such an optical recording unit, in addition to an optical-scanning recording unit that performs exposure by laser scanning in a fast scan direction using a laser beam, an optical recording unit using the following exposure device has been employed in recent years. This exposure device includes a large number of light-emitting element chips arrayed in a fast scan direction, and each light-emitting element chip includes a light-emitting element array formed of one-dimensionally arrayed light-emitting elements such as light emitting diodes (LEDs).
According to an aspect of the present invention, there is provided a light-emitting element chip including: a substrate; a light-emitting portion including plural light-emitting elements each having a first semiconductor layer that has a first conductivity type and that is stacked on the substrate, a second semiconductor layer that has a second conductivity type and that is stacked on the first semiconductor layer, the second conductivity type being a conductivity type different from the first conductivity type, a third semiconductor layer that has the first conductivity type and that is stacked on the second semiconductor layer, and a fourth semiconductor layer that has the second conductivity type and that is stacked on the third semiconductor layer; and a controller including a logical operation element that performs logical operation for causing the plural light-emitting elements of the light-emitting portion to perform a light-emitting operation, the logical operation element being formed by combining some sequential layers of the first semiconductor layer stacked on the substrate, the second semiconductor layer stacked on the first semiconductor layer, the third semiconductor layer stacked on the second semiconductor layer, and the fourth semiconductor layer stacked on the third semiconductor layer.
Exemplary embodiment (s) of the present invention will be described in detail based on the following figures, wherein:
Hereinafter, a description will be given of exemplary embodiments of the present invention. Note that the present invention is not limited to the following exemplary embodiments, but may be implemented in various modified forms within the gist of the present invention. In addition, the drawings referred to herein are not to show actual sizes but are used to illustrate the exemplary embodiments.
The image forming apparatus 1 shown in
The image formation processing system 10 includes image forming units 11. The image forming units 11 are formed of multiple engines placed in parallel at intervals in the horizontal direction. Specifically, the image forming units 11 are composed of four units: a yellow (Y) image forming unit 11Y, a magenta (M) image forming unit 11M, a cyan (C) image forming unit 11C and a black (K) image forming unit 11K. Each image forming unit 11 includes a photoconductive drum 12, a charging device 13, an exposure device 14 and a developing device 15. On the photoconductive drum 12 as an example of an image carrier (photoconductor), an electrostatic latent image is formed and thus a toner image is formed. The charging device 13 as an example of a charging unit charges the outer surface of the photoconductive drum 12. The exposure device 14 as an example of an exposure unit exposes the photoconductive drum 12 charged by the charging device 13. The developing device 15 as an example of a developing unit develops a latent image formed by the exposure device 14. In addition, the image formation processing system 10 further includes a paper sheet transport belt 21, a drive roll 22 and transfer rolls 23. The paper sheet transport belt 21 transports a recording paper sheet so that color toner images respectively formed on the photoconductive drums 12 of the image forming units 11Y, 11M, 11C and 11K are transferred on the recording paper sheet by multilayer transfer. The drive roll 22 drives the paper sheet transport belt 21. Each transfer roll 23 as an example of a transfer unit transfers the toner image formed on the corresponding photoconductive drum 12 onto a recording paper sheet, which is a transfer-target medium.
Upon receipt of image data from the PC 2 and the image reading apparatus 3, the image processor 40 performs image processing on the image data and supplies the resultant data, as image signals, to the image forming units 11Y, 11M, 11C and 11K through an interface. The image formation processing system 10 operates on the basis of a synchronizing signal and the like supplied by the image output controller 30. For example, in the yellow image forming unit 11Y, on the basis of image signals supplied from the image processor 40, the exposure device 14 forms an electrostatic latent image on the outer surface of the photoconductive drum 12 charged by the charging device 13. Then, the developing device 15 forms a yellow toner image from the formed electrostatic latent image. By using the corresponding transfer roll 23, the yellow image forming unit 11Y transfers the formed yellow toner image on a recording paper sheet while the recording paper sheet is transported on the paper sheet transport belt 21 that rotates in the direction indicated by an arrow in
Each light-emitting element chip 51 includes a substrate 105, the light-emitting elements 102, bonding pads 101 and a controller 140. The substrate 105 is rectangular, and the light-emitting elements 102 are arrayed on the substrate 105 at equal intervals in a line along a longer side thereof.
