The present invention generally relates to light-emitting systems, and more specifically to the repair and/or replacement of defective light-emitting elements in light-emitting systems incorporating arrays of light-emitting elements.
Solid-state light sources such as light-emitting diodes (LEDs) are an attractive alternative to incandescent light bulbs in illumination devices due to their higher efficiency, smaller form factor, longer lifetime, and enhanced mechanical robustness. LEDs may be grouped in clusters or arrays to provide a desired light output characteristics corresponding to design requirements and/or application specifications.
However, lighting devices featuring arrays of interconnected LEDs may suffer from issues that plague all interconnected networks of devices—when a single device fails, the failure may degrade the performance of other devices, or even shut one or more (or even all) of them off entirely. One or more LEDs may fail during manufacture or operation due to a fault in, e.g., the LED itself fails, or a failure may occur in one or more of the conductive traces supplying power to the LED, in the substrate to which the LED is attached, or in an electrical or mechanical connection between the LED contacts and the traces. Such faults may result in an intermittent connection or an open or short circuit. In some cases, the failure of even a single LED may be unacceptable from a visual appearance and/or performance perspective, such as degradation in the illumination intensity, efficiency and/or uniformity.
Accordingly, there is a need for structures, systems and procedures enabling inexpensive and efficient repair methods for array-based illumination systems.
In accordance with certain embodiments, an illumination device incorporates, electrically connected to a power source, multiple light-emitting strings, i.e., paths for the provision of power (i.e., current and/or voltage) from the power source to groups of light-emitting elements (LEEs) such as LEDs. Each string includes a power conductor, such as an electrical trace (or a series thereof), on which multiple LEEs are connected in, e.g., series. Each LEE bridges a gap in the power conductor between a pair of contacts. One or more inoperative LEEs are identified in the illumination device. As used herein, an “inoperative” LEE is an LEE responding to applied power (e.g., voltage) with only intermittent light output, as a short-circuit failure, or as an open-circuit failure (i.e., not emitting light). The inoperative LEE may be physically removed from the device (along with, in some embodiments, portions of the substrate below the LEE and/or one or more of the electrical traces), or the device may be repaired with the inoperative LEE in place. If left in place, the inoperative LEE may be electrically isolated from the other LEEs in the device via, e.g., removal of a portion of one or more of the electrical traces coupled to the inoperative LEE. The failure point defined by the inoperative LEE or the gap where the inoperative LEE was removed is repaired via application of a patch over or under the device substrate at the failure point. The patch contains one or more replacement LEEs coupled to conductive traces that are coupled to the electrical traces of the device when the patch is applied.
As utilized herein, the term “light-emitting element” (LEE) refers to any device that emits electromagnetic radiation within a wavelength regime of interest, for example, visible, infrared or ultraviolet regime, when activated, by applying a potential difference across the device or passing a current through the device. Examples of LEEs include solid-state, organic, polymer, phosphor-coated or high-flux LEDs, microLEDs (described below), laser diodes or other similar devices as would be readily understood. The emitted radiation of an LEE may be visible, such as red, blue or green, or invisible, such as infrared or ultraviolet. An LEE may produce radiation of a spread of wavelengths. An LEE may feature a phosphorescent or fluorescent material for converting a portion of its emissions from one set of wavelengths to another. An LEE may include multiple LEEs, each emitting essentially the same or different wavelengths. In some embodiments, an LEE is an LED that may feature a reflector over all or a portion of its surface upon which electrical contacts are positioned. The reflector may also be formed over all or a portion of the contacts themselves. In some embodiments, the contacts are themselves reflective.
An LEE may be of any size. In some embodiments, a LEE has one lateral dimension less than 500 μm, while in other embodiments a LEE has one lateral dimension greater than 500 um. Exemplary sizes of a relatively small LEE may include about 175 μm by about 250 μm, about 250 μm by about 400 μm, about 250 μm by about 300 μm, or about 225 μm by about 175 μm. Exemplary sizes of a relatively large LEE may include about 1000 μm by about 1000 μm, about 500 μm by about 500 μm, about 250 μm by about 600 μm, or about 2000 μm by about 2000 μm. In some embodiments, a LEE includes or consists essentially of a small LED die, also referred to as a “microLED.” A microLED generally has one lateral dimension less than about 300 μm. In some embodiments, the LEE has one lateral dimension less than about 200 μm or even less than about 100 μm. For example, a microLED may have a size of about 225 μm by about 175 μm or about 150 μm by about 100 μm or about 150 μm by about 50 μm. In some embodiments, the surface area of the top surface of a microLED is less than 50,000 μm2 or less than 10,000 μm2. The size of the LEE is not a limitation of the present invention, and in other embodiments the LEE may be relatively larger, e.g., the LEE may have one lateral dimension on the order of at least about 1000 μm or at least about 3000 μm.
As used herein, “phosphor” or “light-conversion material” refers to any material that shifts the wavelengths of light irradiating it and/or that is fluorescent and/or phosphorescent, and is utilized interchangeably with the term “wavelength-conversion material” or “phosphor-conversion element.” As used herein, a “phosphor” may refer to only the powder or particles (of one or more different types) or to the powder or particles with the binder. The light-conversion material is incorporated to shift one or more wavelengths of at least a portion of the light emitted by LEEs to other desired wavelengths (which are then emitted from the larger device alone or color-mixed with another portion of the original light emitted by the die). A light-conversion material may include or consist essentially of phosphor powders, quantum dots, organic dye or the like within a transparent matrix. Phosphors are typically available in the form of powders or particles, and in such case may be mixed in binders. An exemplary binder is silicone, i.e., polyorganosiloxane, which is most commonly polydimethylsiloxane (PDMS). Phosphors vary in composition, and may include lutetium aluminum garnet (LuAG or GAL), yttrium aluminum garnet (YAG) or other phosphors known in the art. GAL, LuAG, YAG and other materials may be doped with various materials including for example Ce, Eu, etc. The specific components and/or formulation of the phosphor and/or matrix material are not limitations of the present invention.
The binder may also be referred to as an encapsulant or a matrix material. In one embodiment, the binder includes or consists essentially of a transparent material, for example silicone-based materials or epoxy, having an index of refraction greater than 1.35. In one embodiment the phosphor includes or consists essentially of other materials, for example fumed silica or alumina, to achieve other properties, for example to scatter light, or to reduce settling of the powder in the binder. An example of the binder material includes materials from the ASP series of silicone phenyls manufactured by Shin Etsu, or the Sylgard series manufactured by Dow Corning.