The light-emitting element chips 51 are arrayed on the printed circuit board 52 so as to have an overlapping portion between each of the odd-numbered light-emitting element chips 51 and adjacent one of the even-numbered light-emitting element chips 51 which are faced each other. Here, the overlapping portion of each light-emitting element chip 51 includes the bonding pads 101 and the controller 140. Thereby, the light-emitting elements 102 on the multiple light-emitting element chips 51 are arrayed at equal intervals on the printed circuit board 52.
From signals including image signals supplied by the image processor 40 and the synchronizing signal supplied by the image output controller 30, which are provided in the image forming apparatus 1 (see
Generally, in an exposure device using a self-scanning light-emitting element array formed of GaAs light-emitting thyristors each having a pnpn structure or an npnp structure, a number of light-emitting element chips each having a one-dimensional light-emitting element array formed thereon are zigzag arrayed. The control signals for driving the light-emitting element arrays include: a clock signal for causing the light-emitting elements to sequentially emit light by self-scanning; and lighting signals for specifying whether the light-emitting elements are to emit light or not on a single element basis.
Unlike the clock signal, which is shared by the multiple light-emitting element chips on the light-emitting element head, the different lighting signals are provided to the respective light-emitting element chips. Accordingly, this type of exposure device uses as many lighting signal lines as the light-emitting element chips on the light-emitting element head.
As a result, the number of signal lines increases with increase in the number of light-emitting element chips, which complicates the routing of the signal lines among the zigzag arrayed light-emitting element chips.
However, if each light-emitting element chip is capable of selecting which one of the lighting signals to receive and capable of receiving the selected lighting signal, the exposure device is allowed to employ a lighting signal multiplexed for multiple light-emitting element chips. This will reduce the number of signal lines and thus simplifies the routing of the signal lines among the light-emitting element chips.
To this end, each light-emitting element chip needs to be provided with a logical operation circuit that selects which one of the lighting signals to receive. In other words, for example, each light-emitting element chip maybe provided with a chip selector and identification information identifying the light-emitting element chip is assigned to each light-emitting element chip. In addition, the light-emitting element chip may receive a lighting signal when identification information included in a chip select signal cs received by the chip selector matches the identification information of the light-emitting element chip.
The start signal φs and the clock signals φ1 and φ2 are shared by the multiple light-emitting element chips 51 on the light-emitting element head 100. In addition, the lighting signal φI and the chip select signal cs are also shared by the multiple light-emitting element chips 51 on the light-emitting element head 100 in the exemplary embodiments. In other words, the signals including the start signal φs, the clock signals φ1 and φ2, and the lighting signal φI are supplied even to the light-emitting element chips 51 other than those selected as light-emitting targets.
The light-emitting element chip 51 includes, on the substrate 105, a light-emitting portion 120, a setting portion 130, the controller 140 and the bonding pads 101. The light-emitting portion 120 includes light-emitting elements 102 arrayed at equal intervals, while the setting portion 130 causes the light-emitting elements 102 to sequentially emit light.
Hereinafter, a description will be given of a first exemplary embodiment of the light-emitting element chip 51.
The power supply VGA (assumed here to be −3.3 V) is connected to gate electrodes G1, G2, G3, . . . , of the transfer thyristors T1, T2, T3, . . . , through a power supply line 72 and then load resistors R1, R2, R3, . . . , respectively. In addition, the gate electrodes G1, G2, G3, . . . , of the transfer thyristors T1, T2, T3, . . . , are connected to gate electrodes G1, G2, G3, . . . , of the light-emitting thyristors L1, L2, L3, . . . , respectively. Here, each of the gate electrodes of the transfer thyristors T1, T2, T3, . . . , and the corresponding one of the gate electrodes of the light-emitting thyristors L1, L2, L3, . . . , are regarded not as separate gate electrodes but as a common gate electrode, and thus collectively referred to as gate electrode G1, G2, G3, . . . .
The gate electrode G1 of the transfer thyristor T1, to which a start signal (φs) line 73 is connected, is supplied with the start signal φs.
An anode electrode of each of the light-emitting thyristors L1, L2, L3, . . . , and the transfer thyristors T1, T2, T3, . . . , is connected to the reference potential (SUB) (assumed here to be 0 V). The cathode electrodes of the transfer thyristors T1, T2, T3, . . . , are alternately connected to clock signal (φ1 and φ2) lines 74 and 76, and thus supplied with the clock signals φ1 and φ2.