In some embodiments, various elements such as substrates, tapes, or patches are “flexible” in the sense of being pliant in response to a force and resilient, i.e., tending to elastically resume an original configuration upon removal of the force. Such elements may have a radius of curvature of about 20 cm or less, or about 5 cm or less, or even about 1 cm or less. In some embodiments, flexible elements have a Young's Modulus less than about 50×109 N/m2, less than about 10×109 N/m2, or even less than about 5×109 N/m2. In some embodiments, flexible elements have a Shore A hardness value less than about 100; a Shore D hardness less than about 100; and/or a Rockwell hardness less than about 150.
Herein, two components such as light-emitting elements, optical elements, and/or phosphor chips being “aligned” or “associated” with each other may refer to such components being mechanically and/or optically aligned. By “mechanically aligned” is meant coaxial or situated along a parallel axis. By “optically aligned” is meant that at least some light (or other electromagnetic signal) emitted by or passing through one component passes through and/or is emitted by the other.
In an aspect, embodiments of the invention feature a lighting system including or consisting essentially of a substrate, a plurality of spaced-apart conductive traces defining a plurality of gaps therebetween and disposed on the substrate, a plurality of light-emitting elements disposed over the substrate, a fault location, and a patch disposed over or under the substrate at the fault location. Each light-emitting element is disposed within a gap and electrically connected to the conductive traces defining the gap. The fault location is defined by a gap between two conductive traces either (i) lacking a light-emitting element therein or (ii) comprising an inoperative light-emitting element therein. The patch includes or consists essentially of (i) a patch substrate, (ii) two conductive traces disposed on the patch substrate, and (iii) a replacement light-emitting element electrically coupled to the two conductive traces of the patch. The conductive traces of the patch are each electrically connected to one of the conductive traces defining the fault location, thereby electrically connecting the replacement light-emitting element across the fault location.
Embodiments of the invention may include one or more of the following in any of a variety of different combinations. The replacement light-emitting element may include or consist essentially of a bare-die light-emitting diode or a packaged light-emitting diode. The fault location may include an inoperative light-emitting element therein. The inoperative light-emitting element may be electrically isolated from at least one of the conductive traces at the fault location. The patch substrate may define a recess. At least a portion of the inoperative light-emitting element may be disposed in the recess. The fault location may lack a light-emitting element therein. The substrate may define a hole therethrough in the fault location. The replacement light-emitting element may include two spaced-apart contacts each electrically coupled to one of the conductive traces on the patch substrate via a conductive adhesive, an anisotropic conductive adhesive, and/or an anisotropic conductive film. The conductive traces on the patch substrate may be each electrically coupled to one of the conductive traces defining the failure point via a conductive adhesive, an anisotropic conductive adhesive, an anisotropic conductive film, a conductive tape, and/or a solid conductive fastener. The substrate and/or the patch substrate may include at least one alignment feature for facilitating alignment of the patch to the failure point. The alignment feature may include or consist essentially of an alignment mark, a recess, a hole, a blind hole, and/or a protrusion.
The two conductive traces of the patch may be disposed on a first surface of the patch substrate. The patch substrate may include an additional two conductive traces on a second surface of the patch substrate opposite the first surface. The two conductive traces of the patch may be electrically coupled to the conductive traces defining the failure point via the two additional conductive traces on the second surface of the patch substrate. The two additional conductive traces on the second surface of the patch substrate may be each electrically coupled to one of the conductive traces defining the failure point via a conductive adhesive, a conductive tape, an anisotropic conductive adhesive, and/or a anisotropic conductive film. The replacement light-emitting element may be disposed between the patch substrate and the substrate. The patch substrate may be disposed between the replacement light-emitting element and the substrate. The substrate may have first and second opposing surfaces, the light-emitting elements and conductive traces may be disposed over the first surface of the substrate, and the patch may be disposed over the first surface of the substrate. The substrate may have first and second opposing surfaces, the light-emitting elements and conductive traces may be disposed over the first surface of the substrate, and the patch may be disposed over the second surface of the substrate.
The patch substrate may include or consist essentially of polyethylene naphthalate, polyethylene terephthalate, polycarbonate, polyethersulfone, polyester, polyimide, polyethylene, fiberglass, metal-core printed circuit board, metal foil, silicon, and/or paper. The conductive traces on the substrate (and/or on the patch substrate) may include or consist essentially of gold, silver, copper, aluminum, chromium, carbon, silver ink, and/or copper ink. The light-emitting elements may emit substantially white light. The conductive traces on the patch substrate may be disposed on a first surface of the patch substrate, and only portions of the patch substrate may be folded such that the conductive traces are electrically coupled to the conductive traces defining the failure point therebelow. The lighting system may include a reflective layer (i) reflective to a wavelength of light emitted by the replacement light-emitting element, and (ii) positioned to reflect light emitted by the replacement light-emitting element in a direction of light emitted by the light-emitting elements on the substrate.
In another aspect, embodiments of the invention feature a method for repairing a lighting system including or consisting essentially of (i) a substrate, (ii) disposed on the substrate, a plurality of spaced-apart conductive traces defining a plurality of gaps therebetween, and (iii) a plurality of light-emitting elements disposed over the substrate, each light-emitting element being disposed within a gap and electrically connected to the conductive traces defining the gap. A fault location defined by a gap between two conductive traces either (i) lacking a light-emitting element therein or (ii) comprising an inoperative light-emitting element therein is identified. A patch is disposed over or under the substrate at the fault location. The patch includes or consists essentially of (i) a patch substrate, (ii) two conductive traces disposed on the patch substrate, and (iii) a replacement light-emitting element electrically coupled to the two conductive traces of the patch. The replacement light-emitting element is electrically connected across the fault location by electrically connecting each of the conductive traces of the patch to one of the conductive traces defining the fault location.
Embodiments of the invention may include one or more of the following in any of a variety of different combinations. Identifying the fault location may include or consist essentially of applying power to at least some of the light-emitting elements. The conductive traces and light-emitting elements on the substrate may be organized in a plurality of light-emitting strings. Each light-emitting string may (i) comprise a plurality of series-connected light-emitting elements spanning gaps between conductive traces, (ii) have a first end electrically coupled to a first power conductor, and (ii) have a second end electrically coupled to a second power conductor different from the first power conductor. Identifying the fault location may include or consist essentially of applying power to each light-emitting element in each light-emitting string. Power may be applied twice to one or more, but not all, light-emitting elements in each light-emitting string. Identifying the fault location may include or consist essentially of electrically contacting (i) the first power conductor and (ii) a conductive trace on the substrate within a light-emitting string but not physically connected to the first or second power connectors. Identifying the fault location may include or consist essentially of measuring an optical characteristic of a light-emitting element disposed at the fault location. The optical characteristic may include or consist essentially of light output power, wavelength, color temperature, color rendering index, efficiency, and/or luminous efficacy. Identifying the fault location may include or consist essentially of measuring an electrical characteristic of a light-emitting element disposed at the fault location. The electrical characteristic may include or consist essentially of forward voltage and/or reverse leakage voltage.
Each of the conductive traces of the patch may be electrically connected to one of the conductive traces defining the fault location via a conductive adhesive, a conductive tape, an anisotropic conductive adhesive, an anisotropic conductive film, and/or a solid conductive fastener. An inoperative light-emitting element may be disposed at the fault location, and, after identifying the fault location, the inoperative light-emitting element may be electrically isolated from at least one of the conductive traces at the fault location. Electrically isolating the inoperative light-emitting element may include or consist essentially of removing the inoperative light-emitting element from the lighting system. A portion of the substrate at the fault location and/or portions of the conductive traces at the fault location may be removed. Electrically isolating the inoperative light-emitting element may include or consist essentially of removing a portion of the at least one conductive trace proximate the fault location. Identifying the fault location, disposing the patch, and electrically connecting the replacement light-emitting element may be performed in a roll-to-roll process.
In yet another aspect, embodiments of the invention feature a patch for repairing a fault location on a lighting system. The lighting system includes or consists essentially of (i) a substrate, (ii) disposed on the substrate, a plurality of spaced-apart conductive traces defining a plurality of gaps therebetween, and (iii) a plurality of light-emitting elements disposed over the substrate, each light-emitting element being disposed within a gap and electrically connected to the conductive traces defining the gap. The fault location is defined by a gap between two conductive traces either (i) lacking a light-emitting element therein or (ii) comprising an inoperative light-emitting element therein. The patch includes or consists essentially of a patch substrate, two conductive traces disposed on the patch substrate, and a replacement light-emitting element electrically coupled to the two conductive traces of the patch. The conductive traces of the patch are each electrically connectable to one of the conductive traces of the lighting system defining the fault location to thereby electrically connect the replacement light-emitting element across the fault location. The patch substrate may be sized and shaped to be disposed over or under the fault location without overlying or underlying a light-emitting element of the lighting system not disposed at the fault location.
These and other objects, along with advantages and features of the invention, will become more apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations. Reference throughout this specification to “one example,” “an example,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present technology. Thus, the occurrences of the phrases “in one example,” “in an example,” “one embodiment,” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same example. Furthermore, the particular features, structures, routines, steps, or characteristics may be combined in any suitable manner in one or more examples of the technology. The term “light” broadly connotes any wavelength or wavelength band in the electromagnetic spectrum, including, without limitation, visible light, ultraviolet radiation, and infrared radiation. Similarly, photometric terms such as “illuminance,” “luminous flux,” and “luminous intensity” extend to and include their radiometric equivalents, such as “irradiance,” “radiant flux,” and “radiant intensity.” As used herein, the terms “substantially,” “approximately,” and “about” mean±10%, and in some embodiments, ±5%. The term “consists essentially of” means excluding other materials that contribute to function, unless otherwise defined herein. Nonetheless, such other materials may be present, collectively or individually, in trace amounts.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
In the case of a short circuit or intermittent failure, or other failure modes, it may be necessary to remove failed LEE 131 before or after patch 100 is applied.
In some embodiments of the present invention, the LEEs include or consist essentially of bare semiconductor dies (i.e., a bare-die LEE is an unpackaged semiconductor die), while in other embodiments the LEEs include or consist essentially of packaged LEDs. In some embodiments, substitute LEE 130 may be different from operational LEE 132 and/or failed LEE 131. For example, failed LEE 131 may include or consist essentially of a bare semiconductor die, while LEE 130 includes or consists essentially of a packaged LED.
In many embodiments, the LEEs may include a wavelength-conversion material surrounding all or a portion of the LEE. In some embodiments, the LEE may be configured to emit white light (e.g., via mixture of light converted by the wavelength-conversion material and unconverted light emitted by the LEE). As will be understood by those skilled in the art, there are a number of ways of incorporating phosphor with an LEE, and the method of phosphor incorporation is not a limitation of the present invention.
Substrates 110, 111 may each include or consist essentially of a semicrystalline or amorphous material, e.g., polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polycarbonate, polyethersulfone, polyester, polyimide, polyethylene, fiberglass, FR4, metal core printed circuit board, (MCPCB), metal, metal foil, silicon, and/or paper. Substrates 110, 111 may include multiple layers, e.g., a deformable layer over a rigid layer, for example, a semicrystalline or amorphous material, e.g., PEN, PET, polycarbonate, polyethersulfone, polyester, polyimide, polyethylene, and/or paper formed over a rigid substrate for example comprising, acrylic, aluminum, steel, and the like. Depending upon the desired application for which embodiments of the invention are utilized, substrates 110, 111 may be substantially optically transparent, translucent, or opaque. For example, substrates 110, 111 may exhibit a transmittance or a reflectivity greater than 70% for optical wavelengths ranging between approximately 400 nm and approximately 700 nm. In some embodiments, substrates 110 and 111 may exhibit a transmittance or a reflectivity of greater than 70% for one or more wavelengths emitted by an LEE 130. Substrates 110, 111 may also be substantially insulating, and may have an electrical resistivity greater than approximately 100 ohm-cm, greater than approximately 1×106 ohm-cm, or even greater than approximately 1×1010 ohm-cm. In some embodiments, substrate 110 may be the same as substrate 111, while in other embodiments substrate 110 may be different from substrate 111.