The chip selector 141 is connected to a chip select signal line 77, an input-side lighting signal line 78 and the reference potential SUB. In addition, the chip selector 141 is also connected to the cathode electrodes of the light-emitting thyristors L1, L2, L3, . . . , through an output-side lighting signal line 79.
Upon receipt of the chip select signal cs, the chip selector 141 performs either of the following operations. First, suppose the case where identification information inputted as the chip select signal cs matches unique identification information (ID) of the light-emitting element chip 51a on which the chip selector 141 is mounted. In this case, the chip selector 141 judges that this light-emitting element chip 51a is selected, and thus supplies the light-emitting portion 120 with a lighting signal φI′ corresponding to the inputted lighting signal φI. By contrast, suppose the case where the identification information inputted as the chip select signal cs does not match the unique identification information (ID) of the light-emitting element chip 51a on which the chip selector 141 is mounted. In this case, the chip selector 141 judges that this light-emitting element chip 51a is not selected, and thus supplies the light-emitting portion 120 with no lighting signal φI′.
This function allows only the light-emitting element chips 51a judged as selected chips by their respective chip selectors 141 to receive the lighting signal φI even if the signals including the lighting signal φI are simultaneously supplied to all the light-emitting element chips 51a on the light-emitting element head 100.
Note that the operations of the chip selector 141 will be described in detail later.
Here, a brief description will be given of operations of the light-emitting portion 120 and the setting portion 130. Firstly, the operation of the setting portion 130 will be described. Assume here that the power Supply VGA of −3.3 V is an L level and the reference potential (SUB) of 0 V is an H level.
The start signal φs is a signal for bringing the setting portion 130 into operation. An ON-state voltage of each transfer thyristor is approximated by an electronic potential of its gate electrode plus a diffusion potential (assumed here to be 1 V) of a pn junction. When the start signal φs is set to the H level (0 V), the electronic potential of the gate electrode G1 becomes 0 V, and thus the ON-state voltage of the transfer thyristor T1 becomes −1 V. When the clock signal φ2 is set to the L level under the above condition, the transfer thyristor T1 is turned on. Shortly thereafter, the start signal φs is set back to the L level.
When the transfer thyristor T1 is turned on, the electronic potential of the gate electrode G1 rises from the VGA of −3.3 V to approximately the SUB of 0 V. The effect of this electronic potential rise is transmitted to the gate electrode G2 through the connecting diode D1, and sets the electronic potential of the gate electrode G2 to −1 V (a value obtained by subtracting a forward rising voltage (equal to a diffusion potential) of the connecting diode D1 from the SUB). As a result, the ON-state voltage of the transfer thyristor T2 becomes −2 V. Thus, when the clock signal φ1 is set to have an electronic potential lower than −2 V, the transfer thyristor T2 is turned on. If the clock signal φ2 is subsequently set back to the H level of 0 V, the transfer thyristor T1 is turned off, and the electronic potential of the gate electrode G1 becomes the L level of −3.3 V.
When the transfer thyristor T2 is turned on, the electronic potential of the gate electrode G2 rises from −1 V to approximately the SUB of 0 V. The effect of this electronic potential rise is transmitted to the gate electrode G3 through the connecting diode D2, and sets the electronic potential of the gate electrode G3 to −1 V, and the ON-state voltage of the transfer thyristor T3 to −2 V.
Meanwhile, since the connecting diode D1 is reversely biased, the aforementioned effect of the electronic potential rise is not transmitted to the gate electrode G1. Thus, the electronic potential of the gate electrode G1 remains −3.3 V while the ON-state voltage of the transfer thyristor T1 remains −4.3 V.
When the clock signal φ2 is set to have an electronic potential between −2 V and −4.3 V under this condition, the transfer thyristor T3 is turned on while the transfer thyristors other than the transfer thyristors T2 and T3 are kept turned off.
By repeating the above operations of controlling the clock signals φ1 and φ2, the transfer thyristors are sequentially turned on.
Secondly, the operation of the light-emitting portion 120 will be described. Now, if the transfer thyristor T1 is turned on, then the electronic potential of the gate electrode G1 rises from the VGA of −3.3 V to approximately the SUB of 0 V. Incidentally, the ON-state voltage of each light-emitting thyristor is approximated by the electronic potential of its gate electrode plus the diffusion potential (assumed here to be 1 V) of the pn junction. Accordingly, the ON-state voltage of the light-emitting thyristor L1 becomes −1 V.