Conductive elements 120, 121 may be formed via conventional deposition, photolithography, and etching processes, plating processes, lamination, lamination and patterning, evaporation sputtering, or the like, or they may be formed using a variety of different printing processes. For example, conductive elements 120, 121 may be formed via screen printing, flexographic printing, ink-jet printing, and/or gravure printing. Conductive elements 120, 121 may include or consist essentially of a conductive material (e.g., an ink or a metal, metal film or other conductive materials or the like), which may include one or more elements such as silver, gold, aluminum, chromium, copper, and/or conductive carbon. Conductive elements 120, 121 may have a thickness in the range of about 50 nm to about 1000 μm, or more preferably in the range of about 1 μm to about 150 μm. In some embodiments, the thickness of conductive elements 120, 121 may be determined by the current to be carried thereby. While the thickness of one or more of conductive elements 120, 121 may vary, the thickness is generally substantially uniform along the length of the trace to simplify processing. However, this is not a limitation of the present invention, and in other embodiments the thickness and/or material of conductive elements 120, 121 may vary.
In some embodiments of the present invention, all or portions of conductive elements 120, 121 and/or substrates 110, 111 may be covered by a cover layer or cover material. In some embodiments, the cover layer may include or consist essentially of an insulating layer, for example to prevent electrical connectivity with conductive elements 120,121. In some embodiments, the insulating material may include or consist essentially of, e.g., one or more layers formed over the back or front surface of the substrate. Such layers may include or consist essentially of a material the same as or similar to that of substrate 110, 111, e.g., PET, PEN, polyimide, polyester, acrylic, or the like. In some embodiments, the insulating material may include or consist essentially of, for example, silicone, silicon oxide, silicon dioxide, silicon nitride, or the like. In some embodiments, the insulating material may include or consist essentially of an ink, where the ink may have one or a plurality of colors and/or may be arranged in one or more markings. For example, markings may include identification of the lightsheet type or part number, identification of power conductors, identification of specific lengths of the lightsheet, for example to mark portions of specific lengths, identification of cut regions where a lightsheet may be separated into portions, or the like. In some embodiments, the insulating material includes or consists essentially of a white ink. In some embodiments, the insulating material may be a separate layer adhered to the substrate, for example using glue or adhesive or tape. In some embodiments, the insulating material may be formed over the substrate by, for example, spray coating, dip coating, printing, sputtering, evaporation, chemical vapor deposition or the like. In some embodiments, the insulating layer may be patterned and a portion of the insulating layer removed to permit access to a portion of the underlying lightsheet (as utilized herein, “lightsheet” refers to a substrate with one or more LEEs thereon for light emission). In some embodiments, the insulating layer may be patterned such that it does not cover LEEs 130. In some embodiments, patterning may be achieved by selective deposition, for example, selective spray coating, or by patterning and etching or removal of portions of the insulating layer. In some embodiments, the cover layer may have additional properties, for example, to provide flame resistance or to provide a reflective or light-absorbing surface. In some embodiments, a front cover material is reflective to a wavelength of light emitted by LEEs 130. In some embodiments, the front cover material is white. In some embodiments, the back (i.e., on the surface opposite the surface on which the LEEs are disposed) cover layer is black.
LEEs 130, 131, and/or 132 may be electrically coupled and/or mechanically attached to conductive traces 120, 121 and/or substrate 110, 111 using a variety of means, for example conductive adhesive, non-conductive adhesive, a combination of conductive and non-conductive adhesives, anisotropic conductive adhesive (ACA), solder, wire bonding, or the like. In preferred embodiments, the attachment methods include or consist essentially of at least one of conductive adhesive, non-conductive adhesive, a combination of conductive and non-conductive adhesives, ACA, or solder.
In one embodiment, conductive traces 120,121 are formed with a gap between adjacent conductive traces 120, 121, and LEEs 130, 131, and/or 132 are electrically coupled to conductive traces 120, 121 using, e.g., an isotropically conductive adhesive, an ACA, and/or solder. In one embodiment, conductive traces 120,121 are formed with a gap between adjacent conductive traces 120, 121, and LEEs 130, 131 and/or 132 are electrically coupled to conductive traces 120, 121 using ACA as described in U.S. patent application Ser. No. 13/171,973, filed Jun. 29, 2011, or U.S. patent application Ser. No. 13/799,807, filed Mar. 13, 2013, the entire disclosure of each of which is incorporated by reference herein.
Patch 100 may be electrically and/or mechanically coupled to lighting system 101 using a variety of means, for example an adhesive, a conductive adhesive, a combination of conductive and non-conductive adhesives, electrically conductive tape, staples, rivets, conductive staples, conductive rivets, or the like. (As used herein, a “solid conductive fastener” may be a staple or rivet or other substantially non-flexible and solid means of attachment).
In one embodiment, a patch is electrically and mechanically coupled to lighting system 101 using an electrically conductive flexible tape.
In the embodiment shown in
In some embodiments, an optional reflective material 630 may be positioned between replacement LEE 130 and failed LEE 131, or between replacement LEE 130 and the lighting system, when failed LEE 131 is removed, to aid in redirection of light emitted by replacement LEE 130 back up through substrate 110, as shown in
In some embodiments, ACA may be a liquid or a gel, and may be dispensed on a substrate prior to mating and bonding of an overlying system, for example a patch. However, this is not a limitation of the present invention, and in other embodiments the ACA may be in film or substantially solid form, for example anisotropic conductive film (ACF). In some embodiments, ACF may be used in place of conductive tape discussed herein. For example, in
Via 410 may include or consist essentially of, e.g., a crimp-type via or a through-hole that is been filled or partially filled with conductive material. In some embodiments, via 410 may have other configurations, for example a rivet 710 (
In some embodiments, an adhesive, e.g., a non-conductive adhesive, conductive adhesive, and/or ACA, is pre-applied to the patch before mating with the lighting system. In some embodiments, the adhesive may be applied using a syringe, spray application, brush, or the like. The means by which an adhesive is applied to the patch or the lighting system is not a limitation of the present invention. In some embodiments, an ACF may be applied to all or portions of the bottom of the patch.