Meanwhile, the ON-state voltage of the light-emitting thyristor L2 is −2 V and the ON-state voltage of each of the other light-emitting thyristors L3, L4, L5, . . . , is −3 V or less because of additional connecting diodes. Accordingly, if the lighting signal φI is set to have an electronic potential between −1 V and −2 V, only the light-emitting thyristor L1 is turned on while the other light-emitting thyristors L2, L3, L4, . . . , are kept turned off.
Note that the turned-on light-emitting thyristor L1 is turned off by setting the lighting signal φI to the H level of 0 V.
Light-emission intensities of the respective light-emitting thyristors L1, L2, L3, . . . , are determined by any one of an amount of current flowing in the lighting signal φI line and the width of the lighting signal φI. In addition, even if a certain transfer thyristor is turned on, if the lighting signal φI remains set to the H level of 0 V, the light-emitting thyristor corresponding to the certain transfer thyristor continues to emit no light.
The light-emitting element chip 51a is formed of a GaAs-based semiconductor, and its first conductivity type is p-type, where holes are charge carriers, while its second conductivity type is n-type, where electrons are charge carriers. Specifically, the light-emitting element chip 51a is formed by: sequentially stacking, on the substrate 200, a p-type first semiconductor layer (abbreviated as p in the drawings) 201, an n-type second semiconductor layer (abbreviated as n in the drawings) 202, a p-type third semiconductor layer (abbreviated as p in the drawings) 203, an n-type fourth semiconductor layer (abbreviated as n in the drawings) 204; and thereafter etching predetermined portions. In the first exemplary embodiment, each of the light-emitting thyristors 401 in the light-emitting portion 120, the transfer thyristors 402 in the setting portion 130 and the logical operation elements 403 in the controller 140 has a layer structure in which the p-type first semiconductor layer 201, the n-type second semiconductor layer 202, the p-type third semiconductor layer 203 and the n-type fourth semiconductor layer 204 are vertically stacked.
Note that each of the connecting diodes D1, D2, D3, . . . , used in the setting portion 130 is formed using a junction of the p-type third semiconductor layer 203 and the n-type fourth semiconductor layer 204.
Moreover, in the controller 140, not all but some of the logical operation elements 403 have pnpn structures. The controller 140 may use logical operation elements formed of some sequential layers. Such logical operation elements include: a pnp transistor formed of the p-type first semiconductor layer 201, the n-type second semiconductor layer 202 and the p-type third semiconductor layer 203; an npn transistor formed of the n-type second semiconductor layer 202, the p-type third semiconductor layer 203 and the n-type fourth semiconductor layer 204; a diode using a junction of the p-type first semiconductor layer 201 and the n-type second semiconductor layer 202; a diode using a junction of the n-type second semiconductor layer 202 and the p-type third semiconductor layer 203; and a diode using a junction of the p-type third semiconductor layer 203 and the n-type fourth semiconductor layer 204.
In the controller 140, the pnpn structure processed in a predetermined manner such as removing one or more upper semiconductor layers in some regions is used, as will be described later.
In the light-emitting thyristors 401 of the light-emitting portion 120 and the transfer thyristors 402 of the setting portion 130, the p-type first semiconductor layer 201 serving as anode electrodes (A), the n-type fourth semiconductor layer 204 and the p-type third semiconductor layer 203 are connected to a reference potential (SUB) electrode, a cathode electrode (K) and a gate electrode (G), respectively. On the other hand, in the logical operation elements 403 each having a pnpn structure of the controller 140, the p-type first semiconductor layer 201, the n-type second semiconductor layer 202, the p-type third semiconductor layer 203 and the n-type fourth semiconductor layer 204 are connected to the reference potential (SUB) electrode, a direct current voltage electrode (E), an input electrode (Input) and an output electrode (Output), respectively.
Each of the logical operation elements 403 of the controller 140 has a structure obtained by providing the direct current voltage electrode (E) to the n-type second semiconductor layer 202 of any one of the light-emitting thyristors 401 of the light-emitting portion 120 and the transfer thyristors 402 of the setting portion 130. Thus, by controlling an electronic potential of the direct current voltage electrode (E) of each logical operation element 403, the logical operation element 403 becomes either a light-emitting thyristor 401 of the light-emitting portion 120 or a transfer thyristor 402 of the setting portion 130.
In
Moreover, the substrate 200 may be formed of a p-type semiconductor, and the p-type first semiconductor layer 201 may not be employed by causing the substrate 200 to also function as the p-type first semiconductor layer 201. In these cases, the reference potential (SUB) electrode may be provided to the back surface of the substrate 200.