In some embodiments, the patch may include a conductive post or barb or piercing needle that forms at least a portion of the electrical and mechanical coupling to the underlying lighting system by piercing the underlying material and electrically coupling to conductive traces 121 on lighting system 101 (see
In some embodiments, the patch may be attached and/or electrically coupled to the underlying lighting system 101 using staples, as shown in an example in
In some embodiments, the patch may be adhered to and electrically coupled to the underlying lighting system using conductive adhesive, as shown in
In some embodiments, the conductive traces leading to the failed LEE initially may not be exposed or available for electrical coupling. For example, in some embodiments, the electrical traces may be covered by an insulating film or material, for example an ink or film. In some embodiments, such a covering may serve a variety of purposes, for example to insulate the conductive traces, to protect the conductive traces, or to provide a decorative element or color to the lighting system. In some embodiments, the patch may also bridge or remove the overlying material, for example by removal of a portion of the overlying material or by puncturing a portion of the overlying material. In some embodiments, this may be accomplished using means discussed herein, such as a rivet, staple, barb, or the like (as discussed in reference to
In some embodiments, a portion of the overlying material may be removed prior to application of the patch. For example,
As discussed herein, in some embodiments, it may be desirable to remove failed LEE 131 before application of the patch. In some embodiments, failed LEE 131 may be removed (i.e., disconnected) electrically, but still remain substantially in place physically. In some embodiments, failed LEE 131 may be removed both electrically and physically. Removal of failed LEE 131 may be accomplished using a variety of techniques, including, e.g., ablation, scraping or shearing off failed LEE 131, removal by means of removing the attachment means of LEE 131 to the underlying substrate (for example un-soldering failed LEE 131 or heating to soften an adhesive that is used to attach failed LEE 131), removal of a portion of the underlying conductive traces 121 to electrically isolate failed LEE 131, and removal of failed LEE 131 along with a portion of the underlying conductive traces 121 and substrate 111. In some embodiments, removal of failed LEE 131 along with a portion of conductive trace 121 and substrate 111 may be accomplished by knife cutting, laser cutting, die cutting, punching, or the like. In some embodiments, a punch tool may be used for the removal process. In some embodiments, a spring-loaded punch tool configured to provide the correct amount of force to achieve the desired cutting or punching action may be used, and may be operated by hand or by machine in a semi-automatic or automatic fashion.
The amount of force applied by the spring-loaded punch tool to achieve removal is dependent on both substrate 111 and conductive trace 121 material and thickness, and may be determined without undue experimentation. In some embodiments, the punch tool includes or consists essentially of a hollow punch tool, that cuts out a circular, square or other shaped portion of substrate 111, including failed LEE 131 and optionally a portion of one or more conductive traces 121. While the removed portion has been described as circular or square shaped, this is not a limitation of the present invention, and in other embodiments the removed shape may be rectangular, hexagonal or any shape. In some embodiments, it is desirable to minimize the amount of material removed.
In some embodiments, a layer may be formed between LEE 130 and conductive traces 121 that facilitates subsequent removal if necessary. In some embodiments, this may include or consist essentially of a layer that softens or has a reduction or elimination in adhesion upon a particular treatment, for example heating, UV exposure, or the like.
In some embodiments, the conductive posts or barbs are designed to slide and/or extend laterally against portions of conductive traces 121. In some embodiments, this may result in a larger electrical contact area and thus may provide relatively lower contact resistance.
In some embodiments, the patch may be aligned to the lighting system and failed LEE 131 manually, for example by optical observation and manual placement of the patch. In some embodiments, the patch or lighting system or both may have one or more alignment features or marks, designed to aid alignment of the patch to the lighting system such that replacement LEE 130 is directly over or substantially over or centered over or substantially centered over failed LEE 131. In some embodiments, the alignment features may include or consist essentially of optical or visual alignment features, designed to aid human and/or machine-vision systems in the location and placement of the patch on the lighting system. In some embodiments, the alignment features may include or consist essentially of mechanical alignment features, designed to aid human and/or machine-vision systems in the location and placement of the patch on the lighting system. In some embodiments, the alignment features may include or consist essentially of electronic or electro/optical alignment features, designed to aid human and/or machine-vision systems in the location and placement of the patch on the lighting system. In some embodiments, one type of alignment feature and/or method may be used, while in other embodiments, a combination of alignment features and/or methods may be used.
In some embodiments, patch substrate 110 may be shaped to provide one or more alignment features that may be used to align to marks, features, or components on the lighting system. In some embodiments, the material constituting one or more conductive traces 120 and/or 121 may be patterned to form one or more alignment marks or features. In some embodiments, such marks, features and/or components may be used to aid visual alignment, while in other embodiments such marks, features and/or components may be used to provide mechanical alignment features.
In some embodiments, fiducial or alignment marks may be formed, for example by printing or patterning of conductive traces 120, 121, and such fiducial or alignment marks may be used in a semi-automated or automated machine-based vision system for semi-automatic or automatic alignment and positioning of the patch over failed LEE 131.
In some embodiments protrusions or bumps and/or holes may be formed in at the patch (for example in substrate 110 and/or conductive traces 120) and/or the lighting system (for example in substrate 111 and/or conductive traces 121), and such holes and/or bumps or protrusions may be used for visual and/or mechanical alignment aids.
In some embodiments the alignment marks may be formed in the same step as (e.g., concurrently with) conductive traces 120, 121; however, this is not a limitation of the present invention, and in other embodiments the alignment marks may be formed in a different step. In some embodiments, the alignment marks may be embossed into substrates 110, 111.
In some embodiments, electrical/optical alignment may be used to align the patch to the lighting system. For example, in some embodiments, the underlying lighting system may be energized such that all LEEs 132 are illuminated and failed LEE 131 is not illuminated. The patch may then be overlaid on the lighting system and its position adjusted until replacement LEE 130 on the patch is illuminated and in the desired position, at which point the patch is mechanically and/or electrically attached or fixed to the lighting system. In some embodiments, the patch may be mechanically and/or electrically attached or fixed to the lighting system using a relatively fast curing adhesive, for example using a thermally cured adhesive or a UV-cured adhesive. This approach may be used for all types of failures of failed LEEs 131, including short, open, or intermittent.
In some embodiments, LEEs 130, 131, and/or 132 may include or consist essentially of light-emitting diodes (LEDs). In some embodiments, LEEs 130, 131, and/or 132 may emit electromagnetic radiation within a wavelength regime of interest, for example, infrared, visible, for example blue, red, green, yellow, etc. light, or radiation in the UV regime, when activated by passing a current through the device. In some embodiments, LEEs 130, 131, and/or 132 may include a substrate over which the active device layers are formed. The structure and composition of such layers are well known to those skilled in the art. In general, such a layer structure (e.g., for an LED) may include top and bottom cladding layers, one doped n-type and one doped p-type, and one or more active layers (from which most or all of the light is emitted) in between the cladding layers. In some embodiments, the layers collectively may have a thickness in the range of about 0.25 μm to about 10 μm. In some embodiments, the substrate is transparent and all or a portion thereof is left attached to the device layers, while in other embodiments the substrate may be partially or completely removed. In some embodiments, LEE 130 may include or consist essentially of nitride-based semiconductors (for example containing one more of the elements Al, Ga, In, and nitrogen). In some embodiments, LEE 130 may include or consist essentially of nitride-based semiconductors and may emit light in the wavelength range of about 400 nm to about 550 nm.
In some embodiments, LEEs 130, 131, and/or 132 may be at least partially covered by (or otherwise associate with such that light from the LEE is emitted into) a wavelength-conversion material (also referred to herein as a phosphor), phosphor conversion element (PCE), wavelength conversion element (WCE), or phosphor element (PE), all of which are utilized synonymously herein unless otherwise indicated. In some embodiments, white light may also be produced by combining the short-wavelength radiant flux (e.g., blue light) emitted by a semiconductor LED with long-wavelength radiant flux (e.g., yellow light) emitted by, for example one or more phosphors within the light-conversion material. The chromaticity (or color), color temperature, and color-rendering index are determined by the relative intensities of the component colors. For example, the light color may be adjusted from “warm white” with a correlated color temperature (CCT) of 2700 Kelvin or lower to “cool white” with a CCT of 6500 Kelvin or greater by varying the type or amount of phosphor material. White light may also be generated solely or substantially only by the light emitted by the one or more phosphor particles within the light-conversion material.
In some embodiments, an LEE may include or consist essentially of a packaged LED, for example a SMD-packaged LED. In some embodiments, the LEE may be attached to the conductive traces using a variety of means, for example including wire bonding, solder, ball bonding, or the like. In some embodiments, a packaged LEE may include or consist essentially of a LED and a light-conversion material. In some embodiments a packaged LEE may include or consist essentially of a LED and a light conversion material, the combination of which produce substantially white light.
In some embodiments, process 1600 may be carried out in a completely manual fashion, for example by hand. In some embodiments, process 1600 may be carried out in a semi-automated fashion, while in other embodiments, process 1600 may be carried out in a fully automated fashion. In some embodiments, the lighting system includes or consists essentially of a light sheet including or consisting of LEEs and conductive traces 121 formed over a flexible substrate 111. In some embodiments, process 1600 may be carried out while the light sheet is still in roll form (i.e., not separated into individual sheets), while in other embodiments, process 1600 may be carried out after the roll is cut into sheets or pieces.
Identifying a failed LEE (step 1610) may be performed alone, or in conjunction with step 1630, identifying the failure mode. For example, in one embodiment all or a portion of the light sheet is energized and an LEE is identified if it does not illuminate. In some embodiments, one or more electrical and/or optical characteristics may be measured, and one or more of these used to determine if the LEE is failed or acceptable. For example, optical parameters that may be determined include light intensity, correlated color temperature (CCT), spectral distribution of the emitted light, color rendering index (CRI), R9, and the like. Furthermore, exemplary electrical parameters that may be determined include forward voltage (of an LEE), drive current, electrical power consumption, and the like. Another parameter that may be measured is the efficiency, for example the optical output power divided by the electrical input power or luminous efficacy. Such testing may be used to provide a pass/fail determination, or to provide additional information, for example the failure mode as identified in step 1630.
In some embodiments, identification of the failure mode may be optional. For example, in the embodiment where failed a LEE 131 will be removed, as shown in step 1650, it may be unnecessary to determine the failure mode. However, in other embodiments, it may only be desired to remove failed LEE 131 if it has a short failure. In this example, the failure mode may be identified in step 1630 and, if it is a short failure, failed LEE 131 may be removed in step 1650. In step 1670, the replacement LEE is attached to the lighting system, replacing failed LEE 131, as discussed herein.
In some embodiments, conductive trace 121 may be designed to permit the formation of additional LEEs 130 without the need for prior removal of a failed LEE 131.
In some embodiments, the lighting system may include an array of LEEs.
In some embodiments, the systems shown in
As may be understood from an examination of
Referring back to
As may be seen from
Electrical connection to the various points in the array may be made in a number of ways, for example needle probes, bed of nail probes, or the like. The method of electrical connection to the system is not a limitation of the present invention.
Referring now to
In some embodiments, testing may include energizing LEEs 130 between various points and determining if any LEEs 130 are not emitting any light. This may be done visually, by a person, or using one or more detector or camera systems. In some embodiments, energizing may include or consist essentially of applying a fixed or variable current between the points discussed above or a fixed or variable voltage between the points discussed above. In another embodiment, photometric characteristics, for example color temperature, light output power, color rendering index, or the like may be measured, for example using an integrating sphere, fiber optic, camera, or the like. The specific measurement method is not a limitation of the present invention.
In some embodiments, a combination of two or more methods described herein for electrical and/or mechanical coupling of a patch to the lighting system may be utilized. While the discussion herein has been substantially in reference to patches including or consisting essentially of a replacement LEE 130 that is substantially the same as a failed LEE 131, this is not a limitation of the present invention, and in other embodiments the patch may include or consist essentially of more than one replacement LEE 130 where at least one replacement LEE 130 is different from the failed LEE 131. While the discussion herein has been substantially in reference to patches including or consisting essentially of one replacement LEE 130, this is not a limitation of the present invention, and in other embodiments the patch may include or consist essentially of more than one replacement LEE 130. While the discussion herein has been substantially in reference to a patch replacing one failed LEE 131, this is not a limitation of the present invention, and in other embodiments the patch may simultaneously replace more than one failed LEE 131. While the discussion herein has been substantially in reference to patches applied to lighting systems, this is not a limitation of the present invention and in other embodiments the patch may include or consist essentially of one or more optoelectronic devices and be applied to light-emitting or light-absorbing systems.