The chip selector 141 is connected to four chip select signal (cs) lines 771 to 774, the input-side lighting signal (φI) line 78, the output-side lighting signal (φI′) line 79 and the reference potential (SUB) electrode. The chip selector 141 includes a decode circuit 145 and a transistor switch 147. The decode circuit 145 is formed of fuses 171, first NOT circuits 300 and a AND circuit 146. Each fuse 171 is used for connecting or disconnecting a current path. Each first NOT circuit 300 performs logical negation (NOT). The AND circuit 146 performs logical conjunction (AND). The chip select signal (cs) lines 771 to 774 are connected to the decode circuit 145 while an output terminal of the AND circuit 146 in the decode circuit 145 is connected to a base electrode (B) of the transistor switch 147. An emitter electrode (e) of the transistor switch 147 is connected to the reference potential (SUB) electrode while a collector electrode (c) of the transistor switch 147 is connected to the input-side lighting signal (φ−) line 78 and the output-side lighting signal (φI′) line.
The decode circuit 145 compares the unique identification information of the light-emitting element chip 51a with identification information inputted as the chip select signal cs by using logical operation. On the basis of a comparison result obtained from the logical operation of the decode circuit 145, the transistor switch 147 supplies the control signals for causing the light-emitting thyristors 401 to perform a light-emitting operation.
Firstly, a description will be given of the operation of the decode circuit 145. The chip select signal (cs) line 771 branches into paths 771a and 771b in the decode circuit 145. Only the fuse 171 is connected on the path 771a while the fuse 171 and the first NOT circuit 300 are connected in series on the path 771b. For example, suppose the case where the fuse 171 on the path 771a, which includes only the fuse 171, is set to be connected and where the fuse 171 on the path 771b, which includes the fuse 171 and the first NOT circuit 300 connected in series, is set to be disconnected. In this case, “1” is inputted to the AND circuit 146 when the chip select signal cs supplied through the chip select signal (cs) line 771 is “1,” while “0” is inputted to the AND circuit 146 when the chip select signal cs supplied through the chip select signal (cs) line 771 is “0.”
Suppose the contrary case where the fuse 171 on the path 771a, which includes only the fuse 171, is set to be disconnected and where the fuse 171 on the path 771b, which includes the fuse 171 and the first NOT circuit 300 connected in series, is set to be connected. In this case, when the chip select signal cs supplied through the chip select signal (cs) line 771 is “1,”“0” is inputted to the AND circuit 146 since the first NOT circuit 300 outputs an inverted signal. On the other hand, “1” is inputted to the AND circuit 146 when the chip select signal cs supplied through the chip select signal (cs) line 771 is “0.”
The same is true for the other chip select signal (cs) lines 772 to 774.
In
Here, the unique identification information of the light-emitting element chip 51a is formed of the connection or disconnection of the fuses 171, and compared with identification information inputted as the chip select signal cs from the outside.
Secondly, a description will be given of the transistor switch 147. The transistor switch 147 is a pnp transistor, and is connected to the H level of 0 V at the emitter electrode (e). When the AND circuit 146 outputs “1” (H level), the output of the transistor switch 147 is blocked. The lighting signal φI′ corresponding to the input-side lighting signal φI is supplied to the cathode electrodes (K) of the light-emitting thyristors 401 of the light-emitting portion 120 through the input-side lighting signal (φI) line 78 and then the output-side lighting signal (φI′) line 79. According to this lighting signal φI′, the light-emitting operation of the light-emitting thyristors 401 is controlled in the light-emitting element chip 51a on which this chip selector 141 is mounted.
On the other hand, when the AND circuit 146 outputs “0” (L level), the transistor switch 147 is turned on, and thus the lighting signal (φI′) line 79 is fixed to the SUB of 0 V. In this case, the light-emitting thyristors 401 of the light-emitting element chip 51a on which this chip selector 141 is mounted emit no light, since the reference potential (SUB) electrode, which serves as the anode electrodes (A), and the cathode electrodes (K) have the same electronic potential of 0 V.
In this way, each chip selector 141 controls the light-emitting operation of the light-emitting element chip 51a on which the chip selector 141 is mounted.