The terms and expressions employed herein are used as terms and expressions of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof. In addition, having described certain embodiments of the invention, it will be apparent to those of ordinary skill in the art that other embodiments incorporating the concepts disclosed herein may be used without departing from the spirit and scope of the invention. Accordingly, the described embodiments are to be considered in all respects as only illustrative and not restrictive.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/183,684, filed Jul. 15, 2011, which (i) is a continuation-in-part of U.S. patent application Ser. No. 12/982,758, filed Dec. 30, 2010, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/292,137, filed Jan. 4, 2010, U.S. Provisional Patent Application No. 61/315,903, filed Mar. 19, 2010, U.S. Provisional Patent Application No. 61/363,179, filed Jul. 9, 2010, U.S. Provisional Patent Application No. 61/376,707, filed Aug. 25, 2010, U.S. Provisional Patent Application No. 61/390,128, filed Oct. 5, 2010, and U.S. Provisional Patent Application No. 61/393,027, filed Oct. 14, 2010, and (ii) is a continuation-in-part of U.S. patent application Ser. No. 13/171,973, filed Jun. 29, 2011, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/359,467, filed Jun. 29, 2010, U.S. Provisional Patent Application No. 61/363,179, filed Jul. 9, 2010, U.S. Provisional Patent Application No. 61/376,707, filed Aug. 25, 2010, U.S. Provisional Patent Application No. 61/390,128, filed Oct. 5, 2010, U.S. Provisional Patent Application No. 61/393,027, filed Oct. 14, 2010, U.S. Provisional Patent Application No. 61/433,249, filed Jan. 16, 2011, U.S. Provisional Patent Application No. 61/445,416, filed Feb. 22, 2011, and U.S. Provisional Patent Application No. 61/447,680, filed Feb. 28, 2011. The entire disclosure of each of these applications is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5081520 | Yoshii et al. | Jan 1992 | A |
5408190 | Wood | Apr 1995 | A |
5631191 | Durand et al. | May 1997 | A |
5918113 | Higashi et al. | Jun 1999 | A |
6249088 | Chang | Jun 2001 | B1 |
6281450 | Urasaki et al. | Aug 2001 | B1 |
6357889 | Duggal et al. | Mar 2002 | B1 |
6478909 | Tuttle | Nov 2002 | B1 |
6501102 | Mueller-Mach et al. | Dec 2002 | B2 |
6513949 | Marshall et al. | Feb 2003 | B1 |
6566232 | Hara | May 2003 | B1 |
6576488 | Collins, III et al. | Jun 2003 | B2 |
6603258 | Mueller-mach et al. | Aug 2003 | B1 |
6614103 | Durocher et al. | Sep 2003 | B1 |
6621211 | Srivastava et al. | Sep 2003 | B1 |
6642652 | Collins, III et al. | Nov 2003 | B2 |
6650044 | Lowery | Nov 2003 | B1 |
6685852 | Setlur et al. | Feb 2004 | B2 |
6733711 | Durocher et al. | May 2004 | B2 |
6936857 | Doxsee et al. | Aug 2005 | B2 |
6939481 | Srivastava et al. | Sep 2005 | B2 |
6965361 | Sheats et al. | Nov 2005 | B1 |
6998777 | Suehiro et al. | Feb 2006 | B2 |
7005679 | Tarsa et al. | Feb 2006 | B2 |
7025651 | Song et al. | Apr 2006 | B2 |
7052924 | Daniels et al. | May 2006 | B2 |
7115983 | Wagner | Oct 2006 | B2 |
7122405 | Tiao | Oct 2006 | B2 |
7163327 | Henson et al. | Jan 2007 | B2 |
7206507 | Lee et al. | Apr 2007 | B2 |
7207693 | Ratcliffe | Apr 2007 | B2 |
7217956 | Daniels et al. | May 2007 | B2 |
7244326 | Craig et al. | Jul 2007 | B2 |
7256483 | Epler et al. | Aug 2007 | B2 |
7259030 | Daniels et al. | Aug 2007 | B2 |
7294861 | Schardt et al. | Nov 2007 | B2 |
7294961 | Daniels et al. | Nov 2007 | B2 |
7316488 | Wall, Jr. | Jan 2008 | B2 |
7319246 | Soules et al. | Jan 2008 | B2 |
7335951 | Nishi et al. | Feb 2008 | B2 |
7344902 | Basin et al. | Mar 2008 | B2 |
7344952 | Chandra | Mar 2008 | B2 |
7427782 | Daniels et al. | Sep 2008 | B2 |
7488088 | Brukilacchio | Feb 2009 | B2 |
7488621 | Epler et al. | Feb 2009 | B2 |
7498734 | Suehiro et al. | Mar 2009 | B2 |
7564070 | Sayers et al. | Jul 2009 | B2 |
7618157 | Galvez et al. | Nov 2009 | B1 |
7638854 | Tanaka et al. | Dec 2009 | B2 |
7642708 | Juestel et al. | Jan 2010 | B2 |
7656371 | Shimizu et al. | Feb 2010 | B2 |
7663234 | Sun et al. | Feb 2010 | B2 |
7682850 | Harbers et al. | Mar 2010 | B2 |
7703942 | Narendran et al. | Apr 2010 | B2 |
7723733 | Daniels et al. | May 2010 | B2 |
7740373 | Yoon et al. | Jun 2010 | B2 |
7758221 | Weijers | Jul 2010 | B2 |
7766536 | Peifer et al. | Aug 2010 | B2 |
7775685 | Loh | Aug 2010 | B2 |
7791093 | Basin et al. | Sep 2010 | B2 |
7811843 | Lai | Oct 2010 | B1 |
7819539 | Kim et al. | Oct 2010 | B2 |
7821023 | Yuan et al. | Oct 2010 | B2 |
7828459 | Rains | Nov 2010 | B2 |
7838346 | Tokunaga | Nov 2010 | B2 |
7847302 | Basin et al. | Dec 2010 | B2 |
7855092 | Shimizu et al. | Dec 2010 | B2 |
7858198 | Kashiwagi et al. | Dec 2010 | B2 |
7858408 | Mueller et al. | Dec 2010 | B2 |
1000214 | Tsukahara et al. | Jan 2011 | A1 |
7863760 | Daniels et al. | Jan 2011 | B2 |
7897483 | Yamazaki et al. | Mar 2011 | B2 |