Here, four signal lines are used for supplying the chip select signal cs. However, the number of such signal lines may be increased or reduced in accordance with the number of light-emitting element chips 51a on the light-emitting element head 100. Moreover, though each light-emitting element chip 51a is assigned its unique identification information by using the fuses 171 therein in the above example, the light-emitting element chip 51a may alternatively be assigned its unique identification information by forming a predetermined wiring pattern in manufacturing the light-emitting element chip 51.
The gate electrodes (G) of the light-emitting thyristors 401 is connected to the gate electrodes (G) of the transfer thyristors 402 (not shown in the figure) while the base electrode (B) of the transistor switch 147 is connected to the output terminal of the AND circuit 146 (not shown in the figure).
Firstly, a first NOT circuit 300 as one of the logical operation elements 403 will be described.
As shown in
As shown in
Hereinbelow, the operation of the first NOT circuit 300 will be described with reference to the equivalent circuit shown in
On the other hand, if the input electrode (Input) is the H level, a current flows from the reference potential (SUB) electrode to the base region of the npn transistor (Q2) through the pnp transistor (Q1). As a result, the npn transistor (Q2) is turned on, and the electronic potential of the output electrode (Output) is fixed to that of the direct current voltage electrode (E) so that the output electrode (Output) becomes the L level. As described above, the first NOT circuit 300 functions as an NOT by setting the output electrode (Output) to the H level if the input electrode (Input) is the L level and by setting the output electrode (Output) to the L level if the input electrode (Input) is the H level.
This operation is the same as that of an integrated injection logic (IIL or I2L), known as a logic operation element formed of a bipolar transistor, and thus based on the operation of a bipolar transistor.
Secondly, the AND circuit 146 will be described.
On the basis of the logical operation theory of A AND B=NOT (A) NOR NOT (B), the AND circuit 146 consists of a first NOT circuit 300 and a NOR circuit 310 that performs non-disjunction (NOR).
Hereinbelow, the NOR circuit 310 as one of the logical operation elements 403 will be described.
As shown in
The input electrodes (Input) of the two side-by-side first NOT circuits 300 are connected to the first input electrode (Input 1) and the second input electrode (Input 2), respectively. In addition, the output electrode (Output), the direct current voltage electrode (E) and the reference potential (SUB) electrode are shared by these two first NOT circuits 300.
Hereinbelow, the operation of the NOR circuit 310 will be described with reference to the equivalent circuit shown in
On the other hand, if the first input electrode (Input 1) is the H level, a current flows from the reference potential (SUB) electrode to the base region of the npn transistor (Q2) through the pnp transistor (Q1). As a result, the npn transistor (Q2) is turned on, and the electronic potential of the output electrode (Output) is fixed to that of the direct current voltage electrode (E) so that the output electrode (Output) becomes the L level. If the second input electrode (Input 2) is L level, the npn transistor (Q4) is turned on. Thus, the output electrode (Output) is L level. In other words, if either the first input electrode (Input 1) or the second input electrode (Input 2) is the H level, the npn transistor (Q2) or (Q4) is turned on, and thus the output electrode (Output) is fixed to the L level. Thus, the NOR circuit 310 functions as a NOR shown in the truth table of the
As described above, the foregoing AND circuit 146 may be formed of the first NOT circuits 300 according to the first exemplary embodiment, and the NOR circuit 310. Moreover, combination of the NOR circuits 310 allows implementation of various logical operations.
Note that, in the first exemplary embodiment, the light-emitting thyristors 401 of the light-emitting portion 120 and the transfer thyristors 402 of the setting portion 130 uses −3.3 V as the power supply VGA while the logical operation elements 403 of the controller 140 uses −1 to −1.5 V as a voltage set to the direct current voltage electrode (E). The voltage difference among the light-emitting portion 120, the setting portion 130 and the controller 140 is changeable by interposing a transistor switch or the like therebetween.
The chip selector 142 shown in
Hereinbelow, the operation of the chip selector 142 will be described with reference to the equivalent circuit shown in
On the other hand, when the chip select signal cs is not “1111,” the AND circuit 146 outputs “0” (L level). Accordingly, the transistor switch 148 is turned on, and the first and second collector electrodes 161 and 162 are set to the SUB of 0 V. As a result, the output-side lighting signal (φI′) line 79 is fixed to the SUB of 0 V, and thus the chip selector 142 supplies no lighting signal φI′ to the light-emitting thyristors 401a. The reference potential (SUB) electrode serving as the anode electrodes (A) of the light-emitting thyristors 401a, the second gate electrode (G2) and the cathode electrodes (K) are all set to 0 V since the second collector electrode 162 is connected to the second gate electrode (G2) of the light-emitting thyristors 401a. This prevents the light-emitting thyristors 401a from operating.