7898085 | Fujimori et al. | Mar 2011 | B2 |
7902550 | Yamazaki | Mar 2011 | B2 |
7902560 | Bierhuizen et al. | Mar 2011 | B2 |
7909480 | Kang et al. | Mar 2011 | B2 |
7909496 | Matheson et al. | Mar 2011 | B2 |
7932531 | Lin et al. | Apr 2011 | B2 |
1010139 | Suehiro et al. | May 2011 | A1 |
1010483 | Suehiro et al. | May 2011 | A1 |
1011498 | Suehiro et al. | May 2011 | A1 |
1016368 | Dau et al. | Jul 2011 | A1 |
7972031 | Ray et al. | Jul 2011 | B2 |
7997784 | Tsai | Aug 2011 | B2 |
8101432 | Oohata et al. | Jan 2012 | B2 |
20030011377 | Oohata | Jan 2003 | A1 |
20030019735 | Howie et al. | Jan 2003 | A1 |
20040047151 | Bogner | Mar 2004 | A1 |
20040110326 | Forbes | Jun 2004 | A1 |
20050056948 | Uchiyama | Mar 2005 | A1 |
20050183884 | Su | Aug 2005 | A1 |
20050230853 | Yoshikawa | Oct 2005 | A1 |
20060001055 | Ueno et al. | Jan 2006 | A1 |
20060082315 | Chan | Apr 2006 | A1 |
20060228973 | Janning | Oct 2006 | A1 |
20070018315 | Craig | Jan 2007 | A1 |
20070069663 | Burdalski et al. | Mar 2007 | A1 |
20070096113 | Inoshita et al. | May 2007 | A1 |
20070096272 | Wang | May 2007 | A1 |
20070145884 | Wu et al. | Jun 2007 | A1 |
20070252512 | Bertram et al. | Nov 2007 | A1 |
20070297020 | Shen et al. | Dec 2007 | A1 |
20080019134 | Mukai | Jan 2008 | A1 |
20080179602 | Negley et al. | Jul 2008 | A1 |
20080179611 | Chitnis et al. | Jul 2008 | A1 |
20080191231 | Park | Aug 2008 | A1 |
20080216699 | McAleer | Sep 2008 | A1 |
20080315228 | Krames et al. | Dec 2008 | A1 |
20090002810 | Jeon et al. | Jan 2009 | A1 |
20090026915 | Nagatomi et al. | Jan 2009 | A1 |
20090073350 | Toyama et al. | Mar 2009 | A1 |
20090095966 | Keller et al. | Apr 2009 | A1 |
20090096370 | Murazaki et al. | Apr 2009 | A1 |
20090109668 | Isobe | Apr 2009 | A1 |
20090178834 | Akutsu et al. | Jul 2009 | A1 |
20090212257 | Sohn et al. | Aug 2009 | A1 |
20090239086 | Ishizuka et al. | Sep 2009 | A1 |
20090243457 | Jung et al. | Oct 2009 | A1 |
20090244882 | Samber et al. | Oct 2009 | A1 |
20090256163 | Chakraborty | Oct 2009 | A1 |
20100001631 | Gotoh et al. | Jan 2010 | A1 |
20100051984 | West | Mar 2010 | A1 |
20100060144 | Justel et al. | Mar 2010 | A1 |
20100085727 | Igarashi et al. | Apr 2010 | A1 |
20100096977 | Lee et al. | Apr 2010 | A1 |
20100155750 | Donofrio | Jun 2010 | A1 |
20100207536 | Burdalski et al. | Aug 2010 | A1 |
20100214777 | Suehiro et al. | Aug 2010 | A1 |
20100244071 | Wada et al. | Sep 2010 | A1 |
20100277084 | Lee et al. | Nov 2010 | A1 |
20100283072 | Kazlas et al. | Nov 2010 | A1 |
20100295070 | Su et al. | Nov 2010 | A1 |
20100295077 | Melman | Nov 2010 | A1 |
20100295078 | Chen et al. | Nov 2010 | A1 |
20100320928 | Kaihotsu et al. | Dec 2010 | A1 |
20110031516 | Basin et al. | Feb 2011 | A1 |
20110045619 | Ling | Feb 2011 | A1 |
20110049545 | Basin | Mar 2011 | A1 |
20110058372 | Lerman et al. | Mar 2011 | A1 |
20110063838 | Dau et al. | Mar 2011 | A1 |
20110108878 | Namiki et al. | May 2011 | A1 |
20110180818 | Lerman et al. | Jul 2011 | A1 |
20110193105 | Lerman et al. | Aug 2011 | A1 |
20110193106 | Lerman et al. | Aug 2011 | A1 |
20110193114 | Lerman et al. | Aug 2011 | A1 |
20110195532 | Lerman et al. | Aug 2011 | A1 |
20110198631 | Lerman et al. | Aug 2011 | A1 |
20110198632 | Lerman et al. | Aug 2011 | A1 |
20110204390 | Lerman et al. | Aug 2011 | A1 |
20110204391 | Lerman et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
0265077 | Apr 1988 | EP |
1067598 | Jan 2001 | EP |
1473978 | Nov 2004 | EP |
1653523 | May 2006 | EP |
1770788 | Apr 2007 | EP |
2017890 | Jan 2009 | EP |
10-84014 | Mar 1998 | JP |
2000-124401 | Apr 2000 | JP |
2002-366054 | Dec 2002 | JP |
423166 | Sep 1999 | TW |
WO-9001751 | Feb 1990 | WO |
WO-9960829 | Nov 1999 | WO |
WO-2005062382 | Jul 2005 | WO |
WO-2007067758 | Jun 2007 | WO |
WO-2007105853 | Sep 2007 | WO |
WO-2008051397 | May 2008 | WO |
WO-2009079040 | Jun 2009 | WO |
WO-2010098273 | Sep 2010 | WO |
2015023540 | Feb 2015 | WO |
Entry |
---|
PCT International Application No. PCT/US2014/050376, International Search Report and Written Opinion mailed on Dec. 8, 2014, 15 pages. |
International Search Report and Written Opinion mailed Jun. 2, 2011 for International Application No. PCT/CA2011/050006 (7 pages). |
International Search Report and Written Opinion mailed Sep. 7, 2011 for International Application No. PCT/CA2011/050399 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20140167611 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61292137 | Jan 2010 | US | |
61315903 | Mar 2010 | US | |
61363179 | Jul 2010 | US | |
61376707 | Aug 2010 | US | |
61390128 | Oct 2010 | US | |
61393027 | Oct 2010 | US | |
61359467 | Jun 2010 | US | |
61443249 | Jan 2011 | US | |
61445416 | Feb 2011 | US | |
61447680 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13183684 | Jul 2011 | US |
Child | 13967828 | US | |
Parent | 12982758 | Dec 2010 | US |
Child | 13183684 | US | |
Parent | 13171973 | Jun 2011 | US |
Child | 13183684 | US |