As described above, each chip selector 142 has a function of performing the following operations when judging that the light-emitting element chip 51a on which the chip selector 142 is mounted is not selected: supplying no lighting signal φI′ to the light-emitting thyristors 401a; and preventing the light-emitting thyristors 401a from malfunctioning to emit light.
Next, a description will be given of a second exemplary embodiment of the light-emitting element chip 51. In the first exemplary embodiment shown in
The light-emitting element chip 51c is formed of a GaAs-based semiconductor, and its first conductivity type is n-type, where electrons are charge carriers, while its second conductivity type is p-type, where holes are charge carriers. Specifically, the light-emitting element chip 51c is formed by: sequentially stacking, on the substrate 210, an n-type first semiconductor layer 211, a p-type second semiconductor layer 212, an n-type third semiconductor layer 213, a p-type fourth semiconductor layer 214; and thereafter etching predetermined portions. In the second exemplary embodiment, each of the light-emitting thyristors 411 in the light-emitting portion 120, the transfer thyristors 412 in the setting portion 130 and the logical operation elements 413 in the controller 140 has a layer structure in which the n-type first semiconductor layer 211, the p-type second semiconductor layer 212, the n-type third semiconductor layer 213 and the p-type fourth semiconductor layer 214 are vertically stacked.
Note that each of the connecting diodes used in the setting portion 130 is formed using a junction of the n-type third semiconductor layer 213 and the p-type fourth semiconductor layer 214.
Moreover, in the controller 140, not all but some of the logical operation elements 413 have npnp structures. The controller 140 may use logical operation elements formed of some sequential layers. Such logical operation elements include: an npn transistor formed of the n-type first semiconductor layer 211, the p-type second semiconductor layer 212 and the n-type third semiconductor layer 213; a pnp transistor formed of the p-type second semiconductor layer 212, the n-type third semiconductor layer 213 and the p-type fourth semiconductor layer 214; a diode using a junction of the n-type first semiconductor layer 211 and the p-type second semiconductor layer 212; a diode using a junction of the p-type second semiconductor layer 212 and the n-type third semiconductor layer 213; and a diode using a junction of the n-type third semiconductor layer 213 and the p-type fourth semiconductor layer 214.
In the controller 140, the npnp structure processed in a predetermined manner such as removing one or more upper semiconductor layers in some regions is used, as will be described later.
In the light-emitting thyristors 411 of the light-emitting portion 120 and the transfer thyristors 412 of the setting portion 130, the n-type first semiconductor layer 211 serving as cathode electrodes (K) (not shown in the figure), the p-type fourth semiconductor layer 214 and the n-type third semiconductor layer 213 are connected to a reference potential (SUB) electrode, an anode electrode (A) and a gate electrode (G), respectively. On the other hand, in the logical operation elements 413 of the controller 140, the n-type first semiconductor layer 211, the p-type second semiconductor layer 212, the n-type third semiconductor layer 213 and the p-type fourth semiconductor layer 214 are connected to the reference potential (SUB) electrode, a direct current voltage electrode (E), an input electrode (Input) and an output electrode (Output), respectively.
Note that, each of the logical operation elements 413 has a structure obtained by providing the direct current voltage electrode (E) to the p-type second semiconductor layer 212 of any one of the light-emitting thyristors 411 and the transfer thyristors 412. Thus, by controlling an electronic potential of the direct current voltage electrode (E) of each logical operation element 413, the logical operation element 413 becomes either a light-emitting thyristor 411 of the light-emitting portion 120 or a transfer thyristor 412 of the setting portion 130.
In
Moreover, the substrate 210 may be formed of an n-type semiconductor, and the n-type first semiconductor layer 211 may not be employed by causing the substrate 210 to also function as the n-type first semiconductor layer 211. In these cases, the reference potential (SUB) electrode may be provided to the back surface of the substrate 210.
The detail description thereof will be omitted. However, briefly, the chip selector 144 is allowed to operate by: including an OR circuit 159 and second NOT circuits 301 in place of the AND circuit 146 and the first NOT circuits 300 of the chip selector 142; reversing the polarities of the transistor switches 151; and changing polarities of the circuit therein.
Firstly, the second NOT circuit 301 as one of the logical operation elements will be described.
As shown in
As shown in
Hereinbelow, the operation of the second NOT circuit 301 will be described with reference to the equivalent circuit shown in
Secondly, the OR circuit 159 will be described.
On the basis of A OR B=NOT (A) NAND NOT (B), the OR circuit 159 consists of a second NOT circuit 301 and a NAND circuit 311 that performs inverted AND (NAND) operation.
Hereinbelow, the NAND circuit 311 as one of the logical operation elements 413 will be described.
As shown in
The input electrodes (Input) of the two side-by-side second NOT circuits 301 are connected to the third input electrode (Input 3) and the fourth input electrode (Input 4), respectively. In addition, the output electrode (Output), the direct current voltage electrode (E) and the reference potential (SUB) electrode are shared by these two second NOT circuits 301.
Hereinbelow, the operation of the NAND circuit 311 will be described with reference to the equivalent circuit shown in
Relations between the npn and pnp transistors (Q5) to (Q8) and the semiconductor layers 211 to 214 are as described with reference to
On the other hand, if the third input electrode (Input 3) is the L level, a current flows from the base of the pnp transistor (Q6) to the reference potential (SUB) electrode through the npn transistor (Q5). As a result, the pnp transistor (Q6) is turned on, and the electronic potential of the output electrode (Output) is fixed to that of the direct current voltage electrode (E) so that the output electrode (Output) becomes the H level. If the fourth input electrode (Input 4) is H level, the output electrode (Output) becomes the H level. In other words, if either the third input electrode (Input 3) or the fourth input electrode (Input 4) is the L level, the pnp transistor (Q6) or (Q8) is turned on, and thus the output electrode (Output) is fixed to the H level. Thus, the NAND circuit 311 functions as a NAND shown in the truth table of the
As described above, the foregoing OR circuit 159 may be formed of the second NOT circuits 301 according to the second exemplary embodiment, and the NAND circuit 311. Moreover, combination of the NAND circuits 311 allows implementation of various logical operations.
Note that, in the second exemplary embodiment, the light-emitting thyristors 411 of the light-emitting portion 120 and the transfer thyristors 412 of the setting portion 130 uses 3.3 V as the power supply VGK while the logical operation elements 413 of the controller 140 uses 1 to 1.5 V as a voltage set to the direct current voltage electrode (E). The voltage difference among the light-emitting portion 120, the setting portion 130 and the controller 140 is changeable by interposing a transistor switch or the like therebetween.
Moreover, on the basis of the logical operation theories, an RS flip flop, a D latch, a D flip flop and a shift register may be configured by using NOR circuits or NAND circuits.
Thus, though description has been given of the case of using a chip selector as the controller in the foregoing exemplary embodiments, the present invention is not limited to this. Alternatively, a shift circuit may be employed which shifts light-emitting positions at the start of a light-emitting operation.
Moreover, the light-emitting element chips are formed of a GaAs-based semiconductor, but the material of the light-emitting element chips is not limited to this. For example, the light-emitting element chips may be formed of another composite semiconductor difficult to turn into a p-type semiconductor or an n-type semiconductor by ion implantation, such as GaP.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The exemplary embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2008-208785 | Aug 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6180960 | Kusuda et al. | Jan 2001 | B1 |
6498356 | Sekiya et al. | Dec 2002 | B1 |
6703790 | Ohno | Mar 2004 | B2 |
7122834 | Ogihara et al. | Oct 2006 | B2 |
7193250 | Ohno | Mar 2007 | B2 |
7518152 | Ohno | Apr 2009 | B2 |
7834363 | Ohno | Nov 2010 | B2 |
20020134930 | Ohno | Sep 2002 | A1 |
20030090561 | Sekiya et al. | May 2003 | A1 |
20040130015 | Ogihara et al. | Jul 2004 | A1 |
20050224810 | Ohno | Oct 2005 | A1 |
20070057279 | Ohno | Mar 2007 | A1 |
20090166646 | Ohno | Jul 2009 | A1 |
20100026214 | Nagumo | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
9-097926 | Apr 1997 | JP |
2001-219596 | Aug 2001 | JP |
2001-287398 | Oct 2001 | JP |
2003-249681 | Sep 2003 | JP |
2004-207444 | Jul 2004 | JP |
2005-259856 | Sep 2005 | JP |
2005-271241 | Oct 2005 | JP |
2007-268895 | Oct 2007 | JP |
2007-273499 | Oct 2007 | JP |
2010-040641 | Feb 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20100038671 A1 | Feb 2010 | US |